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Abstract
Background: The interactions of multiple single nucleotide polymorphisms (SNPs) are highly
hypothesized to affect an individual's susceptibility to complex diseases. Although many works have
been done to identify and quantify the importance of multi-SNP interactions, few of them could
handle the genome wide data due to the combinatorial explosive search space and the difficulty to
statistically evaluate the high-order interactions given limited samples.

Results: Three comparative experiments are designed to evaluate the performance of
MegaSNPHunter. The first experiment uses synthetic data generated on the basis of epistasis
models. The second one uses a genome wide study on Parkinson disease (data acquired by using
Illumina HumanHap300 SNP chips). The third one chooses the rheumatoid arthritis study from
Wellcome Trust Case Control Consortium (WTCCC) using Affymetrix GeneChip 500K Mapping
Array Set. MegaSNPHunter outperforms the best solution in this area and reports many potential
interactions for the two real studies.

Conclusion: The experimental results on both synthetic data and two real data sets demonstrate
that our proposed approach outperforms the best solution that is currently available in handling
large-scale SNP data both in terms of speed and in terms of detection of potential interactions that
were not identified before. To our knowledge, MegaSNPHunter is the first approach that is capable
of identifying the disease-associated SNP interactions from WTCCC studies and is promising for
practical disease prognosis.

Background
Single nucleotide polymorphisms (SNPs) are single
nucleotide variations of DNA base pairs. Researchers

often use SNPs as genetic markers in disease studies. It has
been well established in the field that SNP profiles charac-
terize a variety of diseases. By investigating SNP profiles
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associated with a disease trait, researchers would be able
to reveal relevant genes. However, in many complex dis-
eases, SNPs have shown little penetrance individually; on
the other hand, their interactions are suspected to possess
stronger associations with complex diseases. Some SNPs,
which have no direct impact on health, may be linked to
nearby genes which do have effects. Researchers hypothe-
size that many common diseases in humans are not
caused by one genetic variation within a single gene, but
are determined by complex interactions among multiple
genes. Since the sheer volume of data generated by SNP
studies is difficult to be manually analyzed, an efficient
computational model is required to detect or indicate
which pattern is most likely associated with the disease.
Then, it will just be a matter of time before physicians can
screen individuals for susceptibility to a disease by analyz-
ing their DNA samples for specific SNP patterns, and fur-
ther design some experiments to target the genes that
implicate the disease.

Recently, many methods have been proposed to identify
SNP interaction patterns associated with diseases. To
name a few studies, BEAM [1] designed a Bayesian marker
partition model and used MCMC sampling strategy to
estimate the model parameters; MDR [2] applied an
exhaustive search model to evaluate all possible multi-
SNP interactions under some given thresholds; the penal-
ized regression [3] used a variant of logistic regression
model with quadratic penalization; CPM [4] used a com-
binatorial partitioning method for finding the interacted
SNPs; RPM [5] extended CPM by using some heuristics to
reduce the search space; Monte Carlo Logic Regression [6]
combined the logic regression and MCMC in searching
the SNP interactions; BGTA [7] proposed a screening algo-
rithm to repeatedly evaluate a large number of randomly
generated marker subsets. HapForest [8] used a forest-
based approach to identifying haplotype-haplotype inter-
actions. Although these methods perform well on small
data sets, most of them (except BEAM) are unable to effi-
ciently detect the multi-SNP interactions in genome wide
association study.

BEAM has successfully demonstrated its capability of han-
dling large data sets using synthetic data. When the
authors applied BEAM to an AMD (aged-related macular
degeneration) study [9], however, BEAM did not report
any interactions. One possible reason is that the number
of samples is not sufficient to detect the statistically signif-
icant interactions. Another possible reason is that BEAM
treats local SNP interactions (haplotype effect) equally
with global gene interactions during MCMC sampling,
which could miss some critical haplotype effects in a
genome wide association study because haplotype effects
generally appear more frequently than global gene inter-
actions.

Given a genome wide association study with thousands of
SNPs and a limited number of samples, it is difficult to
detect and evaluate the multi-SNP interactions in a tradi-
tional statistic manner. The feasible solution is to first find
a small set of relatively more relevant SNPs and then eval-
uate the interactions within it. This procedure was applied
in HapForest [8] to infer the haplotype-haplotype interac-
tion.

