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Abstract
Background: Gene set analysis (GSA) is a widely used strategy for gene expression data analysis
based on pathway knowledge. GSA focuses on sets of related genes and has established major
advantages over individual gene analyses, including greater robustness, sensitivity and biological
relevance. However, previous GSA methods have limited usage as they cannot handle datasets of
different sample sizes or experimental designs.

Results: To address these limitations, we present a new GSA method called Generally Applicable
Gene-set Enrichment (GAGE). We successfully apply GAGE to multiple microarray datasets with
different sample sizes, experimental designs and profiling techniques. GAGE shows significantly
better results when compared to two other commonly used GSA methods of GSEA and PAGE.
We demonstrate this improvement in the following three aspects: (1) consistency across repeated
studies/experiments; (2) sensitivity and specificity; (3) biological relevance of the regulatory
mechanisms inferred.

GAGE reveals novel and relevant regulatory mechanisms from both published and previously
unpublished microarray studies. From two published lung cancer data sets, GAGE derived a more
cohesive and predictive mechanistic scheme underlying lung cancer progress and metastasis. For a
previously unpublished BMP6 study, GAGE predicted novel regulatory mechanisms for BMP6
induced osteoblast differentiation, including the canonical BMP-TGF beta signaling, JAK-STAT
signaling, Wnt signaling, and estrogen signaling pathways–all of which are supported by the
experimental literature.

Conclusion: GAGE is generally applicable to gene expression datasets with different sample sizes
and experimental designs. GAGE consistently outperformed two most frequently used GSA
methods and inferred statistically and biologically more relevant regulatory pathways. The GAGE
method is implemented in R in the "gage" package, available under the GNU GPL from http://
sysbio.engin.umich.edu/~luow/downloads.php.
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Background
A central goal of biomedical research is to define mecha-
nistic causes for cellular behavior and disease. High
throughput technologies such as gene expression profil-
ing provide a rich starting point to identify mechanistic
causes, e.g. de novo network inference [1]. Ideally we
would like to contextualize gene expression patterns with
the known biochemical processes and regulatory signal-
ing pathways. This approach provides us with a more sys-
tems level and informative view (compared to individual
gene based interpretation) of the biological states that
have been perturbed, which in turn allows us to identify
points where we could intervene to change cellular behav-
ior.

Gene set analysis (GSA) is a widely used strategy for gene
expression data analysis based on pathway knowledge [2-
12]. Unlike previous strategies which focus on individual
or a limited number of genes, GSA focuses on sets of
related genes and has demonstrated three major advan-
tages. First, GSA methods are better able to detect biolog-
ically relevant signals and give more coherent results
across different studies [3,5]. Second, GSA uses all of the
available gene expression data (cutoff-free) instead of pre-
filtering the data for a short list of strongly differentially
expressed genes (cutoff-based). (Note that cutoff-based
tools such as WebGestalt [13] and FatiScan [14] that apply
Fisher's test and Hypergeometric test are sometimes
denoted as gene set analysis tools.) Indeed, small coordi-
nated gene expression changes in a pathway can have a
major biological effect even if these changes are not statis-
tically significant for any individual gene [3]. Third, GSA
incorporates prior knowledge of biological pathways and
other experimental results in the form of gene sets [3,4].
These gene sets are constantly updated in the literature
and represent a significant repository of useful biological
knowledge. Although, knowledge dependency can be also
considered a limitation of GSA strategy: our findings are
restricted by current knowledge.

There are two categories of GSA based on the statistical
tests used: sample randomization and gene randomiza-
tion [8,15]. Sample randomization methods test signifi-
cance of gene sets based on permutation of sample labels,
with GSEA [3,4], SAFE [10] and SAM-GS [9] as represent-
atives. In contrast, gene randomization methods test the
significance of gene sets based on permutations of gene
labels or a parametric distribution over genes, with PAGE
[5], T-Profiler [7] and Random-set [6] as representatives.
Sample randomization maintains the correlation struc-
ture among genes but only applies to large expression
datasets with multiple samples per experimental condi-
tion. For a two-state comparison, a minimum of 8 chips
for each state is required for 1000 balanced (presence of
the two sample states) permutation or 6 chips for 1000

unbalanced permutation. Gene randomization has no
limitation on sample size, but may break the correlation
structure among genes [11]–an issue that may or may not
be a problem (detailed in discussion) [5,6]. Sample rand-
omization and gene randomization test different but
related null hypotheses, Tian et al. [8] and Nam et al. [15]
proposed combinatory procedures to achieve more robust
results.

All these methods established GSA as a powerful strategy
for gene expression data analysis. In spite of its advan-
tages, GSA as a whole strategy still suffers from three
major limitations.

First, currently available GSA methods do not handle
small datasets effectively, yet most gene expression data-
sets fall into this category. As mentioned above, the sam-
ple randomization strategy used by methods such as
GSEA is not appropriate for studies with under 8 gene
chips per state, thus gene randomization remains to be the
only feasible option [3,15]. Gene randomization methods
such as PAGE have been applied to small dataset [5], but
these methods tend to make large number of (false) posi-
tive calls with extremely small p-values [16,17] (also see
the results). T-profiler targets datasets with one sample
pair [7], however, it can't combine results from multiple
paired experiments nor can it be applied to studies with
non-paired studies [7].

Second, no GSA method currently available handles data-
sets with different sample sizes and experiment designs
consistently. For datasets with few or no replicates, t-test
statistics, signal to noise ratios, or their corresponding p-
values are not robust estimates of differential expression
for genes or simply not applicable. Therefore, fold change
(log based) is frequently used as more versatile per gene
statistics [3,5-7,18]. The use of fold change gives rise to
two issues that have been largely neglected so far. First, the
average fold change does not account for different experi-
mental designs, i.e. pair-matched samples or non-paired
samples. The per gene statistics such as t-test statistics may
vary significantly depending on if the samples are paired
or not, yet there is no difference in fold change. Second,
average fold change does not contain any information for
the sample size. Sample size largely determines the confi-
dence or significance level of our inference, yet is dropped
when using fold change. Fold change makes sense in one-
on-one paired comparison, as in T-profiler [7]. However
for datasets with replicate samples, the test power or the
significance of relevant gene sets would be underesti-
mated.

Third, most GSA methods only consider transcriptional
regulation in one direction (e.g. all up or all down) in a
gene set. This directional bias makes sense for experimen-
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tally derived gene sets, but not for gene sets based on
canonical signaling pathways, which frequently show
reciprocal gene regulation in both directions upon pertur-
bation [19,20]. Thus it is advisable to consider both cases
for an inclusive analysis for regulatory mechanisms.

