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Abstract
Background: Quantitative measurements of specific protein phosphorylation sites, as presented
here, can be used to investigate signal transduction pathways, which is an important aspect of cell
dynamics. The presented method quantitatively compares peptide abundances from experiments
using 18O/16O labeling starting from elaborated MS spectra. It was originally developed to study
signaling cascades activated by amyloid- treatment of neurons used as a cellular model system with
relevance to Alzheimer's disease, but is generally applicable.

Results: The presented method assesses, in complete cell lysates, the degree of phosphorylation
of specific peptide residues from MS spectra using 18O/16O labeling. The abundance of each
observed phospho-peptide from two cell states was estimated from three overlapping isotope
contours. The influence of peptide-specific labeling efficiency was removed by performing a label
swapped experiment and assuming that the labeling efficiency was unchanged upon label swapping.
Different degrees of phosphorylation were reported using the fold change measure which was
extended with a confidence interval found to reflect the quality of the underlying spectra.
Furthermore a new way of method assessment using simulated data is presented. Using simulated
data generated in a manner mimicking real data it was possible to show the method's robustness
both with increasing noise levels and with decreasing labeling efficiency.

Conclusion: The fold change error assessable on simulated data was on average 0.16 (median
0.10) with an error-to-signal ratio and labeling efficiency distributions similar to the ones found in
the experimentally observed spectra. Applied to experimentally observed spectra a very good
match was found to the model (<10% error for 85% of spectra) with a high degree of robustness,
as assessed by data removal. This new method can thus be used for quantitative signal cascade
analysis of total cell extracts in a high throughput mode.

Background
In order to better understand the vast complexity of the
molecular events in biology, good measurement tech-

niques and methodologies are required to investigate the
biological processes as they unfold. The presented
approach was developed to identify protein targets in
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Alzheimer's disease as part of the first steps in the drug dis-
covery pipeline. The activated cellular signal transduction
pathways were studied in a neuronal disease model
immediately upon amyloid- stimulation[1]. Protein
phosphorylation is a well known and extensively used sig-
naling mechanism, so measuring specific changes in pro-
tein phosphorylation was used to inspect these pathways.
To this end it is required to assess the degree of phospho-
rylation at a specific protein residue, which differs from
the overall degree of phosphorylation of a given protein
e.g. observed as a shift in isoelectric point on a gel.

The experimental setup uses stable isotope labeling by
normal or heavy oxygen (16O or 18O) to differentiate
between mixed treated and control peptides[2]. This pep-
tide mixture is analyzed by mass spectrometry in a single
run. The proteins were extracted and the samples were
analyzed in two steps. First the proteins were trypsinized
and peptides identified in an MS/MS mode experiment
from an unlabeled mixture of the treated and control sam-

ples. Secondly the proteins were extracted from the treated
and untreated cells, an aliquot split was performed fol-
lowed by 18O/16O C-terminal labeling by trypsination in
two independent experiments (see Methods). This pro-
duced a 'direct' experiment, where the peptides from the
treated cells were labeled with heavy oxygen (18O) and
mixed with peptides from the untreated control cells
labeled with light oxygen (16O), and an 'inverted' experi-
ment where the labeling was swapped. The samples were
subsequently analyzed by mass spectrometry and the
acquired spectra were initially processed through a series
of analysis steps (see Methods), which are not part of the
method presented and therefore not detailed here.

The problem setting addressed here starts from a set of
label swapped pairs, each with up to 9 spectral intensities
(see Figure 1) extracted from a large range of MS spectra
summing ion counts from multiple charge states and an
extended retention time. The choice of using up to 9 peaks
(missing values were allowed) in the quantitative MS

18O/16O labeling problem settingFigure 1
18O/16O labeling problem setting. To quantitatively compare peptides their C-term is ideally labeled with heavy oxygen 
(two 18O) or light oxygen (two 16O), but partial labeling also occurs (mixed). These isotope species give rise to overlapping iso-
topic contours with individual contributions (a, b and c) to the observed MS spectra peaks. The input data used for the data 

analysis were nine observed spectral intensities (S0-S8) including possible missing values. These intensities ( ) are assumed to 

equal a weighted sum of three isotope contours (Peptide C-terms:  Light (16O2),  Mixed (18O, 16O) and  Heavy 