However, the typical feature selection models, which use
univariate ranking on feature importance and arbitrary
threshold to select relevant features, cannot be applied
because they will filter out those SNPs that have weak
marginal effects, while their joint behavior may signifi-
cantly contribute to disease traits. In this paper, we intro-
duce an alternative learning approach (MegaSNPHunter)
to hierarchically rank the multi-SNP interactions from
local genomic regions to global genome. MegaSNPHunter
takes case-control genotype data as input and produces a
ranked list of multi-SNP interactions. In particular, the
whole genome is first partitioned into multiple short sub-
genomes and each subgenome covers the genomic area of
possible haplotype effects in practical. For each subge-
nome, MegaSNPHunter builds a boosting tree classifier
based on multi-SNP interactions and measures the impor-
tance of SNPs one the basis of their contributions in the
classifier. The method keeps relatively more important
SNPs from all subgenomes and let them compete with
each other in the same way at the next level. The competi-
tion terminates when the number of selected SNPs is less
than the size of a subgenome. At the last step, MegaSNP-
Hunter extracts and reports the valuable multi-SNP inter-
actions.

Results
The performance of MegaSNPHunter is evaluated through
comparative studies with existing work. The goal of
MegaSNPHunter is to discover the multi-SNP interactions
from genome wide studies. Among many recently pro-
posed methods, BEAM is the best one which could handle
the large scale data set and finish in a reasonable time.
Therefore, we mainly compare our method with BEAM in
this paper using synthetic data generated on the basis of
epistasis models and the data sets from two real studies on
complex diseases. In the experiments on two real studies,
one uses a genome wide study on Parkinson disease (data
acquired by using Illumina HumanHap300 SNP chips
[10]). The other experiment chooses the rheumatoid
arthritis study [11] from Wellcome Trust Case Control
Consortium (WTCCC) using Affymetrix GeneChip 500K
Mapping Array Set. In our experiments, a SNP marker can
take one of the following four states: 0 (missing), 1 (cod-
ing for the homozygous reference), 2 (heterozygous), and
3 (homozygous variant). The class label is either 0 (con-
trol) or 1 (case).
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Experiment on Simulation study
Simulation studies are developed to validate the perform-
ance of our approach in correctly determining the associ-
ated SNPs defined by an epistatic model. To make the fair
comparison, we use the simulation program provided in
BEAM package and follow the same procedure in [1] to
generate the data based on two epistatic models (additive
effect and multiplicative effect). For each model, we
choose 12 settings (readers may refer [1] for details) and
for each setting, we generate 30 data sets, and each data set
includes 1000 SNPs and contains 2000 samples (1000

cases and 1000 controls). The performances of both
MegaSNPHunter and BEAM are illustrated in Figure 1. In
most settings, MegaSNPHunter performs the same or
slightly better than BEAM.

Ideally, the results on the genome wide simulation would
be more convincing but such a simulation is computa-
tionally expensive. In general, the goal of simulation
study is to provide the evidence for validity of our
approach. In practice, the real data is very complex and
the SNP interactions in the real data may not match any

Comparison between MegaSNPHunter and BEAM on synthetic dataFigure 1
Comparison between MegaSNPHunter and BEAM on synthetic data. Comparison between MegaSNPHunter and 
BEAM on synthetic data. For each setting, the power is calculated as the proportion of 30 data sets. Each data set contains 
2000 samples (1000 cases and 1000 controls) and 1000 SNPs. λ controls the marginal effect. MAF is the minor allele frequency. 
LD between each unobserved disease locus and the associated marker is measured by r2. (a): The performance comparison on 
additive model. (b):The performance comparison on multiplicative model.
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epistatic model. Therefore, our approach does not assume
any epistatic model. We believe the most effective crite-
rion for judging the epistatic interaction is that the joint
effect is much more significant than the marginal effects
of individual SNPs. The next two experiments would
show the effectiveness of our approach on the real data.

Experiment on Parkinson study
Parkinson disease is a chronic neurodegenerative disease
with a cumulative prevalence of greater than 0.1 percent.
The primary symptoms of Parkinson's disease include
tremors, rigidity, slow movement, poor balance, and dif-
ficulty walking. In this experiment, we choose the study in
[10] which provides around 396,000 genotypes in 541
samples. Both BEAM and MegaSNPHunter are tested on
this data set. BEAM could not identify any interaction
while our MegaSNPHunter selected 7 significant SNP
interactions.

