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Abstract
Background: As a high-throughput technology that offers rapid quantification of multidimensional
characteristics for millions of cells, flow cytometry (FCM) is widely used in health research, medical
diagnosis and treatment, and vaccine development. Nevertheless, there is an increasing concern
about the lack of appropriate software tools to provide an automated analysis platform to
parallelize the high-throughput data-generation platform. Currently, to a large extent, FCM data
analysis relies on the manual selection of sequential regions in 2-D graphical projections to extract
the cell populations of interest. This is a time-consuming task that ignores the high-dimensionality
of FCM data.

Results: In view of the aforementioned issues, we have developed an R package called flowClust
to automate FCM analysis. flowClust implements a robust model-based clustering approach based
on multivariate t mixture models with the Box-Cox transformation. The package provides the
functionality to identify cell populations whilst simultaneously handling the commonly encountered
issues of outlier identification and data transformation. It offers various tools to summarize and
visualize a wealth of features of the clustering results. In addition, to ensure its convenience of use,
flowClust has been adapted for the current FCM data format, and integrated with existing
Bioconductor packages dedicated to FCM analysis.

Conclusion: flowClust addresses the issue of a dearth of software that helps automate FCM
analysis with a sound theoretical foundation. It tends to give reproducible results, and helps reduce
the significant subjectivity and human time cost encountered in FCM analysis. The package
contributes to the cytometry community by offering an efficient, automated analysis platform which
facilitates the active, ongoing technological advancement.

Background
Flow cytometry (FCM) is a high-throughput technology
that offers rapid quantification of a set of physical and

chemical characteristics for a large number of cells in a
sample. FCM is widely used in health research and treat-
ment for a variety of tasks, such as providing the counts of
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helper-T lymphocytes needed to monitor the course and
treatment of HIV infection, in the diagnosis and monitor-
ing of leukemia and lymphoma patients, the evaluation of
peripheral blood hematopoietic stem cell grafts, and
many other diseases [1-8]. The technology is also used in
cross-matching organs for transplantation and in research
involving stem cells, vaccine development, apoptosis,
phagocytosis, and a wide range of cellular properties
including phenotype, cytokine expression, and cell-cycle
status [9-14].

Currently, FCM can be applied to analyze thousands of
samples per day. Nevertheless, despite its widespread use,
FCM has not reached its full potential due to the lack of
an automated analysis platform to parallel the high-
throughput data-generation platform. In contrast to the
tremendous interest in the FCM technology, there is a
dearth of statistical and bioinformatics tools to manage,
analyze, present, and disseminate FCM data. There is con-
siderable demand for the development of appropriate
software tools, as manual analysis of individual samples is
error-prone, non-reproducible, non-standardized, not
open to re-evaluation, and requires an inordinate amount
of time, making it a limiting aspect of the technology
[1,7,15-21].

One core component of FCM analysis involves gating, the
process of identifying cell populations that share a set of
common properties or display a particular biological
function. Currently, to a large extent, gating relies on the
sequential application of a series of manually drawn gates
(i.e., data filters) that define regions in 1- or 2-D graphical
projections of FCM data. This process is manually time-
consuming and subjective as researchers have tradition-
ally relied on intuition rather than standardized statistical
inference [7,22,23]. In addition, this process ignores the
high-dimensionality of FCM data, which may convey
more information than that provided by only looking at
1- or 2-D projections.

Recently, a suite of several R packages providing infra-
structure for FCM analysis have been released though Bio-
conductor [24], an open source software development
project for the analysis of genomic data. flowCore [25],
the core package among them, provides data structures
and basic manipulation of FCM data. flowViz [26] offers
visualization tools, while flowQ provides quality control
and quality assessment tools for FCM data. Finally,
flowUtils provides utilities to deal with data import/
export for flowCore. In spite of these low-level tools, there
is still a dearth of software that helps automate FCM gat-
ing analysis with a sound theoretical foundation [15].