To address these issues, we have developed a novel
method called Generally Applicable Gene-set Enrichment
(GAGE) (Figure 1). GAGE applies to datasets with any
number of samples and is based on a parametric gene ran-
domization procedure. Similar to Parametric Analysis of
Gene Set Enrichment (PAGE) [5] (Additional file 1: Sup-
plementary Figure 1) and T-profiler [7], GAGE uses log-
based fold changes as per gene statistics. However, GAGE
differs from PAGE and T-profiler in three significant ways.
First, GAGE assumes a gene set comes from a different dis-
tribution than the background and uses two-sample t-test
to account for the gene set specific variance as well as the
background variance. In contrast, PAGE assumes gene sets
comes from the same distribution as the background and
uses one-sample z-test that only considers the background
variance [5]. T-profiler also employs two-sample t-test,
but it is essentially a one-sample z-test since the sample
size of a gene set is not comparable to its complementary
set [7] (Additional file 1: Supplementary Note 1 and
Methods). Second, GAGE adjusts for different microarray
experimental designs (paired or non-paired) and sample
sizes by decomposing group-on-group comparisons into
one-on-one comparisons between samples from different
groups. GAGE derives a global p-value using a meta-test
on the p-values from these comparisons for each gene set.
Third, GAGE separates experimentally perturbed gene sets
(from literature) and canonical pathways (from pathway
databases). Experimental sets are taken as genes coregu-
lated towards a single direction, whereas canonical path-
ways allowed changes in both directions. This gene set
separation strategy give GAGE more test power in detect-
ing relevant biological signals.

In this work, we show that GAGE is generally applicable
to datasets with different sample sizes and experimental
designs. We first apply GAGE to two lung cancer datasets
[21,22] and one type 2 diabetes dataset [4], which has
been analyzed by GSEA [3,4] and PAGE [5] as example
cases. These are representatives for large datasets with tens
of samples per condition frequently seen in large clinical
or experimental studies. We then analyze a smaller, previ-
ously unpublished dataset describing mesenchymal stem
cell response to BMP6 treatment. This is a typical small
dataset with as few as two samples per condition like in
most experimental studies. BMP6 treated samples and
controls are one-on-one matched, which is a frequently
used experiment design particularly for all the two-chan-
nel microarray studies. In each case, we compare GAGE to
GSEA and PAGE. To compare the performance of GAGE vs

GSEA and PAGE in a more controllable setting, we con-
ducted simulation study using the type 2 diabetes dataset
and synthetic gene sets. Finally, we also detail the major
strategies employed by GAGE.

Results
Application to large datasets with the GSEA and PAGE as 
control methods
As a test case, we applied GAGE, PAGE and GSEA to two
lung cancer datasets [21,22] which were originally ana-
lyzed and compared by GSEA [3]. These two datasets were
generated by two independent studies done in Boston
[22] and Michigan [21], containing gene expression pro-
files of lung adenocarcinomas samples from patients.
Patients were classified as having "good" or "poor" clini-
cal outcomes. For each dataset, we defined the control set
as patient profiles with good clinic outcomes, and selected
the most differentially regulated gene sets associated with
poor outcomes. Note that we used the updated curated
gene set collection c2 from MSigDB [3,23] for both meth-
ods. For a fair comparison, experimental sets and the
canonical pathways were separated for all three methods.

We compared the top 10 most significant gene sets
inferred by the three methods (Table 1 and 2, Additional
file 1: Supplementary Table 1–3) and identified evident
differences in four aspects. First, the top experimental
gene sets selected by GAGE and PAGE overlapped signifi-
cantly, but the canonical pathways identified by GAGE,
PAGE, and GSEA did not (Additional file 1: Supplemen-
tary Table 3). The lack of overlap for the canonical path-
ways is expected because GAGE allows perturbations in
both directions in canonical pathways. Second, GAGE
derived modest p-values and numbers of significant gene
sets compared to GSEA and PAGE (Table 2). While others
have suggested that GSEA suffers from low sensitivity
[5,8,9], our results suggest that PAGE is overly sensitive
(low specificity). Third, the top 10 gene sets inferred by
GAGE are more consistent between the two studies: 4
experimental sets and 5 canonical pathways are the same
for GAGE results, 4 and 4 for PAGE and 1 and 0 for GSEA
respectively (Table 2). Fourth, the top 10 gene sets
inferred by GAGE better describe poor outcomes of lung
cancer mechanistically (Table 2). Canonical pathways
inferred by GAGE are by far the most indicative of tumor
occurrence and metastasis. Experimental sets inferred by
GAGE and by PAGE are similarly indicative of tumor
occurrence and prognostic of metastasis or poor clinical
outcomes, and both are better than those inferred by
GSEA.

Several major mechanistic themes predictive of poor clin-
ical outcomes emerged from the list of top gene sets
inferred by GAGE. These themes included G-protein cou-
pled receptors (GPCRS) associated signals (sets 1, 2, 6, 9,
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A schematic overview of the GAGE algorithmFigure 1
A schematic overview of the GAGE algorithm. GAGE has three major steps. (a) Step 1: input preparation. Separate 
gene sets into two categories: experimental sets and canonical pathways, for differential treatment in significant test. (b) Step 2: 
gene set differential expression tests based on one-on-one comparison between samples from the two experimental condi-
tions. For each experiment-control pair, calculate differential expression in log based fold change for all genes. Test whether 
specific gene sets are significantly differentially expressed relative to the background whole set using two-sample t-test. (c) Step 
3: summarization. For each gene set, derive a global p-value based on a meta-test on the negative log sum of p-values from all 
one-on-one comparisons. More details of GAGE are given in the Methods. Variables m, s and n are the mean fold change, 
standard deviation and number of genes in a gene set, M, S and N are those for the whole set. A similar schematic overview of 
the PAGE algorithm is shown in Additional file 1: Supplementary Figure 1.
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Table 1: GAGE applied to the two lung cancer datasets of large sample sizes

Boston study Michigan study

Experimental Sets p-val q-val Notes Experimental Sets p-val q-val Notes

Tarte_Plasma_Blastic 1.8E-64 1.1E-61 c Tarte_Plasma_Blastic 5.6E-42 4.1E-39 c
Uvb_Nhek3_All 1.2E-59 3.6E-57 t Cancer_Undifferentiat 1.0E-22 3.8E-20 bt
Peng_Glutamine_Dn 3.7E-59 7.6E-57 c Brca_Er_Neg 8.3E-19 2.0E-16 bt
Lei_Myb_Regulated_G 5.8E-55 8.8E-53 bt, c Serum_Fibroblast_Cell 3.2E-18 5.9E-16 bt, c
Peng_Leucine_Dn 4.0E-42 4.8E-40 c Uvb_Nhek3_All 5.3E-17 7.7E-15 t
Cancer_Undifferentiat 3.0E-41 3.0E-39 bt Caries_Pulp_Up 4.7E-16 4.6E-13
Brca_Er_Neg 2.0E-40 1.7E-38 bt Zhan_Mm_Cd138_Pr_ 8.3E-15 1.0E-12 bt
Peng_Rapamycin_Dn 3.5E-38 2.7E-36 c Li_Fetal_Vs_Wt_Kidne 3.7E-14 3.8E-12 t
Rcc_Nl_Up 5.2E-36 3.5E-34 t Dox_Resist_Gastric_Up 1.2E-13 1.1E-11 bt
Cancer_Neoplastic_Me 4.2E-35 2.6E-33 t Idx_Tsa_Up_Cluster3 2.4E-13 1.9E-11 c