MegaSNPHunter is first run on each chromosome with 10
fold cross validation. Cross validation is a model evalua-
tion method that estimates how well the model built from
some training data is going to perform on unseen data.
The 10 fold cross validation is conducted every time when
the boosting tree classifier is built in the whole hierarchi-

cal procedure. In our test, the samples are randomly sam-
pled into 10 subsets and each validation uses 9 subsets to
train the model and the left one to test the performance.
The output from every validation is a classifier and a list of
ranked SNPs.

After 10 validations are finished, a post process is invoked
to isolate those SNPs whose genotype association χ2 P val-
ues reach a critical value (default is 0.05), and those SNPs
whose interaction's genotype association χ2 P values are
above a critical value (default is 0.0025). The top ranked
SNPs among the selected 302 SNPs are reported in Table
1 with genotype association χ2 P values. The selected inter-
actions with genotype association χ2P values are reported
in Table 2. To handle the multiple test issue, we conduct
an extra permutation-based test (chromosome level) on
both single SNP and SNP interactions to correct P values.

We observe that among 12 SNPs involved in the selected
interactions in Table 2, only three of them (rs13032261,
rs7924316 and rs2235616) have noticeable marginal
effects in Table 1. For the other 9 SNPs, their joint effects
are much more significant than the corresponding indi-
vidual SNP effects. Figure 2 shows the genotype distribu-
tion of two SNPs (rs7172832 and rs906428) and the

Table 1: Identified SNPs for Parkinson study. 

SNP reference Chromosome Genotype association χ2 P value Permutation test P value

rs6826751 4 7.647 * 10-7 2.0 * 10-4

rs4888984 16 1.351 * 10-5 6.0 * 10-4

rs2986574 1 1.402 * 10-5 6.0 * 10-4

rs1480597 10 1.862 * 10-5 0.0016

rs13032261 2 2.233 * 10-5 0.0012

rs546171 9 3.104 * 10-5 2.0 * 10-4

rs7554157 1 3.428 * 10-5 0.0010

rs999473 10 3.82 * 10-5 0.0022

rs7924316 11 3.883 * 10-5 6.0 * 10-4

rs2235617 20 4.656 * 10-5 8.0 * 10-4

rs13135430 4 5.805 * 10-5 0.0060

rs243023 2 6.90 * 10-5 0.0012

rs11691934 2 8.246 * 10-5 0.0022

This table reports the top ranked SNPs and their genotype association χ2 P values.
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genotype distribution under the interaction. Figure 3 dis-
plays the same information for the interaction between
rs1505376 and rs3861561. These figures clearly illustrate
how the two weak SNPs significantly affect disease traits
(the first interaction is not in this case because the mar-
ginal effect of rs2235617 is already significant).

Experiment on rheumatoid arthritis study
The Wellcome Trust Case Control Consortium (WTCCC)
is a collaboration of many British research groups. To

date, the WTCCC has examined the genetic signals of
seven common human diseases: rheumatoid arthritis,
hypertension, Crohn's disease, coronary artery disease,
bipolar disorder, and type 1 and type 2 diabetes. The rheu-
matoid arthritis study [11] contains around 500 K geno-
types in 3503 samples (1999 cases and 1504 controls).
We use the same procedure mentioned above to conduct
the experiment. The top ranked SNPs among the selected
213 SNPs are reported in Table 3 with genotype associa-
tion χ2 P values. The selected interactions with genotype

Table 2: Selected interactions for Parkinson study. 

Interacted SNPs Genotype association χ2 P value Permutation test P value

rs2235617 ⇔ rs2470378 2.318 * 10-7 3.0 * 10-6

rs7172832 ⇔ rs906428 4.219 * 10-7 2.89 * 10-4

rs1505376 ⇔ rs3861561 4.998 * 10-7 1.62 * 10-4

rs13032261 ⇔ rs7924316 2.824 * 10-6 2.72 * 10-4

rs13032261 ⇔ rs2284967 6.325 * 10-6 3.39 * 10-4

rs13032261 ⇔ rs906428 6.402 * 10-6 3.44 * 10-4

rs842796 ⇔ rs800897 6.596 * 10-6 3.36 * 10-4

This table reports the selected interactions and their genotype association χ2 P values.