In view of these issues, based on a formal statistical clus-
tering approach, we have developed the flowClust pack-

age (Additional file 1) to help resolve the current
bottleneck. flowClust implements a robust model-based
clustering approach [27-29] which extends the multivari-
ate t mixture model with the Box-Cox transformation
originally proposed in [30]. As a result of the extensions
made, flowClust has included options allowing for a clus-
ter-specific estimation of the Box-Cox transformation
parameter and/or the degrees of freedom parameter; the
Implementation section and the Results and Discussion
section provide a detailed account of these extensions.

Implementation
The model
In statistics, model-based clustering [28,29,31,32] is a
popular unsupervised approach to look for homogeneous
groups of observations. The most commonly used model-
based clustering approach is based on finite Gaussian
mixture models, which have been shown to give good
results in various applied fields [28,29,33,34]. However,
Gaussian mixture models might give poor representations
of clusters in the presence of outliers, or when the clusters
are far from elliptical in shape, phenomena commonly
observed in FCM data. In view of this, we have proposed
in [30] an approach based on t mixture models [27,28]
with the Box-Cox transformation to handle these two
issues simultaneously. Formally, given independent p-
dimensional multivariate observations y1, y2,...,yn, and
denoting by Ψ the collection of all unknown parameters,
the likelihood for a mixture model with G components is

where wg is the probability that an observation belongs to

the g-th component, and φp(·|μg, Σg, νg) is the p-dimen-

sional multivariate t density with mean μg (νg > 1), covar-

iance matrix νg (νg - 2)-1 Σg (νg > 2) and νg degrees of

freedom.  is the value obtained upon transforming yi

with the Box-Cox parameter λg; the transformation used is

a variant of the original Box-Cox transformation which is
also defined for negative-valued data [35]. Finally,

 is the Jacobian induced

by the transformation. Please refer to [30] for a detailed
account of an Expectation-Maximization (EM) algorithm
[36] for the simultaneous estimation of all unknown

parameters Ψ = (Ψ1,...,ΨG) where Ψg = (wg, μg, Σg, νg, λg).

The EM algorithm needs to be initialized. By default, ran-
dom partitioning is performed 10 times in parallel, and
the one delivering the highest likelihood value after a few

L w Jn g p

g

G

i

n

i g g g i g
g( | , , ) ( | , , ) | ( ; ) |,

( )ΨΨ ΣΣy y y y1

11

… = ⋅
==

∑∏ ϕ ν λλ μμ

(1)

y i
g( )λ

| ( ; ) | | |J y y yi g i i ip
g g gy λ λ λ λ= − − −

1
1

2
1 1"
Page 2 of 8
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:145 http://www.biomedcentral.com/1471-2105/10/145
EM runs will be selected as the initial configuration for the
eventual EM algorithm.

Note that, in the model originally proposed in [30], the
Box-Cox parameter λ is set common to all components of
the mixture, and the degrees of freedom parameter ν is
fixed at a predetermined common value. In the latest
development of our software, we have generalized the
model such that ν may also be estimated, and both λ and
ν are allowed to be component-specific, as reflected in
Equation (1).

When the number of clusters is unknown, we use the
Bayesian Information Criterion (BIC) [37], which gives
good results in the context of mixture models [29,38].

The package
With the aforementioned theoretical basis, we have devel-
oped flowClust, an R package to conduct an automated
FCM gating analysis and produce visualizations for the
results. Its source code is written in C for optimal utiliza-
tion of system resources and makes use of the Basic Linear
Algebra Subprograms (BLAS) library, which facilitates
multithreaded processes when an optimized library is
provided.

flowClust is released through Bioconductor [24], along
with those R packages mentioned in the Background sec-
tion. The GNU Scientific Library (GSL) is needed for suc-
cessful installation of flowClust. Please refer to the
vignette that comes with flowClust for details about
installation; Windows users may also consult the
README file included in the package for procedures of
linking GSL to R.