Canonical Pathways p-val q-val Notes Canonical Pathways p-val q-val Notes

Gpcrs_Class_A_Rhod 9.2E-23 3.1E-20 bt Gpcrs_Class_A_Rhod 3.1E-10 1.0E-07 bt
Gpcrdb_Class_A_Rho 4.7E-21 7.8E-19 bt Gpcrdb_Class_A_Rho 1.1E-09 1.9E-07 bt
Blood_Clotting_Casca 5.1E-15 4.7E-13 bt Androgen_Genes 5.2E-08 5.8E-06 bt
Intrinsicpathway 6.3E-15 5.3E-13 bt Cytokinepathway 1.9E-07 1.6E-05 bt
Fibrinolysispathway 1.1E-12 9.1E-11 bt Prostaglandin_And_Le 2.9E-05 2.4E-03 bt
Peptide_Gpcrs 1.9E-12 1.6E-10 bt Proliferation_Genes 5.1E-05 4.3E-03 c
Tyrosine_Metabolism 8.7E-09 7.3E-07 bt Peptide_Gpcrs 5.8E-05 4.8E-03 bt
Extrinsicpathway 5.5E-07 4.6E-05 bt Intrinsicpathway 9.1E-05 7.6E-03 bt
Gpcrdb_Other 5.2E-06 4.4E-04 bt Androgen_And_Estrog 4.2E-04 3.4E-02 bt
Small_Ligand_Gpcrs 6.7E-06 5.6E-04 bt Blood_Clotting_Casca 7.5E-04 5.9E-02 bt

Top 10 most significantly enriched experimental sets and canonical pathways in poor clinical outcomes vs good outcomes were inferred by GAGE 
from two published lung adenocarcinoma data sets used in the GSEA paper [3]. Both positively and negatively regulated gene sets were collected 
and ranking by the p-value, and by absolute value of average t-statistics (data not shown) for ties. FDR q-values were estimated to correct the p-
values for the multiple testing issue. Consistencies between the two data sets are shown in bold font. Notes show the connections of the gene sets 
to cancer related topics: t for tumor related; bt for tumor metastasis and bad outcome; c for cell growth and proliferation related; and blank 
represents no evident connection. These annotations came from the original studies for experimental sets, or made based on more than three 
independent literature works for the canonical pathway.

Table 2: Comparison between GAGE, PAGE and GSEA results from the two lung cancer datasets

Gene Sets & Methods Overlap Top 10 p-values Metastasis Tumor Sign. Sets

Experimental Sets GAGE 4 4.2E-35, 2.4E-13 3, 5 6, 7 242 (283), 120 (124)

PAGE 4 1.0E-170, 2.0E-85 6, 4 8, 6 698 (757), 585 (655)

GSEA 1 5.7E-3, 6.4E-3 1, 2 6, 4 3 (0), 4 (0)

Canonical Pathways GAGE 5 6.7E-6, 7.5E-4 10, 9 10, 9 20 (16), 10 (8)

PAGE 4 4.2E-26, 3.7E-27 2, 3 4, 3 170 (202), 153 (186)

GSEA 0 1.1E-2, 1.4E-2 1, 1 5, 5 2 (0), 4 (0)

The top 10 most significantly enriched experimental sets and canonical pathways in poor clinical outcomes vs good outcomes were inferred by 
GAGE, PAGE, and GSEA from two published lung adenocarcinoma data sets used in the GSEA paper [3]. Data columns are overlap between top 10 
gene sets for the two studies, top 10 p-values, number of top 10 gene sets related to metastasis (bt) and tumor (t and bt), and numbers of significant 
gene sets with p-value ≤ 0.001 (or FDR q-value ≤ 0. 01).
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10 of Boston and sets 1, 2, 7 of Michigan in Table 1),
thrombosis or blood coagulation activation (sets 3, 4, 5, 8
of Boston and set 8, 10 of Michigan in Table 1), and hor-
mone and cytokine (sets ranking >10 of Boston not
shown, and set 3, 4, 9 of Michigan in Table 1). Indeed, G-
protein-coupled receptors, the largest family of cell-sur-
face molecules involved in signal transmission, have
emerged as crucial players in the growth and metastasis of
multiple human cancers [24,25]. Thrombosis or blood
coagulation activation has been implicated in the disease
and is an predictor for poor survival rates for lung cancer
patients [26,27]. Androgen level and cytokine profiles
influence clinic outcomes of non-small cell lung cancer
[28,29]. All these factors are likely the major causal or
contributing mechanisms for non-small cell lung cancer
progress and metastasis.

We also applied GAGE, PAGE and GSEA to another large
dataset describing type 2 diabetes progression that was
analyzed by GSEA [4] and PAGE [5] previously (Addi-
tional file 1: Supplementary Table 6–7 and Supplemen-
tary Note 2). This comparison performed similarly to the
cancer study mentioned above. In particular, GAGE pin-
pointed multiple experimental sets and canonical path-
ways which are directly involved in type 2 diabetes or
closely related metabolism processes.

Application to small datasets with PAGE and GSEA-g 
(GSEA with gene permutation option) as control methods
We applied GAGE and PAGE to a microarray dataset gen-
erated by our group to select the most differentially
expressed gene sets in human mesenchymal stem cells
(MSC) upon BMP6 treatment (Table 3 and 4, Additional
file 1: Supplementary Table 8). The dataset contains a
total of 4 gene chip measurements from duplicate experi-
ments each with paired measurements of human MSC
with or without 8 hours BMP6 treatment. Note that GSEA
by default is not applicable to this dataset because the
sample size is too small for permutation based inference.
However, GSEA with gene labels permutation option
(GSEA-g) works. Since GSEA-g does not implement the
sample randomization strategy recommended by the
authors [3], we focus on comparing GAGE to PAGE here
(Table 4, Additional file 1: Supplementary Table 9–10).
GAGE conducts one-on-one comparisons, hence was
applied to each of the two BMP6 experiments individually
(Table 3). For an exact comparison, PAGE was slightly
modified to enable one-on-one comparisons (Additional
file 1: Supplementary Table 8). The GSEA software took
multiple samples per condition hence not applicable to
the experiments individually (Additional file 1: Supple-
mentary Table 9).