The joint effect of rs7172832 and rs906428, and their marginal effectsFigure 2
The joint effect of rs7172832 and rs906428, and their marginal effects. The joint effect of rs7172832 and rs906428, 
and their marginal effects. (a): The distribution of cases and controls of rs7172832 (P value 0.03) and rs906428 (P value 0.001); 
(b): The distribution of cases and controls under the interaction of rs7172832 and rs906428 (P value 4.219 * 10-7).
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association χ2 P values are reported in Table 4. The top
interaction identified in MegaSNPHunter is between
rs4418931 and rs4523817. Its genotype association χ2 P
value is 6.83 * 10-15. The genotype distribution of cases
and controls for these two SNPs and the distribution
under their interaction are plotted in Figure 4.

Both rs4418931 and rs4523817 are located on the gene
GPC6, which is a member of the glypican gene family and
encodes a product structurally related to GPC4 [12]. In a
latest study of rheumatoid arthritis [13], GPC4 displays
strong expression. The connection between our finding
and previous work may imply a complex rheumatoid
arthritis associated pattern. More evidences from biologi-
cal aspect are under investigation. Again, BEAM could not
report any significant interaction. The reason that BEAM
could not report any interaction is partly because the data
from the real studies are too complex to be formulated by
one Bayesian marker partition model and the distribution
assumptions in BEAM may not be true for the real data.
The results from both experiments on real data sets empir-
ically justify that our method performs better than BEAM
with respect to finding SNP interactions in genome wide
association studies.

Running time comparison

Another attracting point of our MegaSNPHunter is that it
runs faster than BEAM. Suppose the number of SNPs in

each subgenome is W, the number of SNPs is M, and the
number of samples is N. Then the number of subgenomes

is  + 1. The time for training one boosting tree classifier

using one subgenome is O(W · N · log(N)). Then the
time for learning at the first level is O(M · N · log(N)).

The expected number of SNPs at the second level is ,

and  at the dth level. Then the time for the learning at

the dth level is O(  · N · log(N)). The total running

time is O(M · (1 +  + < + ) · N · log(N)) that is

equivalent to O(M · N · log(N)). It approximates to 6.20
* 109 for the rheumatoid arthritis study, which is much
less than the complexity O(I * N) (around 3.5 * 1011) of
BEAM, where I is the number of iterations in MCMC sam-
pling and is set to 108as default value for a data set with
medium size (i.e. around 400, 000 SNPs). Theoretically, I
is determined by O(M * Nd) with d denoting the number
of interacting SNPs (i.e. interaction depth).

Discrimination ability on real data sets
As for the discrimination power of MegaSNPHunter,
Table 5 and Table 6 report the prediction accuracies for
both experiments on real data sets. They also report the
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The joint effect of rs1505376 and rs3861561, and their marginal effectsFigure 3
The joint effect of rs1505376 and rs3861561, and their marginal effects. The joint effect of rs1505376 and rs3861561, 
and their marginal effects. (a): The distribution of cases and controls for rs1505376 (P value 0.001) and rs3861561 (P value 
0.012). (b): The distribution of cases and controls under the interaction of rs1505376 and rs3861561 (P value 4.998 * 10-7).
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prediction accuracies for each chromosome based on
selected SNPs and the prediction accuracies from rand-
omized tests for comparison. The randomized tests ran-
domly select the same number of SNPs as our method has
selected for each chromosome and the whole genome,
and collect the prediction accuracies using 10-fold CV.
The reported accuracies for randomized tests are the aver-
ages of 50 runs. In both tables, we observe that the ran-
domly selected SNPs from both real data sets can only
achieve around 50% prediction accuracy on average. We
realize that there are many false positives in selected SNPs
because MegaSNPHunter can achieve good performance
on every chromosome. How to reduce the false positive
error is a challenging problem in genome wide associa-
tion studies. Although our method does not directly
address this issue, nevertheless our method is able to
reduce the number of possibly disease-associated SNPs
and rank those SNPs based on their relevances to the dis-
ease trait. Extra filters can be applied to remove false pos-
itives.

The parameter setting of MegaSNPHunter
There are four main parameters in the models, including
the depth of trees, the threshold for selecting SNPs from
trees, the subgenome size and the overlap between subge-
nome.

1. The depth of trees indicates the depth of SNP interac-
tion. Since most significant interactions are depth 2, so as
long as the depth of trees is above 2, the results would not
be changed. MegaSNPHunter uses 5 as default setting.

2. The size of subgenome depends on the density of SNP
data. Each subgenome should cover the genomic area of
possible haplotype effects in practical. Before we start the
experiment, we collect some statistics on how many SNPs
are genotyped for one gene. This number will be used as
the size of subgenome.