(18O2)), a constant background Kbg and an error term . The weights (a, b and c) are of particular interest since they describe 
the contribution of unlabelled (Light:a) and labeled (Mixed:b and Heavy:c) isotopes. In the theoretical case where the back-
ground constant and error term are removed a theoretical framework is presented (see Table 1), where the above experiment 
is performed twice for each peptide with swapped labels (i.e. Direct and Inverted experiments).

a

b

c

Peptide C-term:

C
16O
16OC’

TL

in
te

ns
it

y

Light

C
16O
18OC’

TM

in
te

ns
it

y

Mixed

C
18O
18OC’

TH

in
te

ns
it

y

1 Da

Heavy

Isotopic contours: Observed MS-peaksContribution
of contour:

m0

m0+2

S = aTL+ bTM+ cTH +Kbg+ 

S0 S1 S2 S3 S4 S5 S6 S7 S8

m0+4

S
pe

ct
ra

l i
nt

en
si

ty

 

S

TL TM TL
Page 2 of 15
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:141 http://www.biomedcentral.com/1471-2105/10/141
analysis was a pragmatic one, since in most spectra the 9th

peak is already within the noise range. A set of inherent
problems to the 18O labeling technique are treated here:
one is the overlap of three isotopic contours from the
labeled and unlabeled peptides; another is the non-per-
fect labeling efficiency, which along with experimental
noise needs to be taken into account in order to get as
robust and reliable quantitation as possible (see Figure 1).

We have chosen to report the primary end result as the
fold change between treated and control. Choosing the
fold change also means that the absolute intensities of
treated and control are no longer needed, thus allowing
the assumptions used to be reduced to one i.e. equal labe-
ling efficiency between the two label swapped samples
(see Methods).

The theoretical probability distribution between double,
single and no incorporation of 18O upon labeling can also
be derived[3]. Here we have chosen not to make any such
assumptions, but rather use additional experimental data
in the form of label swapping and the limited assumption
of equal labeling efficiency of a given peptide upon label
swapping.

The basic analysis methodology starts with the fitting of
theoretical isotopic contours for the heavy, mixed and
light isotopes to the observed signal (see Figure 1). The fit-
ting was carried out using multivariate linear regression
where the squared error was minimized[4] to yield the
three intensities of labeled and unlabeled isotopes with
their respective confidence intervals (see Methods). To
reflect the quality of fit of the multivariate regression onto
the resulting fold change, confidence intervals were calcu-
lated by a parametric bootstrap using the estimated covar-
iance matrix of the three regression coefficients.

Some previous methods have relied on just a few peaks
(2–4 peaks) to estimate the ratio between treated and con-
trol[5,6] and in most cases the peptide sequence was
assumed unknown. More relevant information is present
in the remaining peaks which can be utilized to improve
the peptide abundance estimate. The abundance estimate
can be improved further if the peptide sequence and post-
translational modifications are known, since the theoreti-
cal isotopic contour is improved, as presented here. The
presented method can also use estimated isotopic con-
tours directly if the peptides have not been identified prior
to MS quantitation[7,8]. This is the case for a method
recently published by Eckel-Passow et al. which uses aver-
agine (an imaginary average amino acid) and all of the
MS-peaks presently discernible from background
noise[3,9]. They used the linear regression described by
Mirgorodskaya et al.[10] which is analogous to the one
presented here to calculate the isotopic intensities. The
sample used for their analysis was a simple mixture of two
proteins in a 1:1 ratio, in contrast to proteins originating
from a complete cell lysate as investigated here and by
others[2,11-13].

To assess a new peptide quantitation methodology ideally
you would need to have a large and varied set of spectra
with already known abundances. In short of such a data
set we propose to use simulated spectra for a thorough
model assessment and the limited experimental data for
validation.

Results
To perform an in depth assessment of the methodology
we first present a characterization of some important
parameters on the experimentally observed spectra. This
characterization was used to generate similar spectra in-sil-
ico where desired parameters could be imposed and com-
pared to the ones estimated by the model after adding

Table 1: Overview of Method Variables

Direct labeling: Light (16O2) Mixed (16O, 18O) Heavy (18O2)

Treated (Lab. pep.): 

Control (Unlab. pep.): 

Intensities: ID aD bD cD
Inverted labeling: Light (16O2) Mixed (16O, 18O) Heavy (18O2)

Control (Lab. pep.): 

Treated (Unlab. pep.): 