The package adopts a formal object-oriented program-
ming discipline, making use of the S4 system [39] to
define classes and methods. The core function, flow
Clust, implements the clustering methodology and
returns an object of class flowClust. A flowClust
object stores essential information related to the cluster-
ing result which can be retrieved through various methods
such as summary, Map, getEstimates, etc. To visu-
alize the clustering results, the plot and hist methods
can be applied to produce scatterplots, contour/image
plots and histograms.

To enhance communications with other Bioconductor
packages designed for the cytometry community, flow-
Clust has been built with the aim of being highly inte-
grated with flowCore. Methods in flowClust can be
directly applied on a flowFrame, the standard R imple-
mentation of a Flow Cytometry Standard (FCS) file
defined in flowCore; FCS is the typical storage mode for
FCM data. Another step towards integration is to overload

basic filtering methods defined in flowCore (e.g., fil
ter, %in%, Subset and split) in order to provide
similar functionality for classes defined in flowClust.

Results and discussion
Analysis of real FCM data
In this section, we illustrate how to use flowClust to con-
duct an automated gating analysis of real FCM data. For
demonstration, we use the graft-versus-host disease
(GvHD) data (Additional file 2) [40]. The data are stored
in FCS files, and consist of measurements of four fluores-
cently conjugated antibodies, namely, anti-CD4, anti-
CD8β, anti-CD3 and anti-CD8, in addition to the forward
scatter and sideward scatter parameters. One objective of
the gating analysis is to look for the CD3+CD4+CD8β+ cell
population, a distinctive feature found in GvHD-positive
samples. We have adopted a two-stage strategy [30]: we
first cluster the data by using the two scatter parameters to
identify basic cell populations, and then perform cluster-
ing on the population of interest using all fluorescence
parameters.

At the initial stage, we extract the lymphocyte population
using the forward scatter (FSC-H) and sideward scatter
(SSC-H) parameters:

GvHD <- read.FCS("B07", trans = FALSE)

res1 <- flowClust(GvHD, varNames = c("FSC-
H", "SSC-H"), K = 1:8)

To estimate the number of clusters, we run flowClust
on the data repetitively with K = 1 up to K = 8 clusters
in turn, and apply the BIC to guide the choice. Values of
the BIC can be retrieved through the criterion
method. Figure 1 shows that the BIC curve remains rela-
tively flat beyond four clusters. We therefore choose the
model with four clusters. Below is a summary of the cor-
responding clustering result.

** Experiment Information **

Experiment name: Flow Experiment

Variables used: FSC-H SSC-H

** Clustering Summary **

Number of clusters: 4

Proportions: 0.1779686 0.1622115 0.3882043
0.2716157

** Transformation Parameter **
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lambda: 0.1126388

** Information Criteria **

Log likelihood: -146769.5

BIC: -293765.9

ICL: -300546.2

** Data Quality **

Number of points filtered from above: 168
(1.31%)

Number of points filtered from below: 0
(0%)

Rule of identifying outliers: 90% quantile

Number of outliers: 506 (3.93%)

Uncertainty summary:

Min.       1st Qu.   Median    Mean      3rd
Qu.   Max.      NA's

9.941e-04 1.211e-02 3.512e-02 8.787e-02
1.070e-01 6.531e-01 1.680e+02

The estimate of the Box-Cox parameter λ is 0.11, implying
a transformation close to a logarithmic one (λ = 0).

Note that, by default, flowClust selects the same trans-
formation for all clusters. We have also enabled the
option of estimating the Box-Cox parameter λ for each
cluster. For instance, if a user finds the shapes of the clus-
ters significantly deviate from one another and opts for a
different transformation for each cluster, he may write the
following line of code:

flowClust(GvHD, varNames = c("FSC-H",
"SSC-H"), K = 4, trans = 2)