3. The overlap between subgenomes is used to solve the
boundary problem between genes. Half of the size of sub-
genome is the best choice. Both the size of subgenome

Table 3: Identified SNPs for WTCCC study. 

SNP reference Chromosome Genotype association χ2 P value Permutation test P value

rs17163819 2 2.587 * 10-150 0.0042

rs10894818 12 1.751 * 10-120 0.0046

rs582397 3 1.089 * 10-82 0.0022

rs7596121 3 5.212 * 10-60 0.0022

rs16898558 6 1.718 * 10-52 0.0046

rs996877 13 1.566 * 10-44 0.0036

rs9387380 7 2.315 * 10-34 0.011

rs940153 9 1.032 * 10-33 0.0040

rs1456222 4 1.544 * 10-33 0.0048

rs1572075 5 1.474 * 10-23 0.0040

rs7192563 17 2.862 * 10-18 0.0030

rs17765376 15 3.277 * 10-18 0.0058

rs9532645 14 1.26 * 10-16 0.0028

rs10751815 11 1.036 * 10-15 0.0014

rs6975106 8 3.207 * 10-13 0.0028

This table reports the top ranked SNPs and their genotype association χ2 P values.
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and the overlap between subgenomes depend on the pri-
ori knowledge on epistatic interactions.

4. The threshold for selecting SNPs from trees is a very crit-
ical parameter to the method. Our goal is to find interac-

tions among SNPs with weak marginal effects. If the
threshold is too stringent, then too many SNPs will be fil-
tered out, while the loose threshold will allow too many
SNPs to be selected. In our method, two strategies are
applied to deal with this issue.

Table 4: Selected interactions for WTCCC study. 

Interacted SNPs Genotype association χ2 P value Permutation test P value

rs4418931 ⇔ rs4523817 6.83 * 10-15 0.001382

rs6696928 ⇔ rs10493711 2.075 * 10-12 0.00216

rs262714 ⇔ rs407818 6.532 * 10-8 0.00240

rs2041377 ⇔ rs11113207 6.95 * 10-8 0.00236

rs7459039 ⇔ rs10271302 1.073 * 10-8 0.003224

rs17565060 ⇔ rs7220740 3.406 * 10-7 0.00345

rs9268230 ⇔ rs7751204 6.90 * 10-7 0.0112

rs17507967 ⇔ rs12126069 8.622 * 10-7 0.00384

rs3738369 ⇔ rs11206109 1.53 * 10-6 0.00389

This table reports the selected interactions and their genotype association χ2 P values.

The joint effect of rs4523817 and rs4418931, and their marginal effectsFigure 4
The joint effect of rs4523817 and rs4418931, and their marginal effects. The joint effect of rs4523817 and rs4418931, 
and their marginal effects. (a): The distribution of cases and controls for rs4523817 (P value 0.866) and rs4418931 (P value 
0.001). (b): The distribution of cases and controls under the interaction of rs4523817 and rs4418931 (P value 6.83 * 10-15).
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• The first strategy is to select all SNPs involved in the clas-
sifier. This is usually used in the situation where most
SNPs are clearly irrelevant with diseases. However, in the
worst case, the classifier may use all SNPs in training. If
too many SNPs are selected in the classifier, the second
strategy will be applied.

• The second strategy uses a threshold to select relevant
SNPs. This threshold is the critical value of χ2 statistic. The
default setting for single SNP is 0.05, 0.05*0.05 for a pair
of interacted SNPs, and so on so forth.

Table 5: Classification for Parkinson study. 

Chromosome Picked SNPs Total SNPs Prediction Accuracy Randomized test accuracy

1 242 31,532 0.852 0.505

2 247 32,706 0.874 0.516

3 218 27,691 0.874 0.517

4 174 24,193 0.835 0.511

5 188 24,570 0.878 0.507

6 204 26,372 0.857 0.501

7 278 21,382 0.821 0.498

8 254 22,434 0.845 0.508

9 243 19,542 0.841 0.505

10 227 20,007 0.841 0.507

11 247 19,539 0.854 0.513

12 230 19,572 0.806 0.506

13 156 14,123 0.784 0.502

14 224 12,645 0.824 0.509

15 212 11,618 0.786 0.518

16 225 11,767 0.793 0.496

17 202 11,619 0.778 0.507

18 252 12,613 0.793 0.507

19 165 8,608 0.802 0.5

20 186 10,375 0.806 0.512

21 130 6,612 0.758 0.497

22 126 7,071 0.782 0.506

OVERALL 339 396,588 0.913 0.503

The classification performance of MegaSNPHunter on Parkinson study.
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Discussion
The advantages of MegaSNPHunter
The development of MegaSNPHunter was triggered by the
limitations of existing works on finding high order SNP
interactions from genome wide studies. Given a genome
wide study containing thousands of markers, most exist-
ing methods either fail to report the statistically significant

interactions due to the limited samples, or can not termi-
nate in a reasonable time due to the explosive search
space.