Intensities: II aI bI cI

The theoretical quantities used to derive the ratio between treated and control samples are listed. The desired intensities for treated and control 
samples were calculated from the estimated intensities (see Eq. 2II–III) resulting from the multivariate linear regression fit after normalization (a, b 
and c). The total intensity of a spectra I = a + b + c, where in the table subscripts D and I are added referring to the Direct and Inverted 
experiments, respectively, and the superscripts T and C are added referring to treated and control samples, respectively.
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noise. The simulated spectra were generated in order to
reflect, as much as possible, the experimentally observed
spectra by using the same peptides and by mirroring the
distributions observed for a set of important observable
parameters. One important parameter is the proportion of
total spectral intensity which cannot be explained by the
model's three overlapping isotopic contours and remains

as residuals or errors, here termed the /S-ratio

( ). The error term contains experimen-

tal noise as well as any mismatch between theory (includ-
ing data fitting) and practice. The data agreed very well
with the model as shown in Figure 2a with less than 10%
error for 85% of the spectra and less than 5% error for
50% of the spectra.

Noise was added to the simulated data with a distribution
similar to the one found for the experimental spectra,
thereby reflecting the experimental data from this perspec-
tive, resulting in less than 10% error for 85% of the spectra
and less than 5% for 45% of the spectra. Another impor-
tant parameter is the labeling efficiency which is defined
as the ratio between the labeled isotope intensity (either
fully or partially labeled) and the total intensity of the

sample undergoing labeling (see Figure 2b and Equation
2). In most of the spectra a reasonably good labeling effi-
ciency is observed (above 0.6), while there are three spec-
tra pairs with low or absent labeling. We found that it was
unrealistic to rescue these spectra with label efficiencies
close to zero (data not shown) so for the simulated spectra
the tail of the imposed label efficiency distribution was
cut off at 0.4. The labeling efficiency shown for the simu-
lated spectra is the one estimated by the model in the
same manner as it is done for the experimentally observed
spectra, which naturally differs from the one imposed
when constructing the spectra. Finally in supplementary
Figure [see Additional file 1] the estimated fold change
distribution is shown for the experimental and simulated
spectra. The average fold change was close to one, as one
would expect from a biological perspective since only a
small part of the phosphorylated proteins were expected
to be involved in the cellular response. The experimental
spectra had a trend towards positive fold changes, which
we chose not to impose on the simulated data. Further-
more we also chose a larger spread of the fold change to
provide enough data points for a statistical analysis of
larger fold changes, which actually increase the average
fold change error as shown below. Having inspected the
experimentally observed spectra and ensured that the sim-
ulated spectra reflect their overall measurable characteris-
tics, we can perform an in-depth assessment of the

 
S S

i

i
= ∑

∑

Simulated data mimicking experimental distributionsFigure 2
Simulated data mimicking experimental distributions. a) The error to signal ratio (/S-ratio) displayed shows that 85% 
of the experimentally observed spectra (red line) matched the theoretical reconstruction well, with less than 10% of the total 
spectral intensity assigned to the error term (dotted line). 50% of the spectra were matched very well with less than 5% error 
(dashed line). Noise was introduced into the simulated spectra in order to reflect a similar /S-ratio distribution (blue line). b) 
The labelling efficiency was found to vary considerably between experimental spectra (red bars). One peptide was not labelled 
at all, while another was completely absent in the treated sample, which produced the three spectra with a labelling efficiency 
of zero observed. The simulated spectra were generated to reflect this long tailed and high variability distribution (blue bars).
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presented model's behavior using simulated spectra fol-
lowed by an investigation of the experimentally observed
spectra.

Fold change assessment
The fold change parameter reports the change in abun-
dance between the treated and control samples in a sym-
metrical and straightforward manner by a simple ratio
(see Methods). We used the simulated data presented
above to assess the model estimates of fold change and its
dependencies on noise, label efficiency and the absolute
value of the fold change itself. We have chosen to display
primarily the relationships with respect to the estimated
parameters as they can be calculated from the experimen-
tally observed spectra and thus relate the fold change to
them.

As the noise level goes up the difference between true fold
change and estimated fold change increases, but since the
noise is distributed over 9 observable peaks, which are fit-
ted in unison by the model, it is not directly clear how the
estimated fold change would behave. To measure the
quality of the estimated fold change we introduce the fold
change error defined below as the difference between true
(or imposed) fold change and the fold change estimated
from the model based on the spectra:

In Figure 3 the fold change error is plotted as a function of
the imposed noise level and the /S-ratio originating from
the model residuals after fitting the three overlapping con-
tours to the spectra. The imposed noise level and /S-ratio
are correlated with a correlation coefficient of 0.80, which
shows that the /S-ratio is a reasonably good indicator of
the level of noise in a spectrum.