Table 3: GAGE applied to the BMP6-MSC dataset of small sample size

Experimental Sets t-statistic p-value q-value P.exp1 P.exp2

Ifna_Hcmv_6hrs_Up -3.80 2.9E-07 2.9E-04 3.7E-04 1.6E-04
Der_Ifnb_Up -3.47 1.6E-06 8.1E-04 3.3E-03 1.1E-04
Baf57_Bt549_Dn -3.09 1.4E-05 0.005 7.2E-03 5.2E-04
Ifn_Beta_Up -2.92 5.4E-05 0.012 1.2E-02 1.3E-03
Sana_Ifng_Endothelial_Up -2.88 6.6E-05 0.014 1.2E-02 1.7E-03
Ifn_Any_Up -2.76 1.1E-04 0.019 2.4E-02 1.4E-03
Dac_Bladder_Up -2.65 2.8E-04 0.036 2.4E-03 4.0E-02
Grandvaux_Ifn_Not_Irf3_Up -2.76 2.8E-04 0.037 3.8E-02 2.6E-03
Ifna_Uv-Cmv_Common_Hc -2.55 5.1E-04 0.056 1.6E-02 1.1E-02
Bennett_Sle_Up -2.48 7.3E-04 0.071 1.4E-02 2.0E-02

Canonical Pathways t-statistic p-value q-value P.exp1 P.exp2

Tgf_Beta_Signaling_Pathway 3.15 2.2E-05 0.009 1.2E-03 1.3E-03
Wnt_Signaling 2.47 5.9E-04 0.099 3.2E-03 1.7E-02
Alkpathway 2.46 8.8E-04 0.11 9.8E-03 8.7E-03
Proliferation_Genes 2.27 1.3E-03 0.13 6.8E-03 1.9E-02
Cell_Proliferation 2.24 1.5E-03 0.15 2.1E-02 7.5E-03
Hematopoesis_Related_Trans 2.05 3.9E-03 0.31 1.8E-02 2.5E-02
Erythpathway 1.98 7.5E-03 0.46 2.7E-02 3.5E-02
Smooth_Muscle_Contraction 1.79 1.0E-02 0.54 2.7E-02 5.2E-02
Apoptosis 1.73 1.3E-02 0.60 7.1E-02 2.5E-02
Breast_Cancer_Estrogen_Signaling 1.61 2.0E-02 0.69 8.1E-02 3.6E-02

Top 10 most significantly differentially expressed experimental sets and canonical pathways were inferred by GAGE from human MSCs following an 
8 hour BMP6 treatment. Two replicate experiments were done, each with BMP6 treated sample and control. Therefore GAGE was applied to each 
experiment and derived corresponding p-values (P.exp1–2). Gene sets were ranked based on global p-values from both experiments. FDR q-values 
were estimated to correct the global p-values for the multiple testing issue.
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Using a p-value cutoff of <0.01, GAGE identified fewer
gene sets than PAGE (Table 4). GAGE identified 39 signif-
icant experimental sets and 7 canonical pathways (Addi-
tional file 2). There were only 17 significant experimental
sets and 4 canonical pathways (Additional file 2) after
removing the redundancy among gene sets, which is rea-
sonable number of pathways triggered by a single pertur-
bation in a single cell line. In contrast, PAGE called 745
significant experimental sets and 187 significant canoni-
cal pathways. Most significant genes sets selected by PAGE
were not significant according to GAGE using the same
cutoff p-value (full result tables not shown). After remov-
ing the redundancy in these sets, there were more than
200 and 40 non-redundant experimental sets and canon-
ical pathways respectively (not shown, Additional file 1:
Supplementary Note 3). Presumably, PAGE made a large
number of false positive calls. Similar differences between
GAGE and PAGE were observed for the two lung cancer
datasets and the type 2 diabetes dataset (Table 2 and Addi-
tional file 1: Supplementary Table 7). This difference
came from the different statistical tests used by GAGE and
PAGE, i.e. two-sample t-test vs one-sample z-test (detailed
in the subsection of 'Dissection of major strategies
employed by GAGE'). GSEA-g gave p-values and a pre-
dicted number of significant gene sets comparable to
GAGE when nominal p-values were used (Table 4 and
Additional file 1: Supplementary Table 9, full Table not
shown).

Biologically, GAGE gene sets were mechanistically more
relevant for BMP6 effects compared to those sets selected
by PAGE. 9 out of 10 experimental sets inferred by GAGE
(Table 3) are directly related to interferon or STAT path-
way [30], which is a target of BMP signaling [31,32]. The
experimental sets selected by PAGE alone have less con-

nection to BMP (Additional file 1: Supplementary Table
8). GAGE and PAGE differed in 8 entries of the top 10
canonical pathways. Of GAGE predictions (Table 3), Wnt
signaling [33,34], proliferation [35,36] are all known
pathways or processes regulated by BMPs in MSC or oste-
oblastic cell lineages. BMPs regulate hematopoiesis and
erythrocyte differentiation [37,38]. Breast cancer estrogen
signaling interacts with BMP signal [39,40]. None of these
pathways were significant according to PAGE (Additional
file 1: Supplementary Table 8, full result table not shown).
The GSEA-g top experimental sets overlapped with GAGE,
but the canonical pathways were more similar to PAGE
(Additional file 1: Supplementary Table 10).

Significant gene sets inferred by GAGE were consistent
across replicate experiments and within the top 10 lists.
The top 10 gene sets are almost the same if we used either
one of the two experiments only (Table 3). The difference
between the p-values from the two experiments almost
never exceeded one order of magnitude. On the other
hand, the top 10 gene set lists inferred by the PAGE and
corresponding p-values are more different across the two
experiments (Additional file 1: Supplementary Table 8,
not all top sets for individual experiments included).
There was also high level of internal consistency in the top
10 gene sets inferred by GAGE (Table 3). For example, 9
out of 10 experimental sets were directly related to inter-
feron signal. Among the canonical pathways, there were
two proliferation and two hematopoietic differentiation
related pathways. In addition the high scoring Alk path-
way overlapped with TGF beta and Wnt signaling path-
ways. In contrast, the PAGE and GSEA-g top gene sets had
lower internal consistencies (Additional file 1: Supple-
mentary Table 8–9). These results indicate that GAGE is a
method robust against the heterogeneity in experiments

Table 4: Comparison between GAGE, PAGE and GSEA-g results from the BMP6-MSC dataset

Gene Sets & Methods Top 10 abs(T/Z) Top 10 p-values Sign. Sets

Experiment Sets GAGE 2.48 7.3E-04 39 (13)

PAGE 24.6 1.3E-131 864 (940)

GSEA-g 1.97 <1.0E-3 86 (77)

Canonical Pathways GAGE 1.61 2.0E-2 7 (2)

PAGE 10.9 8.8E-28 248 (297)

GSEA-g 1.53 6.8E-2 6 (0)

The significantly enriched experimental sets and canonical pathways in human MSC following 8 hour BMP6 treatment were inferred by GAGE, 
PAGE and GSEA-g (permutation of gene labels). Top 10 t- (GAGE) or z- (PAGE) statistics or NES (GSEA) and p-values and the numbers of 
significant gene sets were shown with p-value ≤ 0.01 (or FDR q-value ≤ 0.10). Note that GSEA-g results shown were based on nominal p-values (or 
FDR q-values).
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or gene set definition. Notice that redundant gene sets
representative of the same effect or pathway were kept
here for exact comparison between methods, but they can
be differentiated and combined by GAGE program if
needed (Additional file 2).

A microarray data based simulation study
We conducted simulation study to compare the perform-
ance of GAGE vs GSEA and PAGE in a more controllable
setting. To minimize the potential artifact of using syn-
thetic data, we used the type 2 diabetes dataset which has
been analyzed in the first part of the Results. We chose this
large clinical dataset so that all methods including the
sample randomization based GSEA are applicable. Also,
to make the simulation tractable for GSEA, we employed
a sub-dataset with 2000 randomly sampled genes from
the full set of 17000 genes. While the dataset is real micro-
array data, we synthesized the testing gene sets with con-
trolled levels of differential expression (or degrees of
enrichment in up- or down- regulated genes, details
described in Methods). We then applied GAGE, PAGE or
GSEA to score these testing gene sets, and evaluated
whether the enrichment scores reasonably reflect the dif-
ferential expression levels of these testing gene sets.