MegaSNPHunter addresses these issues by hierarchically
reducing the number of relevant SNPs and then extracting

Table 6: Classification for WTCCC study. 

Chromosome Picked SNPs Total SNPs Prediction Accuracy Randomized test accuracy

1 154 39,428 0.947 0.512

2 109 40,641 0.968 0.565

3 153 33,121 0.932 0.523

4 127 31,343 0.926 0.486

5 151 31,601 0.905 0.498

6 130 31,133 0.915 0.546

7 126 25,412 0.938 0.553

8 109 26,954 0.927 0.523

9 143 23,246 0.905 0.552

10 125 28,222 0.881 0.482

11 132 26,005 0.905 0.516

12 113 24,721 0.887 0.492

13 86 18,913 0.896 0.504

14 94 15,436 0.865 0.511

15 112 14,192 0.911 0.504

16 115 15,070 0.903 0.532

17 101 11,128 0.887 0.513

18 135 14,633 0.893 0.522

19 85 6,286 0.885 0.540

20 106 12,266 0.874 0.503

21 80 7,014 0.892 0.496

22 76 6,124 0.924 0.533

OVERALL 223 451,288 0.926 0.513

The classification performance of MegaSNPHunter on WTCCC study.
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the interactions. MegaSNPHunter displays many advan-
tages over the existing methods:

• the hierarchical learning strategy can extract both local
SNP interactions and global gene interactions in an effi-
cient manner without exhaustive enumeration;

• MegaSNPHunter uses a classifier built on SNP interac-
tions to rank the relevances of SNPs, which is superior to
the univariate feature selection techniques on finding the
SNPs with weak marginal effects but significant joint
effects;

• MegaSNPHunter is a non parametric method. It does
not assume any prior distributions as required by many
parametric-statistical methods;

• MegaSNPHunter does not assume any particular epista-
sis models, which is very important for real studies
because the models of SNP interactions are unknown and
likely to be very complex. Our method only assumes that
the further the distance between two SNPs, the less possi-
bility they interact with each other.

• MegaSNPHunter could be applied for discrimination,
where we can use the selected SNPs to build a classifier for
discriminating two or more classes of samples.

The limitations of MegaSNPHunter
The big advantage of MegaSNPHunter is to find the inter-
actions between SNPs with weak marginal effects. To han-
dle the high dimension of genome wide data,
MegaSNPHunter partitions the whole genome into multi-
ple short subgenomes and select the relative more impor-
tant SNPs from each subgenome. If the interacted SNPs
are not located in the same subgenome, MegaSNPHunter
requires that their marginal effects must be above the
medium of marginal effects of their resided subgenomes.
We think this is a soft constraint because in reality, most
SNPs in the genome do not contribute to any trait varia-
tion. If either of interacted SNPs only has trivial marginal
effect, it would have little chance to survive and meet its
counterpart in the next level.

In the real application, MegaSNPHunter could incorpo-
rate some search strategies proposed in [14] as a preproc-
ess to reduce the search space. These search strategies first
find disease-associated SNPs with noticeable marginal
evidence. Then an exhaustive search procedure can be
applied to find interactions among them. These strategies
complements our method. We could start from using
them to find interactions between SNPs with strong mar-
ginal effects and next run MegaSNPHunter to find interac-
tions between SNPs with weak marginal effects.

Future Studies
There are several issues we need to address in the future
work. Since our method assumes that the strength of
interaction is inversely proportional to the distance of
SNPs, most findings in our results are local effects. The
interactions between SNPs far in distance have already
drawn many researchers' attention. We plan to develop
new methods to find the global SNP interactions. An effi-
cient sampling strategy is one possible solution. Another
critical issue is how to reduce false positives. We plan to
incorporate the haplotype information and pathway
information to help reduce the false positive error in
future study.