The fold change estimate was found to depend on the
labeling efficiency [see Figure Additional file 1], but even
at low labeling efficiencies (<60%) the method yielded
reasonably good fold change estimates at moderate noise
levels (noise < 0.1). The imposed labeling efficiency and
the one estimated after added noise were highly correlated
with a correlation coefficient of 0.94, showing that the
model estimate is quite reliable [see scatter plot in Addi-
tional file 1]. Similarly the fold change error increased
with increasing fold change as shown in Figure 4a, but in
a very noise dependent manner where a small linear
response was found for low degrees of noise (noise < 0.1),
while higher noise ranges result in drastic increases in
average fold change error. This is an argument in favor of
suggesting a spectral quality threshold around /S-ratio <
0.1. The estimated fold change had a high correlation
coefficient of 0.91 with the imposed fold change validat-

ing the presented methodology over a wide and represent-
ative range of labeling efficiencies and noise levels. The
interconnected influence of labeling efficiency and noise
on the fold change error is not straightforward (see Figure
4b), but is relevant in the experimental setting. For exam-
ple it should be noted that at low noise ranges (noise <
0.05) a reasonably low fold change error, can be obtained
even down to mediocre labeling efficiencies (Lab.Eff. >
0.6), as illustrated in Figure 5. To provide adequate sam-
pling the contour plot is made using a separate data set
with flat distributions for all parameters.

Fold Change Confidence Interval Assessment
In a high throughput setting it is not possible to assess the
quality of each individual spectra pair and of the model fit
manually, so if only a fold change is reported the spectral
quality aspect is missing. To this end we have computed
the confidence interval for each reported fold change
using a bootstrap based on the regression (see Methods).
The relevance of the confidence interval lies in its ability
to reflect the quality of the spectra pair. This means that
for good spectra the confidence interval should be nar-
row, while for poor spectra it should widen up. A subset
of fold change values and noise levels were extracted to
illustrate how the fold change confidence interval tightens
around the estimated fold change when the noise level
decreases (see Figure 6a). The quality of the spectra
depends primarily on the level of imposed noise and
imposed label efficiency, which was found to correlate
well with the fold change confidence interval window size
(see Figure 6b). The estimated 95% confidence interval
around the fold change actually contained the imposed
fold change 96% of the cases showing that estimate is
highly reliable.

Consistency Check
Based on the obvious assumption that a contributing
intensity cannot be negative we were able to derive a set of
constraints in order to assess whether a label swapped
spectra pair was mutually consistent (see Methods). They
specify that aD  bI + cI and aI  bD + cD, which basically
means that a sample may not change intensity upon label
swapping. They are important in order to identify prob-
lematic spectra pairs and were used as an initial filter on
the experimental and simulated spectra pairs, thus flag-
ging 8% and 5%, respectively.

Examples from Experimental Spectra
To illustrate the reported results on experimentally
observed spectra pairs, a peptide with low labeling effi-
ciency (0.61) is shown in Figure 5. Nevertheless a tight
fold change interval could be estimated where FC = 2.49
with a 95% confidence interval of [2.05 3.21]. Another
medium intensity peptide was observed as two separate
species, sharing a phosphorylation site (pTPGTPGpTP-

fold change error true fold change estimated fold change= −| |

(9)
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SYPR and TPGTPGpTPSYPR). Using the presented meth-
odology the phosphorylation site specific fold change was
estimated for the shared Thr phosphorylation to 1.33 with
a 95% confidence interval of [1.17 1.64] (see Methods).
This peptide originates from the microtubule-associated
protein 2 (map-2), the phosphorylation state of which
has been found to influence cytoskeleton structure[14]. In
Alzheimer's, the disease studied, cytoskeleton integrity is
known to be of great importance[15].

Robustness Assessment
To assess the quality of the presented method directly on
the experimentally observed spectra we performed a
robustness test. In Figure 7 one spectra peak was removed
at the time and the spectra pair re-analyzed to show the
resulting fold change. This is also based on the recogni-

tion that occasionally some peaks cannot be measured or
are contaminated with interfering species and was feasible
by utilizing the inherent redundancy contained within the
spectra. The fold change estimates were found to be very
robust towards the removal of single peaks and outliers
could in this manner be identified to support the removal
of interfering isotope species, thereby improving the final
fold change estimate.