Similar to the analysis results described above, while
GAGE and GSEA gave more sensible p-values in the simu-
lation, PAGE resulted in unrealistically small p-values on
the order of 10-324. (Figure 2c). The fact that p-values
started from 10-11 (n = 10) or 10-15 (n = 50) for gene sets
with no up-regulation at all (β = α = 1) shows that PAGE
suffers from low specificity. In other words, the extremely
small p-values did not indicate high sensitivity but rather
a high false positive rate for PAGE. On the other hand,
GAGE and GSEA are selective and started from insignifi-
cant p-values for the negative control gene sets with β = α
= 1. Compared to GSEA, GAGE gave smaller p-value for
gene sets with different levels of up-regulation (Figure 2a–
b). In other words, GAGE is more sensitive than GSEA.
This improvement does not come at the cost of lower spe-
cificity (Additional file 1: Supplementary Figure 2a-b and
detailed next). Note that GSEA reached sensitivity cap
(around β = 7 for n = 10 and β = 4 for n = 50, Figure 2a–
b). Out of all three methods, only GAGE produced strictly
monotonically decreasing p-value curves that closely
reflected the increasing up-regulation levels of the testing
gene sets with increasing β.

We further compared the p-values inferred by these three
methods under null condition by using testing gene sets
with strictly no up-regulation (Additional file 1: Supple-
mentary Figure 2). GAGE with 1-on-1 and grp-on-grp
options and GAGE-r (details in Methods) derived null p-
values closely following a uniform distribution. This fur-
ther confirmed the theoretical soundness of GAGE, and

that the improved sensitivity of GAGE (Figure 2a–b) com-
pared to GSEA does not rely on a bias in the null distribu-
tion (Additional file 1: Supplementary Figure 2a-b). The
null simulation indicates that both GAGE and GSEA are
equally selective against false positive (Additional file 1:
Supplementary Figure 2a-b). However, simulation with
different levels of up-regulated gene sets shows GAGE is
more sensitive to true positive (i.e. real difference) (Figure
2a–b). GAGE with the 1-on-grp option (details in Meth-
ods) derived null p-values that are slightly different from
the uniform distribution, and is more likely to produce
false positive results compared to GAGE with the default
1-on-1 option. However, the GAGE 1-on-grp comparison
would still work reasonably well as a computationally fast
option based on our results using experimental data
(Table 5). In contrast, PAGE derived an extremely biased
null p-value distribution. Over 40% of the p-values are
essentially 0, another 40–50% are 1. Clearly, in consistent
with all our earlier observations, PAGE produces a high
false positive rate.

Impact of GAGE strategies: gene set separation, two-
sample t-test, and one-on-one comparisons
Compared to PAGE and GSEA, GAGE employs three dif-
ferent strategies: 1) gene set separation, 2) two-sample t-
test, and 3) one-on-one comparisons between experiment
and control samples. In this section, we show the impact
of each of these three strategies in representative analyses,
although these strategies have been consistently effective
when applied to multiple datasets covered or not covered
in this paper. We compare GAGE to PAGE on these
aspects if possible, or to GAGE variants which ensembles
PAGE in each one of these three aspects for exact compar-
ison. GSEA is either not or less comparable in these
aspects.

Gene set separation
In contrast to PAGE and GSEA, GAGE separates canonical
pathways from experimental sets and considers potential
perturbations in both directions (i.e. up and down regula-
tion simultaneously) in canonical pathways. Expression
data directly showed that genes in the most relevant
canonical pathways are regulated in both directions (Fig-
ure 3). Figure 3a shows the gene expression level changes
following BMP6 treatment in top 3 different significant
canonical pathways inferred by GAGE and PAGE (Table 3
and Additional file 1: Supplementary Table 8). These
canonical pathways inferred by GAGE are directly related
to BMP induced osteoblast differentiation [34,35] (Alk
pathway is essentially TGF Beta signaling + Wnt signal-
ing). Figure 3b shows the gene expression level changes in
the TGF beta-BMP signaling pathway following BMP6
treatment. This pathway is a presumable gold standard as
it is the primary signal triggered directly by BMPs (KEGG).
The changes of gene expression are not uniform. The TGF-
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A simulation study using microarray data and synthetic testing gene setsFigure 2
A simulation study using microarray data and synthetic testing gene sets. (a-c) p-values on the differential expres-
sion of testing gene sets with increasing levels of enrichment of up-regulated genes, when GAGE (a, b), GSEA (a, b) and PAGE 
(c) were applied. (d) The series of beta distribution curves with 1 ≤ β ≤ 10 and fixed α = 1 used to sample the testing gene sets 
with increasing levels of up-regulation from a sorted whole gene list. For each β value, we generated testing gene sets of two 
different size n = 10 genes (small sets) and n = 50 genes (large sets), 100 gene sets each. We then applied GAGE, PAGE or 
GSEA to test the overall expression level up-regulation in these gene sets. Mean p-values plus with standard error were 
shown. See Methods and Results for details. Note that GAGE with both 1-on-1 and 1-on-grp options produces similar results, 
although only the former is shown here.
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beta pathway includes both positive effectors such as
BMPs, BMPR1–2, SMAD1/5/8, ID1–4, and THBS, and
negative effectors such as NOG, SMAD2/3, and SMAD6/
7. Clearly, both types of effectors were regulated up and
down. Genes are regulated in both directions not only for
the whole pathway but also within the sub-pathways like
BMP or TGF-beta signaling branches. These results dem-
onstrate that genes in canonical pathways are frequently
up- and down-regulated simultaneously because 1) they
play positive or negative roles [20] and 2) homeostatic
mechanisms tend to bring a certain level of balance back
to the system when it is perturbed [19]. Therefore, it is
necessary to treat canonical pathways differently from
experimental sets and count both up and down regulation
when doing gene set analyses.

Compared to the top 10 canonical pathways assuming
one-way changes, the top 10 canonical pathways allowing
two-way changes better described BMP induced osteob-
last differentiation mechanistically (Table 3 and Addi-
tional file 1: Supplementary Table 11). TGF beta
signaling, Wnt signaling and cell proliferation are all
known essential signals or processes for osteoblast differ-
entiation [34,35], yet they are not significant in the one-
way changing list (Additional file 1: Supplementary Table
11, full Table not shown). One-way assumption tends to
select metabolism pathways (6 out of 10 canonical path-
ways in Additional file 1: Supplementary Table 11), which
are likely to be tightly coregulated as relative simple func-
tional group. In other words, top canonical pathways with
one-way changes are still interesting if they are not com-
plicated regulatory pathways.