Conclusion
In this paper, we propose a novel hierarchical learning
algorithm (MegaSNPHunter) to find high order SNP
interactions in genome wide association studies. We eval-
uate MegaSNPHunter through comparative studies on
simulated data and the data sets from two real studies
including a genome wide study on Parkinson disease [10]
and the rheumatoid arthritis study from WTCCC [11]. In
the simulation experiment, MegaSNPHunter displays the
comparable performance while in the experiments on two
real studies, BEAM could not report any interaction pat-
terns but our MegaSNPHunter identifies many interac-
tions among SNPs whose joint effects are more significant
than the individual SNP effects. In summary, the hierar-
chical nature of our non-parametric learning scheme ena-
bles our new method to search for interaction patterns
more efficiently than existing methods. In this sense, our
method is a powerful tool for whole genome data analy-
sis.

Methods
The goal of MegaSNPHunter is to find the remarkable
multi-SNP interactions from large genome data to explain
the observed trait variation. To handle the high dimen-
sion of genome wide data, MegaSNPHunter adopts a hier-
archial learning approach that first reduces the number of
relevant SNPs into a small set and then extract the multi-
SNP interactions. In the process of finding relevant SNPs,
the whole genome is first divided into multiple short sub-
genomes, and the next step is to rank the importance of
SNPs by building a classifier with multi-SNP interactions
for each subgenome. The importance of SNPs in each clas-
sifier is measured by their contributions to the classifica-
tion power. The flowchart of MegaSNPHunter is
illustrated in Figure 5. In the following sections, the base
learner for each subgenome is introduced first. Next, the
hierarchical learning algorithm is described in details. At
last, a new procedure different from brute-force search is
presented to extract the multi-SNP interactions from tree
classifiers.
Page 11 of 15
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Tree Boosting Classifier
There are many popular classification models in machine
learning, which could be chosen as our base learner.
Among them, classification and regression tree (CART)
[15] is one of the best choices because the tree based
learning model has a good interpretability of feature inter-
action. CART recursively generates a tree model by split-
ting the data using selected features. It uses the GINI index
to determine how well the splitting rule separates samples
contained in the parent node. Once the best split is found,
CART repeats the splitting process for another child node,
and continues recursively until further splitting is impos-
sible. The interaction of features is represented as a path
from the root node to the leaf node in the tree. However,

the tree-based model is usually not stable and often sensi-
tive to the data distribution. To increase its discrimination
power, one popular solution is to use boosting [16].
Boosting is considered as one of the most powerful learn-
ing procedure that theoretically could be used to boost
any weak learner (even only slightly better than a random
guess), and combine a set of weak learners into a strong
learner. Among all boosting models, gradient boosting of
regression tree [17] is considered as a highly robust and
competitive method for feature selection. It shows excel-
lent performance even when the number of features is
large and the relationship between features and class is
complex. The general gradient boosting procedure [17] is
listed in Algorithm 1 (shown at the end of the paper). The

The flowchart of MegaSNPHunterFigure 5
The flowchart of MegaSNPHunter.
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basic idea is to compute a sequence of regression trees,
where each successive tree is built for the prediction resid-
uals of the preceding tree. To avoid the overfitting, the size
of the trees is usually fixed to some pre-given threshold.
L(Y, f(X)) in Algorithm 1 is the loss function to minimize.
For a two-class classification in boosting, the loss function
is the negative binomial log-likelihood defined in [17] as

L(y, f) = -∑(yif(xi) - log(1 + exp(f(xi)))), y ∈ {0,1},
(1)

where f(x) is defined as

The gradient of loss function L(Y, f(X)) is derived as

The output F of this procedure is a set of regression trees
that are added together to perform the classification task.

Algorithm 1 General Gradient Boosting Procedure

Initialized F to be a constant.

for t = 0 to T do

Compute the negative gradient zi = - L(yi, f(xi))

Fit a regression tree T(x), predicting zi

Update F as F ← F + ηT(x)

end for

MegaSNPHunter
MegaSNPHunter takes case-control genotype SNP data as
input and produces a ranked list of multi-SNP interac-
tions. To find non-trivial multi-SNPs interactions in the
high dimension of genome wide data, a general approach
would first evaluate each SNP individually and select
some top ranked ones, and then extract the multi-SNP
interactions in the selected SNPs. This approach falls short
at finding those significant interactions among SNPs with
weak marginal effects because those SNPs have high prob-
abilities to be filtered out in the first step. Taking multi-
SNP interactions into account in the selection stage pro-
vides a good solution to this issue. MegaSNPHunter
employs a hierarchial learning strategy. In particular, the
whole genome is first divided into multiple short subge-
nomes and a tree boosting classifier is built on each subg-

enome. The built classifier consists of a collection of
regression trees, where each node represents one SNP and
each path in the trees indicates a possible interaction of
those SNPs on the path. Given a tree boosting classifier
{Tj}, the importance of each SNP is measured by its clas-
sification contribution to the classification power, which
is defined as

where ev is the empirical error reduction by splitting on xi
using SNP Si in tree Tj [18]. The average of the relative
influence of SNP Si across all the trees is used to measure
its importance.