Discussion
The presented method can estimate residue specific pro-
tein phosphorylation fold changes with associated confi-
dence intervals from an 18O/16O label swapped spectra
pair independently of the label efficiency, if minimal labe-
ling occurs. The only prerequisite for the presented meth-
odology is equal peptide specific label efficiency between

Fold change quality assessmentFigure 3
Fold change quality assessment. To assess the quality of the estimated fold change the average error was calculated as a 
function of the imposed noise level (red) and the observable error to signal ratio (/S-ratio in blue) calculated as part of the 
model fitting. The sigmoid shape of the /S-ratio reflects that when the imposed noise fits the model (low /S-ratio) the fold 
change error does not decrease, and when the imposed noise doesn't fit (high /S-ratio) the fold change error remains level. 
The observation that the /S-ratio (blue) is flat at the ends of the sigmoid reflect the fact that by chance, for low /S-ratios the 
noise accidentally fits with the isotopic contour, thus increasing the fold change error. The flat end for high /S-ratios is just the 
inverse i.e. by chance the noise pulls in opposite directions and cancels out in the linear regression fit, thus lowering the fold 
change error while having a large /S-ratio.
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Fold change error estimation from observable parametersFigure 4
Fold change error estimation from observable parameters. a) Large estimated fold changes were found to entail 
increasing absolute error in the fold change estimate. This can be explained from the observation that large fold changes are 
the result of one sample (either treated or control) being present in low amounts which in turn increases the influence of noise 
and poor labeling efficiency. For low degrees of added noise (noise  [0.01 0.10]) the relationship is strikingly linear, for higher 
noise levels the fold change error is seen to increase more rapidly. b) The contour plot shows which fold change error can be 
expected (contour lines) for a given Error/Signal-ratio and estimated labeling efficiency (x- and y-axes). Since the two latter 
parameters are estimated by the method for experimentally observed spectra as well, the plot can be used to look up what 
would be the expected fold change error given an estimated labeling efficiency and an estimated error/signal ratio.
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Experimental label swapped spectra pairFigure 5
Experimental label swapped spectra pair. Fig. 5 The two label swapped spectra pairs are shown (Direct and Inverted) for 
the peptide ASGQAFELILpSPR. The observed spectra S (yellow bars) is shown along with the model reconstruction using the 
three contributing isotopic contours (TLight(orange), TMixed(green) and THeavy(blue)). The labeling efficiency for this particular 
peptide was rather low: 0.61, but due to the clear signal it was possible to estimate a fold change of 2.49 [2.05 3.21]. The /S-
ratio was 0.06 reflecting a model fit around average for the experimental spectra. The spectral intensity was found to vary con-
siderably between the direct and inverted label swapped experiments (average peak intensities: <SD> = 1899 and <SI> = 7880), 
which is likely to have originated primarily from variation in phospho-peptide enrichment.
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Assessment of the fold change confidence intervalFigure 6
Assessment of the fold change confidence interval. a) To assess the fold change 95% confidence interval estimate it has 
been plotted for a subset of fold changes and noise levels as shown. The confidence interval was seen to tighten up when the 
noise level decreases, which illustrates its value as an assessment parameter of spectral quality. The asymmetry in the confi-
dence interval reflects how the uncertainty and multivariate dependencies between the estimated isotope intensities influence 
the fold change estimate. Furthermore the confidence interval widens when the fold change increases, in accordance with the 
increased fold change error (see Fig. 4). b) The confidence interval was also found to mirror the uncertainty caused by noise 
and low labeling efficiency, thus in total capturing important aspects of spectral quality.
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Figure 7 (see legend on next page)
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label swapped experiments. The fold change for each pep-
tide had a very low average and median error of 0.16 and
0.10, respectively, where the error was estimated from
simulated spectra with similar noise and labeling effi-
ciency distributions as the experimentally observed spec-
tra. The labeling efficiency and spectrum noise were along
with the absolute value of the fold change itself found to
be the main determinants of fold change error, but are
being continuously improved[16]. Using the simulated
data we were able to map this relationship in a contour
plot, where the average fold change error is reported,
given the estimated labeling efficiency and /S-ratio. The
contour plot displays the non-linear relationship between
labeling efficiency and /S-ratio and allows an additional
estimate of the fold change error directly applicable to
experimental observed spectra. A qualitative decrease in
fold change estimation was found for a few poor spectra
with an /S-ratio above 0.1 or estimated labeling effi-
ciency below 0.5, which had an average fold change error
of 0.50. If these spectra are excluded the average and
median fold change drops to 0.13 and 0.09, respectively.
Two major drawbacks where highlighted by Miyagi and
Rao[17] of the 18O/16O-labeling technique: variability in
labeling and computational tools, both are addressed by
the presented method.