Two-sample t-test
GAGE uses a two-sample t-test to compare expression
level changes of a gene sets to the whole set background,

whereas PAGE uses a one-sample z-test. GAGE's use of a
two-sample t-test has three effects. First, two-sample t-test
considers the variance for both the target gene set distribu-
tion as well as the background distribution (Formula 1),
while a one-sample z-test only considers the variance for
the background distribution and ignores the effect of spe-
cific target gene set distribution (Formula 2). The back-
ground variance is small and often negligible compared to
the within gene set variance, hence PAGE can produce
unrealistically large z-scores and small p-values (Addi-
tional file 1: Supplementary Table 8) in contrast to GAGE
(Table 3). Second, the two-sample t-test used by GAGE
identifies gene sets with modest but consistent changes in
gene expression level, whereas PAGE tends to identify
gene sets with a few extremely changed outliers (Figure 4,
more comments in Additional file 1: Supplementary Note
4). In other words, GAGE is more robust to experimental
noise or variations in gene set definitions than PAGE.
Many top gene sets selected by PAGE were not significant
according to GAGE (Table 3, Additional file 1: Supple-
mentary Table 8, full tables not shown) because the
within gene set variance is too large (Figure 5). On the
other hand, significant gene sets inferred by GAGE are
almost always selected as significant by PAGE (Table 3,
Additional file 1: Supplementary Table 8, full tables not
shown). Said another way, GAGE is as sensitive (high true
positive calls) as PAGE, but more specific (low false posi-
tive calls) than PAGE (also see Additional file 1: Supple-
mentary Figure 2a-b). Third, there is higher level of
consistency within the top 10 gene sets inferred by GAGE
(Table 3) than by PAGE (Additional file 1: Supplementary
Table 8), and between the top 10 gene sets across experi-
ments (Table 3 vs Additional file 1: Supplementary Table
8). This consistency is because the two-sample t-test is
more robust than one-sample z-test for gene set analysis.
All these observations for PAGE also apply to GAGE-z

Table 5: The three comparison schemes of GAGE, 1-on-1, 1-on-grp and grp-on-grp

Gene Sets & Methods Overlap Top 10 p-values Metastasis Tumor Sign. Sets

Experimental Sets 1-on-1 4 1.3E-28, 1.2–9 2, 3 5, 5 201 (254), 55 (47)

1-on-grp 4 4.2E-35, 2.4E-13 3, 5 6, 7 242 (283), 120 (124)

grp-on-grp 3 6.5E-8, 1.8E-4 3, 4 6, 8 52 (69), 17 (0)

Canonical Pathways 1-on-1 6 7.2E-5, 3.7E-03 9, 9 9, 9 18 (12), 8 (5)

1-on-grp 5 6.7E-6, 7.5E-4 10, 9 10, 9 20 (16), 10 (8)

grp-on-grp 0 1.1E-1, 6.1E-2 4, 5 6, 5 0 (0), 0 (0)

Top 10 significantly enriched experimental sets and canonical pathways in poor clinical outcomes vs good outcomes were inferred by GAGE using 
these three different comparison schemes from two published lung adenocarcinoma data sets [3]. Data columns are overlap between top 10 gene 
sets for the two studies, top 10 p-values, number of top 10 gene sets related to metastasis (bt) and tumor (t and bt), and numbers of significant gene 
sets with p-value ≤ 0.001 (or with FDR q-value ≤ 0.01).
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GAGE captured canonical pathways which are significantly perturbed towards both directions following 8 h BMP6 treatment in human MSCFigure 3
GAGE captured canonical pathways which are significantly perturbed towards both directions following 8 h 
BMP6 treatment in human MSC. (a) Gene expression level changes in the top 3 different significant canonical pathways 
inferred by GAGE and PAGE. (b) Gene expression level changes in the canonical TGF beta signaling pathway and (c) plotted in 
pseudo-color on the pathway topology derived from KEGG database. The solid horizontal line and dashed lines in (a-b) mark 
the mean fold changes of all genes and the positive/negative two times standard deviation from the mean respectively. Note 
that in (c), one KEGG node may correspond to multiple closely related genes with the same function, and the maximum fold 
changes among these genes are plotted as the color of the node.
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(GAGE variant doing one-sample z-test, Additional file 1:
Supplementary Table 12).

With the classical two-sample t-test as the default of
GAGE, we also looked at a rank-based two-sample t-test as
an alternative (GAGE-r), which is potentially less sensitive
to the violation of normal distribution assumption and
expression outliers. GAGE-r gave similar results (Addi-
tional file 1: Supplementary Table 13) in terms of the sig-
nificant gene set list, the number of significant gene sets
(not shown), p-values and q-values. This result further
confirmed the robustness of GAGE method and validated
two-sample t-test as the default option.

One-on-one comparisons
GAGE carries out one-on-one comparisons between
experiments and controls, whereas PAGE compares exper-
iments and controls as two groups together. One-on-one
comparisons are natural when the experiment samples
and controls are paired. This one-on-one pairing is still
preferred over group-on-group comparison even though
experiments are not pair-matched for two reasons. First,
multiple tests on all experiment-control pairs are more
statistically powerful than single test on group averages, as
the p-values (hence FDR q-values) would be orders of
magnitude smaller for the one-on-one comparisons ver-
sus the group comparisons (Table 5, and Table 3 vs Addi-
tional file 1: Supplementary Table 14). Second,
comparisons between two specific samples makes sense

but not between two sample groups when the net effect of
the whole gene set is non-additive, for instance, being
expressed as mean of the absolute fold changes for canon-
ical pathways (Additional file 1: Supplementary Note 5).
As expected, a one-on-one comparison approach pro-
duced more consistent and biologically meaningful
results across independent studies (Table 5). The enumer-
ation of all one-on-one comparisons is not always advan-
tageous as it can be relative slow for datasets with large
number of replicates. To speed up the analysis of larger
datasets, we can take the average gene expression levels for
all controls as a single reference state and do gene set anal-
ysis on each experiment sample vs this reference state,
because controls are often more homogenous than exper-
iments. Correspondingly, GAGE has the options for three-
way comparison schemes specified as 1-on-1, 1-on-grp
and grp-on-grp. The option 1-on-grp produces similar
results to 1-on-1 but different results to grp-on-grp (Table
5 and Additional file 1: Supplementary Table 15). The dif-
ference between these three options is better shown when
the sample conditions are complicated as in the large clin-
ical datasets above.

Discussion
In this work we have presented a new gene set analysis
method GAGE that is generally applicable to gene expres-
sion datasets of all sample sizes and experimental designs
and in general performs better than two most frequently
used methods. We have demonstrated GAGE's perform-

Differential gene expression in the top 2 significant experimental sets inferred by GAGE or PAGEFigure 4
Differential gene expression in the top 2 significant experimental sets inferred by GAGE or PAGE. Gene expres-
sion levels are log 2 based, and compared between human MSC with 8 hour BMP6 treatment vs control. Results for the first 
experiment are shown, and the second replicate experiment is similar.
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ance by comparing it to GSEA and PAGE extensively in the
following three aspects: (1) consistency across parallel
studies or experiments; (2) sensitivity and specificity of
the pathway inference; (3) biological relevance of the
pathways identified.