The trans argument acts as a switch to govern how λ is
handled: fixed at a predetermined value (trans = 0),
estimated and set common to all clusters (trans = 1),
or estimated for each cluster (trans = 2). Incidentally,
the option of estimating the degrees of freedom parameter
ν has also been made available, either common to all clus-
ters or specific to each of them. The nu.est argument is the
corresponding switch and takes a similar interpretation to
trans. Such an option of estimating ν further fine-tunes
the model-fitting process such that the fitted model can
reflect the data-specific level of abundance of outliers. To
compare the models adopting a different combination of
these options, one may make use of the BIC again. See
Additional file 3 for a graph with two BIC curves corre-
sponding to the default setting (common λ) and the set-
ting with cluster-specific λ, respectively. Little difference in
the BIC values between the two settings can be observed.
In accordance with the principle of parsimony in Statistics
which favors a simpler model, we opt for the default set-
ting here.

Graphical functionalities are available to users for visual-
izing a wealth of features of the clustering results, includ-
ing the cluster assignment, outliers, and the size and shape
of the clusters. Figure 2 is a scatterplot showing the cluster
assignment of points upon the removal of outliers. Out-
liers are shown in grey with the + symbols. The black solid
lines represent the 90% quantile region of the clusters
which defines the cluster boundaries. The summary
shown above states that the default rule used to identify
outliers is 90% quantile, which means that a point out-
side the 90% quantile region of the cluster to which it is
assigned will be called an outlier. In most applications,
the default rule should be appropriate for identifying out-
liers. In case a user wants finer control and would like to
specify a different rule, he may apply the ruleOutliers
replacement method:

A plot of BIC against the number of clusters for the first-stage cluster analysisFigure 1
A plot of BIC against the number of clusters for the 
first-stage cluster analysis. The BIC curve remains rela-
tively flat beyond four clusters, suggesting that the model fit 
using four clusters is appropriate.
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ruleOutliers(res1[[4]]) <- list(level =
0.95)

See Additional file 4 for the corresponding summary. As
shown in the summary, this rule is more stringent than
the 90% quantile rule: 133 points (1.03%) are now
called outliers, as opposed to 506 points (3.93%) in the
default rule.

Clusters 1, 3 and 4 in Figure 2 correspond to the lym-
phocyte population defined with a manual gating strategy
adopted in [40]. We then extract these three clusters to
proceed with the second-stage analysis:

GvHD2 <- split(GvHD, res1[[4]], population
= list(lymphocyte = c(1,3,4), deadcells =
2))

The subsetting method split allows us to split the data
into several flowFrames representing the different cell
populations. To extract the lymphocyte population (clus-
ters 1, 3 and 4), we may type GvHD2$lymphocyte or
GvHD2[[1]], which is a flowFrame. By default, split

removes outliers upon extraction. The deadcells = 2
list element is included above for demonstration purpose;
it is needed only if we want to extract the dead cell popu-
lation (cluster 2), too.

In the second-stage analysis, in order to fully utilize the
multidimensionality of FCM data we cluster the lym-
phocyte population using all the four fluorescence param-
eters, namely, anti-CD4 (FL1-H), anti-CD8β (FL2-H),
anti-CD3 (FL3-H) and anti-CD8 (FL4-H), at once:

res2 <- flowClust(GvHD2$lymphocyte, var
Names = c("FL1-H", "FL2-H", "FL3-H", "FL4-
H"), K = 1:15)

The BIC curve remains relatively flat beyond 11 clusters
(Figure 3), suggesting that the model with 11 clusters pro-
vides a good fit. Figure 4 shows a contour plot superim-
posed on a scatterplot of CD8β against CD4 for the sub-
population of CD3-stained cells, which were selected
based on a threshold obtained from a negative control
sample [40]. We can easily identify from it the red and
purple clusters at the upper right as the CD3+CD4+CD8β+

cell population. A corresponding image plot is given by
Figure 5. Also, see Additional file 5 for the code used to
produce all the plots shown in this article.