Conclusion
The method presented was developed to support its appli-
cation in high throughput experiments by quality check
filtering based on spectra pair consistency and the accu-
rate reporting of fold change confidence interval. The fold
change confidence interval was found to summarize spec-
tral quality nicely from several aspects such as noise, labe-
ling efficiency and sample signal. We found that the
confidence interval provided very valuable information,
thus reducing the amount of time spent quality checking
the underlying spectra manually. A matter of experimen-
tal reality is the occasional intrusion of an interfering spe-
cies into a spectrum, which can be identified and
eliminated using the leave-one-out robustness assessment
presented. The described method can also be used for

quantitation in a broader context such that different pep-
tide isotope contributions (due to post-translational
modifications or peptidase miscleavages) can be joined to
yield a more accurate overall peptide fold change estimate
and resulting protein quantitation. The presented method
is thus useful for the elucidation of the constitution and
dynamics of cellular signaling pathways by allowing the
accurate measurement of residue-specific phosphoryla-
tion events.

Methods
Experimental Protocol
Rat cortical neurons were treated with amyloid- for a
duration of 5 minutes and compared to untreated con-
trols in order to identify proteins with differentially phos-
phorylated residues[18]. The peptide labeling technique
uses heavy (H2

18O) and normal (H2
16O) water as

described by Yao et al.[19] in a similar manner to others
[2,11]. This should ideally label all peptides except those
originating from the C-terminal peptide of the protein. An
aliquot split was performed in the biological sample and
label swapping was performed in order to separate label
efficiency from biological variation. The phosphorylated
peptides were enriched using the Phos-Select IMAC resin
(Sigma-Aldrich), separated using 2D-nanoflow-liquid
chromatography with SCX step gradient as first dimen-
sion and RP as the second and finally analyzed using a
nanoflow-ESI-QTOF-MS. The intensity of the isotopes of
each peptide species considered was measured from MS
spectra acquired in profile mode. All peptide spectra with
an ion count above 40 were combined and centroided
using the Mass Measure tool in MassLynx 4.0 (supplied by
Waters), summing a window of retention time and multi-
ple charge states. The isotope Modeling tool of MassLynx
was used to compute the theoretical contour based on the
identified peptide sequence and its post-translational
modifications. The experiments produced a total of 52
spectra of which 4 were found to be inconsistent (see
Label Swapped Spectra Pair Consistency) resulting in a
total of 48 spectra pairs used in the presented analysis. All

Robustness assessment of the fold change estimateFigure 7 (see previous page)
Robustness assessment of the fold change estimate. a) To assess the robustness of the model's fit to the observed 
spectra, one data point (Direct:SD0-SD8, Inverted:SI0-SI8) at a time has been removed and the resulting fold change recalculated. 
The graph shows for each experimentally observed spectra pair (x-axis) how the estimated fold change varies when one of the 
spectra peaks is missing. Overall only small degrees of variation upon data removal were observed, thereby demonstrating the 
redundancy of the spectra and robustness of the fold change estimate. The highlighted case where the fold change varies con-
siderably is due to very low labeling efficiency (LabEff). A fold change saturation limit of +/- 5 was imposed for proper visualiza-
tion. b) To challenge the method's robustness even further multiple data points have been removed. This has been done by 
removing peaks in pairs starting from the on-average least intense (R:S8 means removing SD8 and SI8) and moving up (R:S8S7 
means removing SD7, SI7, SD8 and SI8) etc. Overall it is seen that peptides with a high fold change tend to be more susceptible to 
missing values. The method appears to handle up to four missing values well, but in most of the observed cases even six missing 
values result in reasonable fold change values.
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data are available as a table in the supporting material [see
Additional file 2].