Our results show a significant impact of separating gene
sets into pathway and experimentally derived gene sets as
is shown in Figure 3. We showed that two-way perturba-
tions commonly occur in regulatory pathways (Figure 3
and Table 1, also in Table 3 and Additional file 1: Supple-
mentary Table 6), which would otherwise be overlooked
(Additional file 1: Supplementary Table 11). However,
pathway derived gene sets do not always show regulation
in both directions. For example, we see that metabolic
pathways or functional groups such as GO term categories
tend to be coregulated toward one direction (Additional
file 1: Supplementary Table 11). Strictly speaking, many
of these gene sets are not signaling pathways and could be
further separated from canonical signaling pathways
(such as in MSigDB collection c2). In response to this
observation, GAGE provides the option for two rounds of

screening on MSigDB pathway sets. The first round
assumes two-way regulation for regulatory signaling path-
ways while the second round assumes one-way for coreg-
ulated functional groups.

GAGE made two assumptions in conducting two sample
t-tests on the log based fold changes of target gene set and
control sets. The first assumption is approximate normal
distribution for the mean fold change of the two sets. The
central limit theorem states that the distribution of an
average of sampled observations is normal regardless of
the nature of parent distribution when sampling size is
large enough. Indeed, the mean of fold change values for
gene sets with ≥ 10 genes are close to normal distribution
as shown by q-q plot previously [5]. The second assump-
tion is that the fold changes of genes are independent and
identically distributed (IID). Dependency between genes
has been a concern for all gene randomization methods
[11]. However, Netwon et al [6] argued that dependency
is not necessarily an issue when GSA was conditioned on
the differential expression analysis results (like fold
changes). Moreover, we think dependency (coregulation)
is rare for randomly sampled control gene sets. For most
curated gene sets there is no coregulation under the spe-
cific condition of the microarray study (even though they
might be under certain other condition), and the null
hypothesis holds. For the few interesting gene sets where
genes are coregulated, there will be a significant difference
in expression between these sets and random control sets,
hence the null hypothesis gets rejected. Therefore, gene
sets which violate the IID assumption are the few signifi-
cant sets and will be captured this way [5,6]. GAGE results
clearly showed that our arguments work. The same logic
has also been quite successful in well established gene
randomization methods [5-7].

The one-on-one comparison scheme is generally applica-
ble to datasets of all sample sizes and experiment designs.
We used a meta-test to infer a global p-value for all the
individual comparison p-values. The global p-values and
the number of significant gene sets we derived are sensi-
ble. As in common statistical tests, these p-values tend to
decrease when the sample size increases, and can become
small for large datasets like the lung cancer datasets (Table
1), hence the number of significant gene sets can be large
especially when all the redundant gene sets are kept (Table
2 and Additional file 1: Supplementary Table 7). This
result is still sensible because large clinical datasets (like
the lung cancer studies) are generally more heterogeneous
than small experimental datasets (like the BMP6 study).

There are frequently multiple significant gene sets that
share multiple genes or represent the same regulatory
mechanism, especially for experimental gene sets. This
redundant gene sets problem has been discussed else-

Gene expression fold changes (log 2 based) in the top 3 sig-nificant experimental sets inferred by GAGE or PAGEFigure 5
Gene expression fold changes (log 2 based) in the top 
3 significant experimental sets inferred by GAGE or 
PAGE. For each gene set, the bar height represents mean 
and error bar represent standard error of gene expression 
fold changes induced by 8 hour BMP6 treatment in human 
MSC. GAGE uses two-sample t-test and PAGE does one-
sample z-test. PAGE frequently selected gene sets with 
extreme up or down regulation in a few genes and almost no 
changes in the rest. Such gene sets have too large within-
group variances to be called significantly different from the 
background based on two-sample t-test, even though their 
mean fold changes are big.
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where in detail [41]. In response to this issue, GAGE has
the option to combine redundant gene sets and give more
concise significant gene set lists (Additional file 2). In this
work, we chose not to combine these redundant gene sets
for exact comparison between methods. As a benefit of
not merging these sets, we took these overlapping sets as
an internal control to validate the internal consistency of
the predictions.

There is also a multiple testing issue, i.e. gene sets may
become significant when the gene set number is large.
Classical FDR procedures like Benjamini-Hochberg (BH)
[42] and Bonferroni [43] corrections tends to be conserv-
ative. Such adjustment is further complicated when gene
sets contain different numbers of genes (not exactly the
same null hypothesis test for different gene sets). Hence
gene randomization based GSA methods like PAGE [5]
and T-Profiler [7] do not consider this adjustment (we
added the FDR procedure to PAGE in Additional file 1:
Supplementary Table 1, 6 and 8 for comparison purpose).
Sample randomization based GSA methods like GSEA
suffer from conflicting ordering between FDR q-values
and nominal p-values (Additional file 1: Supplementary
Table 2, 6 and 9). In GAGE, the one-on-one comparison
and one-on-group comparison schemes not only gives us
more testing power and robustness, but also provides the
framework to conduct a unified and rigorous FDR proce-
dure for gene sets of different sizes. Because the meta-test
on K p-values (Formula 5, see methods for details) is the
same (with the same null hypothesis) for all gene sets
despite of their different size.

Conclusion
In this work, we present a novel method GAGE for gene
set analysis (GSA). GAGE is generally applicable to gene
expression datasets with different sample sizes and exper-
imental designs, hence greatly expands the applicability of
GSA. In both simulation experiments and multiple micro-
array data analyses, GAGE consistently outperformed two
most frequently used GSA methods, GSEA and PAGE in
three major aspects: (1) consistency across repeated stud-
ies/experiments; (2) sensitivity and specificity; (3) biolog-
ical relevance of the regulatory mechanisms inferred.
GAGE reveals novel and relevant regulatory mechanisms
from both published and previously unpublished micro-
array studies.

Methods
A schematic overview of GAGE procedure is shown in Fig-
ure 1. Here we describe the major steps of GAGE.

Gene sets separation
GAGE uses curated gene sets [3] collected from individual
studies or pathway databases for regulatory mechanisms

inference. In contrast to other gene set analysis
approaches, GAGE requires that each curated gene set be
identified as either a pathway set (canonical pathways) or
an experimentally derived differential expression set
(experiment sets). GAGE treats these two categories differ-
ently. Genes in an experimental set are assumed to be reg-
ulated in the same direction, either all up or all down, as
they were in the original study. In contrast, genes associ-
ated with a pathway gene set may be heterogeneously reg-
ulated in either direction. This separation better reflects
the origin of the gene set and is therefore expected to pro-
duce better results.

For an experimental set the test statistic (score) used in
GAGE is the average of the per-gene test statistics–similar
to the scoring scheme used by other gene set analysis
methods. However, for canonical pathways GAGE uses
the average of the absolute values of the per gene test sta-
tistics to account for both up- and down-regulation.

Significance test
To test whether a gene set is significantly correlated with a
phenotype or an experiment condition, we exam the fold
changes of gene expression level in the experiment condi-
tion (or phenotype) vs control condition. Correspond-
ingly, we want to test whether the mean fold changes of a
target gene set is significantly different from that of the
background set (the whole gene set of the microarray).
This is a prototype two-sample t-test, as shown in Formula
1, in contrast to the one-sample z-test used in PAGE [5]
shown in Formula 2.