A scatterplot revealing the cluster assignment in the first-stage analysisFigure 2
A scatterplot revealing the cluster assignment in the 
first-stage analysis. Clusters 1, 3 and 4 correspond to the 
lymphocyte population, while cluster 2 is referred to as the 
dead cell population. The black solid lines represent the 90% 
quantile region of the clusters which define the cluster 
boundaries. Points outside the boundary of the cluster to 
which they are assigned are called outliers and marked with 
"+".
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A plot of BIC against the number of clusters for the second-stage cluster analysisFigure 3
A plot of BIC against the number of clusters for the 
second-stage cluster analysis. The BIC curve remains rel-
atively flat beyond 11 clusters, suggesting that the model fit 
using 11 clusters is appropriate.
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The example above shows how an FCM analysis is con-
ducted with the aid of flowClust. When the number of
cell populations is not known in advance, and the BIC val-
ues are relatively close over a range of the possible number
of clusters, the researcher may be presented with a set of
possible solutions instead of a clear-cut single one. In such
a case, the level of automation may be undermined as the
researcher may need to select the best one based on his
expertise. We acknowledge that more effort is needed to
extend our proposed methodology towards a higher level
of automation. Currently, we are working on an approach
which successively merges the clusters in the solution as
suggested by the BIC using some entropy criterion to give
a more reasonable estimate of the number of clusters.

Integration with flowCore
As introduced in the Background section, flowClust has
been built in a way such that it is highly integrated with
the flowCore package. The core function flowClust
which performs the clustering operation may be replaced
by a call to the constructor tmixFilter creating a fil
ter  object similar to the ones used in other gating or fil-
tering operations found in flowCore (e.g., rectangle-
Gate, norm2Filter, kmeansFilter). As an
example, the code

res1 <- flowClust(GvHD, varNames = c("FSC-
H", "SSC-H"), K = 1:8)

used in the first-stage analysis of the GvHD data may be
replaced by:

s1filter <- tmixFilter("lymphocyte",
c("FSC-H", "SSC-H"), K = 1:8)

res1f <- filter(GvHD, s1filter)

The use of a dedicated tmixFilter-class object separates
the task of specifying the settings (tmixFilter) from
the actual filtering operation (filter), facilitating the
common scenario in FCM gating analysis that filtering
with the same settings is performed upon a large number
of data files. The filter method returns a list object
res1f with elements each of class tmixFilterResult,
which directly extends the filterResult class defined
in flowCore. Users may apply various subsetting opera-
tions defined for the filterResult class in a similar
fashion on a tmixFilterResult object. For instance,

Subset(GvHD [, c("FSC-H", "SSC-H")],
res1f[[4]])

A contour plot superimposed on a scatterplot of CD8β against CD4 for the CD3+ populationFigure 4
A contour plot superimposed on a scatterplot of 
CD8β against CD4 for the CD3+ population. The red 
and purple clusters at the upper right correspond to the 
CD3+CD4+CD8β+ cell population, indicative of the GvHD.
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An image plot of CD8β against CD4 for the CD3+ populationFigure 5
An image plot of CD8β against CD4 for the CD3+ 

population. The five clusters corresponding to the CD3+ 

population shown in Figure 5 can also be identified clearly on 
this image plot.
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outputs a flowFrame that is the subset of the GvHD data
upon the removal of outliers, consisting of the two
selected parameters, FSC-H and SSC-H, only. Another
example is given by the split method introduced earlier
in this section.

We realize that occasionally a researcher may opt to com-
bine the use of flowClust with filtering operations in
flowCore to define the whole sequence of an FCM gating
analysis. To enable the exchange of results between the
two packages, filters created by tmixFilter may be
treated like those from flowCore; users of flowCore will
find that filter operators, namely, &, |, ! and %subset%,
also work in the flowClust package. For instance, suppose
the researcher is interested in clustering the CD3+ cell pop-
ulation which he defines by constructing an interval gate
with the lower end-point at 270 on the CD3 parameter.
He may use the following code to perform the analysis:

rectGate <- rectangleGate(fil
terId="CD3+", "FL3-H" =c(270, Inf))

s2filter <- tmixFilter("s2filter", c("FL1-
H", "FL2-H", "FL3-H", "FL4-H"), K = 5)

res2f <- filter(GvHD2$lymphocyte, s2filter
%subset% rectGate)

The constructors rectangleGate and tmixFilter
create two filter objects storing the settings of the inter-
val gate and flowClust, respectively. When the last line
of code is run, the interval gate will first be applied to the
GvHD data. flowClust is then performed on a subset of
the GvHD data contained by the interval gate.