Simulated Data
The present section describes the details needed to repro-
duce the data presented in the Result section covering
noise level, labeling efficiency and fold change calcula-
tions. One million spectra were generated of which 53860
were found to be inconsistent (see Label Swapped Spectra
Pair Consistency) and removed, thereby leaving 946140
which were characterized in Figure 2, 3 and 4. A simulated
spectra for a peptide was generated by adding noise (here
denominated imposed noise) to the sum of three ideal-
ized isotope contours (corresponding to light, mixed and
heavy isotopes). The imposed noise was added from two
flat distributions, since this was found to give an /S-ratio
distribution similar to the one observed for the experi-
mental spectra (see Figure 2). One distribution had a max-
imum of 37% noise and the other a maximum of 14%
noise. The simulated spectra were generated by first
choosing one of the two distributions for a spectrum e.g.
14%, then generating a random number for each peak
ranging from +14% to -14% and adding this number to
each peak in the spectra. This imposed noise level
reported for each spectrum was the actual noise added by
the random number generator, which varies from one
simulated spectrum to another. The idealized spectra used
were the same as those generated as part of the analysis of
the 48 experimental spectra pairs used as example data.

Multivariate Linear Regression
The multivariate linear model fits three (light, mixed and
heavy) stepwise shifted identical theoretical isotopic con-
tours (T0–T4) to an observed spectrum (S0–S8) with inten-
sities a, b and c finding the least squares solution[6] (see
Figure 1). The model also includes an adaptable back-
ground level (Kbg) resulting in a total of four parameters
estimated from nine observables. An adaptation of the
multivariate regression algorithm was required in order to
produce realistic (non-negative) isotope intensities. If an
estimated isotope intensity parameter (a, b or c) came out
negative the regression was redone while fixing it to zero.
In Table 1 an overview is given of the variables used. The
statistical analyses were performed in MatLab and scripts
are available upon request.

Label Efficiency Subtraction
The labeling reaction yield has been observed to vary con-
siderably between the various phospho-peptides studied.
Some have a very high labeling reaction yield, most are
labeled well and yet some don't seem to be labeled at all
[see Additional file 3]. With the single assumption of
equal labeling reaction yield upon label swapping we
derive the ratio between treated and control, which is all
that is needed to calculate the fold change and is inde-

pendent of the labeling efficiency of the peptide in ques-
tion. Naturally when the labeling efficiency becomes very
low or absent the fold change can no longer be estimated
properly, but this should be reflected in the fold change
confidence interval.

Using the primary assumption of equal labeling efficiency
(explicitly defined in Eq. 2I) we can derive the ratio
between treated and control using theoretical quantities,
which reads:

Where Table 1 defines the theoretical quantities used and
Eq. 2II–III describes how the estimated coefficients from
the multivariate linear regression relate to the theoretical
quantities. The primary assumption used is that the label
reaction yield remains unchanged between direct and
inverted experiments (see Equation 2I). In Eq. 2II–III we
describe the expected value of the estimated coefficients in
relation to the theoretical quantities. Furthermore the esti-
mated coefficients are normalized to ensure equal peptide
intensities upon label swapping (required by the theoret-
ical framework).

Eq. 2 (I) The primary assumption of this paper is
defined here and states that the peptide label efficiency
remains unchanged between Direct and Inverted exper-
iments (i.e. label swapping). (II and III) The coeffi-
cients (a, b and c) used in the theoretical framework
(see Table 1) are derived from the estimated coefficients
by normalization, such that the total intensities (ID and
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II) between Direct and Inverted experiments are equal.
The expectancy, E(), of an estimated parameter is its
theoretical counterpart after normalization. See Table 1
for an explanation of the theoretical quantities used.

The ratio is all that is needed in order to calculate the fold
change (see Equation 3) and is independent of the pep-
tide specific labeling efficiency.

The number of assumptions incorporated into the model
has been minimized to avoid inconsistencies due to noise
from the experimental measuring process. An example is
the labeling efficiency which could have been formulated
in a much more constraining manner, where the propor-
tion of each isotope species (heavy, mixed and light)
would have been assumed unvaried between the two label
swapped experiments. In effect when noise is present in
the experimental data or in the simulated data they rarely
conform to this demanding assumption (data not
shown).

Definition of Fold Change
The fold change definition used (see Equation 3)
describes in a symmetric way the change in abundance
between treated and control.

Eq. 3 The fold change definition applied ensures a sym-
metrical representation of an increase in abundance
from control to treated (e.g. 1.25 means 25% increase)
with respect to a decrease in abundance (e.g. -1.25
means 25% decrease). The ratio between treated (IT)
and control (IC) intensities was estimated using Equa-
tion (1).