Where m, s and n are the mean fold change (log ratio of
expression levels), standard deviation, and number of genes
in a particular gene set, and M and S are the mean fold
change and standard deviation for all of the genes in the
dataset. Notice that this is a two sample t-test between the
interesting gene set containing n genes and a virtual random
set of the same size derived from the background (compara-
ble to the one-sample z-test control set in Formula 2). Two
sample t-test would be inaccurate when the two sample sizes
are not comparable [44]. The degree of freedom (df) for this
two-sample t-test (Formula 1) with unequal variance is given
in Formula 3. The common range for df would be n-1 (when
s>>S) to 2n-2 (when s = S). Actually df has little effect on the
p-values when n is large enough (for most gene sets), where
t-distribution is nearly normal. The assumptions we made
for the two-sample t-test are described in the Discussion sec-
tion in detail.

t m M s n S n= − +( ) / /2 2 (1)

z m M S n= −( ) /2 (2)
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With the classical two-sample t-test as the default of
GAGE, we also implement a rank-based two-sample t-test
[45] as an alternative (GAGE-r). This rank based t-test is
equivalent to the non-parametric Wilcoxon Mann-Whit-
ney test [45]. These rank based alternatives do not assume
normal distribution of the samples and are potentially
less prone to outliers compared to the classical parametric
two-sample t-test. To conduct the rank test, we transform
the data to ranks and then performing the two-sample t-
test on the transformed data.

One-on-one comparison between microarray experiment and control 
samples
For microarray studies with one-on-one paired experiment
and control samples, we calculate fold changes and carried
out gene set significance tests for each experiment versus
control sample pair. For microarray studies with multiple
unpaired experimental and control samples, GAGE has two
options: 1-on-1 and 1-on-grp. In 1-on-1 we enumerate all
pairs of experiment-control and do gene set significance
tests. In the 1-on-grp option we take the average gene
expression level for all control samples as the sole reference,
compare each experimental sample against this reference
and do gene set significance tests. 1-on-1 is more rigorous
theoretically. Our experiment showed that 1-on-grp gives
nearly identical results and is much faster when the sample
size is large. We take 1-on-1 as our standard, and leave 1-
on-grp as a computationally fast option (default for
unpaired experiments in this paper). We also implemented
the commonly used comparison between experiment
group and control group as the grp-on-grp option.

Combination of multiple comparisons or experiments
GAGE derived multiple t-statistics and p-values from For-
mula 1 when doing 1-on-1 or 1-on-grp comparison for
datasets with replicate samples. We derive a global p-value
by combining these individual p-values. Individual p-
value follows a Uniform(0,1) distribution under the null
hypothesis of the two-sample t-test and the negative log
sum of K independent p-values follows a Gamma(K,1)
distribution. Hence we can do a meta-test for all the p-val-
ues of a gene set across multiple samples (Formula 4–5).

Note that this analysis assumes that individual p-values
come from independent comparisons. However, the 1-

on-1 comparisons are not all independent for unpaired
studies (with k = 1,., K experiments and l = 1,., L controls),
thus we need to take the average of the p-values for all L
comparisons of a experiment to different controls as the
p-value for that experiment (Formula 6) and then apply
Formula 5 to these K independent p-values.

To correct the p-values for the multiple testing issue, we
estimate FDR by using fdrtool [46], a unified approach
recently established. Compared to the traditional FDR
procedures, fdrtool estimates FDR based on the empirical
null distribution, hence allow more realistic and less con-
servative correction of p-values [46]. In rare cases, fdrtool
may perform less ideal likely due to the extreme distribu-
tion of input p-values. We provide the classical Ben-
jamini-Hochberg (BH) [42] procedure as a backup
option.

Implementation of GAGE
GAGE is implemented in the statistical computing lan-
guage R and is freely available online [47]. The gene sets
used in this paper are from the Molecular Signature Data-
base of GSEA website [23]. From this site, we used the
curated gene sets (collection c2), and treat the two sub-
collections experimental sets (CGP: chemical and genetic
perturbations) and canonical pathways differently. There
are 16966 unique gene symbols in c2, 3834 of them are
nonstandard. Among these nonstandard symbols, 1190
were converted standard symbols automatically by using
GAIQ database [48]. Database access and scripts for the
gene symbol standardization is available upon request.

Comparison software
GAGE was compared to two widely used gene set analysis
software packages: PAGE and GSEA. GSEA-P-R.1.0 was
downloaded form GSEA website [49], and PAGE is imple-
mented in R as part of GAGE package based on descrip-
tion of the authors [5] and source codes in PGSEA package
[50].

Datasets
The gene set analysis software was compared using three
datasets including two large studies and one small one.

The two large studies included a lung cancer set was pro-
vided with GSEA-R package [49] and a type 2 diabetes
dataset comes from ChipperDB [51]. These datasets were
chosen because they were originally used to validate and/
or compare GSEA [3,4] and PAGE [5]

The small dataset is a gene expression study from our
group describing human MSC response to 8 hours of
exposure to the signaling molecule BMP6. This dataset
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includes two experimental groups each with paired treat-
ment and control samples, resulting in a total of 4 gene
chips. We have deposited the dataset into Gene Expres-
sion Omnibus (GEO) repository (accession number
GSE13604). For the use in this paper, the raw data were
processed by using RMA implemented in the Bioconduc-
tor Affy package [52] with up-to-date probe set definition
(.CDF file) based on Entrez Gene sequence,
Hs133P_Hs_ENTREZG_8 [53]. Annotation data were
retrieved from the GAIQ website [48]. The type 2 diabetes
dataset was processed similarly from raw data files.

Synthesize the testing gene sets with controlled levels of 
differential expression
While the dataset for simulations study is real microarray
data, we synthesized the testing gene sets with controlled
levels of differential expression (or degrees of enrichment).
We ranked all genes based on average fold change between
the two sample groups (i.e. type 2 diabetes samples and
controls) from most up-regulated to most down-regulated.
We then sampled gene sets following a series of different
Beta-distributions in gene ranks. One of the two parame-
ters, α is fixed to 1, and the other parameters β takes values
from integer 1 to 10 (Figure 2d), which control the shape
of Beta distribution (Figure 2d) hence the degree of enrich-
ment of the up-regulated genes (or the level of up-regula-
tion of the gene set): the uniform distribution at β = 1
corresponds to no enrichment at all and the highly skewed
distribution at β = 10 corresponds to highest enrichment of
up-regulated genes (Figure 2d). For each β value, we gener-
ated 100 testing gene sets of 10 genes (small sets) and 100
sets of 50 genes (large sets). We then applied GAGE, PAGE
or GSEA to score these testing gene sets, and evaluated
whether the enrichment scores reason ably reflect the differ-
ential expression levels of these testing gene sets. Note that
α and β are symmetric parameters. When we exchange
them, the simulation remains the same except that the gene
sets were enriched with down-regulated genes.
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