Conclusion
flowClust is an R package dedicated to FCM gating analy-
sis, addressing the increasing demand for software capa-
ble of processing and analyzing the voluminous amount
of FCM data efficiently via an objective, reproducible and
automated means. The package implements a statistical
clustering approach using multivariate t mixture models
with the Box-Cox transformation [30], and provides tools
to summarize and visualize results of the analysis. The sta-
tistical model underlying flowClust extends the one orig-
inally proposed in [30]. The extensions have included
modeling options allowing for a cluster-specific estima-
tion of the Box-Cox parameter λ and the degrees of free-
dom parameter ν. The package contributes to the
cytometry community by offering an efficient, automated
analysis platform which facilitates the active, ongoing
technological advancement.

Availability and requirements
Project name: flowClust

Project homepage: http://bioconductor.org

Operating systems: Platform independent

Programming language: C, R

Other requirements: GSL, R, Bioconductor

License: Artistic 2.0

Any restrictions to use by non-academics: flowClust
depends on the mclust software, the use of which needs
to abide by the terms stated in http://www.stat.washing
ton.edu/mclust/license.txt.
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Additional file 1
A copy of the flowClust package. The zip file contains the source code of 
the flowClust package (version 2.2.0) as a gzipped tarball for direct 
installation into R from a command-line interface. This current release is 
also available from Bioconductor at http://bioconductor.org/packages/2.4/
bioc/html/flowClust.html.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-145-S1.zip]

Additional file 2
A copy of the GvHD data file used in this article. The zip file contains 
the data file in FCS format used in the GvHD analysis. Interested readers 
may go to http://www.ficcs.org/software.html#Data_Files for a complete 
set of data files for the GvHD study [40].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-145-S2.zip]

Additional file 3
A graph with two BIC curves corresponding to the settings with a com-
mon λ and cluster-specific λ respectively for the first-stage cluster 
analysis. Little difference in the BIC values between the two settings is 
observed. In accordance with the principle of parsimony which favors a 
simpler model, we opt for the default setting here.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-145-S3.pdf]
Page 7 of 8
(page number not for citation purposes)

http://bioconductor.org/packages/2.4/bioc/html/flowClust.html
http://bioconductor.org/packages/2.4/bioc/html/flowClust.html
http://www.biomedcentral.com/content/supplementary/1471-2105-10-145-S1.zip
http://www.ficcs.org/software.html#Data_Files
http://www.biomedcentral.com/content/supplementary/1471-2105-10-145-S2.zip
http://www.biomedcentral.com/content/supplementary/1471-2105-10-145-S3.pdf
http://bioconductor.org
http://www.stat.washington.edu/mclust/license.txt
http://www.stat.washington.edu/mclust/license.txt


BMC Bioinformatics 2009, 10:145 http://www.biomedcentral.com/1471-2105/10/145
Acknowledgements
The authors thank Martin Morgan, Patrick Aboyoun and Marc Carlson for 
their advice on the technical issues of building the flowClust package, and 
the two reviewers for suggestions that improved an earlier draft of the arti-
cle. This work was supported by the NIH grants EB005034 and EB008400, 
and by the Michael Smith Foundation for Health Research.

References
1. Braylan RC: Impact of flow cytometry on the diagnosis and

characterization of lymphomas, chronic lymphoproliferative
disorders and plasma cell neoplasias.  Cytometry A 2004,
58A:57-61.

2. Hengel RL, Nicholson JK: An update on the use of flow cytome-
try in HIV infection and AIDS.  Clin Lab Med 2001, 21(4):841-856.