Fold Change Confidence Interval Estimation
The basic assumption used for the confidence interval cal-
culation of the fold change was that the parameters esti-
mated by the linear regression (a, b and c) were following
a multivariate Gaussian distribution. Although this is
known not to be exact it is a workable solution which
upon sufficient sampling becomes reliable. The regression
fit method used to fit MS spectra was as described by Chat-
terjee and Hadi[6] which also estimates the covariance
matrix  of the returned parameters (a, b and c). Subse-
quently a bootstrap calculation was performed in order to
estimate the fold change distribution. 10000 random val-
ues (ak, bk and ck) were drawn from a multivariate Gaus-
sian distribution with mean vector [a, b, c] and covariance
matrix ; for each random set (ak, bk and ck) the fold

change FCk was calculated using Equations 1 and 3. The
95% confidence interval was estimated by making use of
the bootstrap generated fold change distribution[20].

Label Swapped Spectra Pair Consistency

It is obvious that all intensities must be positive, which
was imposed as part of the regression for a, b and c, but
when a label swapped spectra pair was analyzed the inten-
sity of the "labeled" sample which remains unlabeled

(  and ) remains unconstrained and was in some

cases found to be negative. By imposing the obvious con-

straints:  and  we can analytically derive the result-

ing constraints for the observed regression parameters:

These are also quite obvious constraints: Equation 4I
requires that the intensity of the unlabeled isotope in the
direct experiment aD cannot be less than the intensity of
the labeled isotopes in the inverted experiment bI+cI. This
follows from the fact that aD contains the entire control
sample as well as what didn't get labeled of the treated
sample, while bI+cI only upon perfect labeling maximally
can contain the entire control sample. Equation 4II is the
symmetrical version for the treated sample. If these con-
straints are not fulfilled after normalization then the esti-
mated parameters from the two spectra are not mutually
consistent. This has been implemented as a check which
was applied throughout in order to flag and filter out spec-
tra pairs. This was the case for 13% of the experimentally
observed spectra and 5% of the simulated spectra. As part
of further developments we propose to develop a method
to rescue these spectra e.g. by realigning the parameters (a,
b and c) in order to fulfill the constraint. In any case the
flagging of inconsistent spectra would remain an impor-
tant quality indicator. Another way of looking at these
constraints puts quite interestingly upper and lower
bounds on the treated versus control ratio:

Phosphorylation Site Specific Fold Change Estimation
The phosphorylation site specific fold change can be
derived from the treated versus control ratios (TC-ratio) of
all the peptide species containing the phosphorylation
site in question. These different peptide species may be
observed due to miscleavages by the peptidase, two phos-
phorylations on the same peptide, or other post-transla-
tional modifications, which split the observed peptide in
two ore more distinct isotope species. The objective is, as
above, to estimate the overall TC-ratio, in this case involv-
ing intensities from all the observed peptide isotope spe-
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cies containing the phosphorylation site in question, this
can be formulated as:

where Ii
T is the theoretical intensity of the MS unique pep-

tide (i.e. m/z and retention time unique) number i and is
a shorthand where the Direct/Inverted label symbol is left
out e.g. Ii

T = ID, i
T = II, i

T, since the two are identical. The esti-

mate of the treated and control intensities required here
can be directly taken from our normalized intensities
described above, since the normalization step applied
retains the scale (see Equation 2 II and III). Actually the
normalization used aligns the theoretical intensities to the
average of their expected estimated coefficients such that:

. This means we can use the

TC-ratio to derive the desired intensities of the treated and
control samples for a given peptide isotope:

When multiple peptides are joined to yield a single fold
change an added experimental assumption is made of
equal detectability of the involved peptide species. While
for 18O labeling the change is believed to be negligible it
is known not always to be so between different peptide
species in general as described by Tang et al.[21].

Visualization statistics
Generally in the figures reported we have used bin count-
ing for optimal visualization. This means that when x ver-
sus y is plotted, each spot or circle reports the average x-
and average y-value for a given x-axis percentile of the data
e.g. if there are 50 spots the first spot reports the average x,
y-value for the 2% of data with the lowest x-values. This
enables a good estimation of the x-, y-values and also
shows the data distribution without flooding the plot
with each individual x, y pair. In the special case of report-
ing fold changes the mean and standard deviation were
calculated on "zero-centered fold changes" (zero centered
fold change  (-, +)) in order to perform the statistics on
a continuous value set i.e. before calculation of mean or
standard deviation, one was added to all fold change val-
ues below -1 and one was subtracted from all the others.

After calculation of the mean it was transformed back into
a real fold change (fold change  (-, -1)  (1, +)) for
reporting or visualization.
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