Using Equation 4, MegaSNPHunter could rank the impor-
tance of SNPs in each subgenome. A cut-off threshold can
be used to choose the top ones. The selected SNPs from all
subgenomes will first merge together and then compete
with each other in the same way at the next level. By hav-
ing all SNPs compete with each other in training classifi-
ers, MegaSNPHunter reduces the large number of relevant
SNPs into a very small set. For this small set of SNPs, the
multi-SNP interactions could be extracted and ranked
even using the brute-force search method like MDR. Nev-
ertheless, one critical drawback of MDR lies in the places
that the search depth, which is equivalent to the order of
SNP interaction, has to be limited to some certain level in
order to complete the search in a reasonable time. In
MegaSNPHunter, we design a new procedure to extract
the high orders of multi-SNP interactions without exhaus-
tive enumeration.

Interaction Extraction

Given a small set of SNPs, it is feasible to test all possible
interactions using exhaustive search. However, the
number of selected SNPs from a genome wide study may
still make exhaustive search of high order interactions
very time consuming. Concretely, the number of possible
interaction for n SNPs with maximal depth d is

. For example, 50 SNPs with maximal

depth 5 would give rise to 2,369,885 possible SNP inter-
actions, which would go much higher even with a small
increase on the number of SNPs or the maximal depth of
SNP interactions. Apparently, the brute-force search
method for extracting high orders of SNP interactions is
not a good choice in MegaSNPHunter. In MegaSNP-
Hunter, the built classifier is a collection of trees in which
each path represents a possible interaction among SNPs
on the path. For those SNP interactions making non-triv-
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ial contribution to the traits (case or control) of samples,
it is very likely that they will be included in the boosting
classifier. Therefore, we could first extract all possible
paths from trees and then evaluate the interactions of
SNPs on each path. Given K binary trees with maximal
depth d, the number of paths from root nodes to leaf
nodes is K * 2d-1. For each length d path from the root
node to the leaf node, the number of possible sub-paths

with length at least 2 is . Then the total number

of possible interactions in our procedure is K * 2d-2 * (d -

1) (d - 2) which is far less than  (n is the

number of SNPs) for a brute-force search.

After extracting all possible SNP interactions from the
classifier, we rank them using the H-statistics proposed in
[18]. For two given variables (xj, xk), the H statistic is
defined as

where ({xj}j∈s) estimates the partial dependence of the

classifier F on {xj}j∈s, which is defined as

The partial dependence ({xj}j∈s) is equivalent to the

marginal effect of {xk}k ∉ s in classifier F. Therefore, H(xj,

xk) measures the fraction of partial dependence (xj, xk)

not captured by . The H-statistics of high

order interactions are defined in the same way as in [18].

Algorithm
To summarize, we propose the hierarchical learning algo-
rithm 2.

Algorithm 2 MegaSNPHunter Algorithm

Given:

D:the depth of interactions

W:the subgenome size

L:The overlap size

S:SNP Data [X, Y] with class label.

while numberOfSNPs(S) > W do

SelectedSNPs ← ∅

Separate S into S0, S1,...,Sm where sizeof(Si) = W (i <m),
sizeof(Si ∩ Sj) = O and sizeof(Sm) <W

for i = 0 to m do

Fi ← TreeBoostingClassfier(Si, T, D)

for SNPj ∈ Fi do

SelectedSNPs ← SelectedSNPs + {SNPj}

end for

end for

S ← S(SelectedSNPs)

end while

F ← TreeBoostingClassfier(S, T, D).

Extract all path Pi from F.

Compute H-statistic H(Pi) and Rank Pi.

Function T reeBoostingClassfier([X, Y], T, D)

F ← 0

for t = 0 to T do

ei = yi - , i ∈ (1, n)

Fit a D depth regression tree 

 where 

F ← F + η∑λl1(x ∈ Rl)

end for

return F
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