3. Illoh OC: Current applications of flow cytometry in the diag-
nosis of primary immunodeficiency diseases.  Arch Pathol Lab
Med 2004, 128:23-31.

4. Kiechle FL, Holland-Staley CA: Genomics, transcriptomics, pro-
teomics, and numbers.  Arch Pathol Lab Med 2003,
127(9):1089-1097.

5. Mandy FF: Twenty-five years of clinical flow cytometry: AIDS
accelerated global instrument distribution.  Cytometry A 2004,
58A:55-56.

6. Orfao A, Ortuno F, de Santiago M, Lopez A, San Miguel J: Immu-
nophenotyping of acute leukemias and myelodysplastic syn-
dromes.  Cytometry A 2004, 58A:62-71.

7. Bagwell CB: DNA histogram analysis for node-negative breast
cancer.  Cytometry A 2004, 58A:76-78.

8. Keeney M, Gratama JW, Sutherland DR: Critical role of flow
cytometry in evaluating peripheral blood hematopoietic
stem cell grafts.  Cytometry A 2004, 58A:72-75.

9. Krutzik PO, Irish JM, Nolan GP, Perez OD: Analysis of protein
phosphorylation and cellular signaling events by flow cytom-
etry: techniques and clinical applications.  Clin Immunol 2004,
110(3):206-221.

10. Maecker H, Maino V: Flow cytometric analysis of cytokines 6th edition.
Washington, DC: ASM Press. Manual of Clinical Laboratory Immunol-
ogy; 2002. 

11. Pozarowski P, Darzynkiewicz Z: Analysis of cell cycle by flow
cytometry.  Methods Mol Biol 2004, 281:301-312.

12. Pala P, Hussell T, Openshaw PJ: Flow cytometric measurement
of intracellular cytokines.  J Immunol Methods 2000, 243(1–
2):107-124.

13. Vermes I, Haanen C, Reutelingsperger C: Flow cytometry of apop-
totic cell death.  J Immunol Methods 2000, 243(1–2):167-190.

14. Lehmann AK, Sornes S, Halstensen A: Phagocytosis: measure-
ment by flow cytometry.  J Immunol Methods 2000, 243(1–
2):229-242.

15. Lizard G: Flow cytometry analyses and bioinformatics: Inter-
est in new softwares to optimize novel technologies and to
favor the emergence of innovative concepts in cell research.
Cytometry A 2007, 71A:646-647.

16. de Rosa SC, Brenchley JM, Roederer M: Beyond six colors: a new
era in flow cytometry.  Nat Med 2003, 9:112-117.

17. Redelman D: CytometryML.  Cytometry A 2004, 62A:70-73.
18. Roederer M, Treister A, Moore W, Herzenberg LA: Probability

binning comparison: a metric for quantitating univariate dis-
tribution differences.  Cytometry 2001, 45(1):37-46.

19. Roederer M, Moore W, Treister A, Hardy RR, Herzenberg LA:
Probability binning comparison: a metric for quantitating
multivariate distribution differences.  Cytometry 2001,
45(1):47-55.

20. Tzircotis G, Thorne RF, Isacke CM: A new spreadsheet method
for the analysis of bivariate flow cytometric data.  BMC Cell Biol
2004, 5:10.

21. Spidlen J, Gentleman RC, Haaland PD, Langille M, Le Meur N, Ochs
MF, Schmitt C, Smith CA, Treister AS, Brinkman RR, et al.: Data
standards for flow cytometry.  OMICS 2006, 10(2):209-214.

22. Suni MA, Dunn HS, Orr PL, de Laat R, Sinclair E, Ghanekar SA, Bredt
BM, Dunne JF, Maino VC, Maecker HT: Performance of plate-
based cytokine flow cytometry with automated data analy-
sis.  BMC Immunol 2003, 4:9.

23. Parks DR: Data processing and analysis: Data management.  In
Current Protocols in Cytometry Volume chap. 10. New York: John Wiley
& Sons, Inc.; 1997:10.1.1-10.1.6. 

24. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S,
Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W,
Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G,
Smith C, Smyth G, Tierney L, Yang JYH, Zhang J: Bioconductor:
Open software development for computational biology and
bioinformatics.  Genome Biol 2004, 5(10):R80.

25. Hahne F, Le Meur N, Brinkman R, Ellis B, Haaland P, Sarkar D, Spidlen
J, Strain E, Gentleman R: flowCore: A Bioconductor software
package for high throughput flow cytometry data analysis.
BMC Bioinformatics 2008, 10:106.

26. Sarkar D, Le Meur N, Gentleman R: Using flowViz to visualize
flow cytometry data.  Bioinformatics 2008, 24(6):878-879.

27. Peel D, McLachlan GJ: Robust mixture modelling using the t dis-
tribution.  Stat Comput 2000, 10(4):339-348.

28. McLachlan G, Peel D: Finite Mixture Models Wiley Series in Probability
and Statistics: Applied Probability and Statistics, New York: Wiley-
Interscience; 2000. 

29. Fraley C, Raftery AE: Model-based clustering, discriminant
analysis, and density estimation.  J Amer Statist Assoc 2002,
97(458):611-631.

30. Lo K, Brinkman RR, Gottardo R: Automated gating of flow
cytometry data via robust model-based clustering.  Cytometry
A 2008, 73(4):321-332.

31. Titterington DM, Smith AFM, Makov UE: Statistical Analysis of Finite
Mixture Distributions Chichester, UK: John Wiley & Sons; 1985. 

32. McLachlan GJ, Basford KE: Mixture Models: Inference and Applications to
Clustering New York, NY: Marcel Dekker Inc; 1988. 

33. Banfield JD, Raftery AE: Model-based Gaussian and Non-Gaus-
sian Clustering.  Biometrics 1993, 49:803-821.

34. Fraley C, Raftery AE: MCLUST Version 3 for R: Normal Mix-
ture Modeling and Model-Based Clustering.  In Technical Report
Department of Statistics, University of Washington; 2006. 

35. Bickel PJ, Doksum KA: An analysis of transformations revisited.
J Amer Statist Assoc 1981, 76(374):296-311.

36. Dempster AP, Laird NM, Rubin DB: Maximum likelihood from
incomplete data via the EM algorithm.  J R Statist Soc B 1977,
39:1-22.

37. Schwarz G: Estimating the Dimension of a Model.  Ann Statist
1978, 6:461-464.

38. Fraley C, Raftery AE: How many clusters? Which clustering
method? Answers via model-based cluster analysis.  Comput J
1998, 41(8):578-588.

39. Chambers JM: Programming with Data: A Guide to the S Language New
York, NY: Springer; 2004. 

40. Brinkman RR, Gasparetto M, Lee SJJ, Ribickas A, Perkins J, Janssen W,
Smiley R, Smith C: High-content flow cytometry and temporal
data analysis for defining a cellular signature of Graft-versus-
Host disease.  Biol Blood Marrow Transplant 2007, 13(6):691-700.

Additional file 4
Result summary of the first-stage analysis with four clusters of the 
GvHD data. The rule used to identify outliers is 95% quantile. 133 
points (1.03%) are called outliers.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-145-S4.txt]

Additional file 5
Code to produce the plots in this article. R code to produce the plots in 
the GvHD analysis.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-145-S5.r]
Page 8 of 8
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-10-145-S4.txt
http://www.biomedcentral.com/content/supplementary/1471-2105-10-145-S5.r
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11770291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11770291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14692816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14692816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12946210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12946210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15047199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15047199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15047199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15220539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15220539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10986410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10986410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10986414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10986414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10986417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10986417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12514723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12514723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11598945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11598945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11598945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11598946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11598946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11598946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15035676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15035676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16901228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16901228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12952557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12952557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12952557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18245128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18245128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18307272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18307272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17531779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17531779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17531779

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	The model
	The package

	Results and discussion
	Analysis of real FCM data
	Integration with flowCore

	Conclusion
	Availability and requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

