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Abstract
Background: One of the main objectives of microarray analysis is to identify differentially
expressed genes for different types of cells or treatments. Many statistical methods have been
proposed to assess the treatment effects in microarray experiments.

Results: In this paper, we consider discovery of the genes that are differentially expressed among
K (> 2) treatments when each set of K arrays consists of a block. In this case, the array data among
K treatments tend to be correlated because of block effect. We propose to use the blocked one-
way ANOVA F-statistic to test if each gene is differentially expressed among K treatments. The
marginal p-values are calculated using a permutation method accounting for the block effect,
adjusting for the multiplicity of the testing procedure by controlling the false discovery rate (FDR).
We propose a sample size calculation method for microarray experiments with a blocked one-way
design. With FDR level and effect sizes of genes specified, our formula provides a sample size for a
given number of true discoveries.

Conclusion: The calculated sample size is shown via simulations to provide an accurate number
of true discoveries while controlling the FDR at the desired level.

Background
Clinical and translational medicine have benefited from
genome-wide expression profiling across two or more
independent samples, such as various diseased tissues
compared to normal tissue. DNA microarray is a high
throughput biotechnology designed to measure simulta-
neously the expression level of tens of thousands of genes
in cells. Microarray studies provide the means to under-
stand the mechanisms of disease. However, various
sources of error can influence microarray results [1].

Microarrays also present unique statistical problems
because the data are high dimensional and are insuffi-
ciently replicated in many instances. Methods of adjust-
ment for multiple testing therefore become extremely
important. Multiple testing methods controlling the false
discovery rate (FDR) [2] have been popularly used
because they are easy to calculate and less strict in control-
ling the false positivity compared to the family-wise error
rate (FWER) control method [3].
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Numerous sample size calculation methods have been
proposed for comparing independent groups while con-
trolling the FDR in designing microarray studies. Lee and
Whitmore [4] considered comparing multiple groups
using ANOVA models and derived the relationship
between the effect sizes and the FDR using a Bayesian
approach. Their power analysis does not address the mul-
tiple testing issue. Muller et al. [5] chose a pair of testing
errors, including FDR, and minimized one while control-
ling the other at a specified level using a Bayesian decision
rule. Jung [6] proposed a closed form sample size formula
for a specified number of true rejections while controlling
the FDR at a desired level. Pounds and Cheng [7] and Liu
and Hwang [8] proposed similar sample size formulas
which can be used for comparison of K independent sam-
ples. These methods are for the FDR-control methods
based on independence or a weak dependency assump-
tion among test statistics. Recently, Shao and Tseng [9]
introduced an approach for calculating sample sizes for
multiple comparisons accounting for dependency among
test statistics.

In some studies, specimens for K treatments are collected
from the same subject and means are compared across
treatment groups. In this case, the gene expression data for
the K treatments may be dependent since they share the
same physiological conditions. For example, Feng et al.
[10] conducted a study to discover the genes differentially
expressed between center (C) and edge (E) of the uterine
fibroid and the matched adjacent myometrium (M). In
this study, specimens are taken from the three sites for
each patient. The patients are blocks and the three sites (K
= 3), C, E and M, are treatments (or groups) to be com-
pared.

Since a set of K specimens are collected from each patient,
we require a much smaller number of patients than a reg-
ular unblocked design. Furthermore, the observations
within each block tend to be positively correlated, so that
a blocked design requires a smaller number of arrays than
the corresponding unblocked design just as a paired two-
sample design with a positive pairwise correlation
requires a smaller number of observations than a two
independent sample design. The more heterogeneous the
blocks are, the greater the savings in number of arrays for
the blocked design.

In this paper, we consider a non-parametric blocked F-test
statistic to compare the gene expression level among K
dependent groups. We adjust for multiple testing and con-
trol the FDR by employing a permutation method. We
propose a sample size calculation method for a specified
number of true rejections while controlling the FDR at a
specified level. Through simulations, we show that the
blocked F-test accurately controls the FDR using the per-
mutation resampling method and the calculated sample

size provides an accurate number of true rejections while
controlling the FDR at the desired level. For illustration,
the proposed methods are applied to the fibroid study
[10] mentioned above.

Methods
Non-parametric block F-test statistic
Suppose that we want to discover genes that are differen-
tially expressed among K sites (treatments or groups). For
each of n patients (blocks), a specimen is collected from
each site for a microarray experiment on m genes. In this
case, the gene expression data from the K sites tend to be
correlated. Let Yijk denote the expression level of gene i (=
1,..., m) from treatment k (= 1,..., K) of block j (= 1,..., n).
We consider the blocked one-way ANOVA model

where, for gene i, μi is the population mean, δik is a fixed

treatment effect and the primary interest, γij is a random

block effect, and εijk is a random error term. We assume

that , γi1,..., γin are independent and identi-

cally distributed (IID) with mean 0 and variance vi, (εijk, 1

≤ j ≤ n, 1 ≤ k ≤ K) are IID with mean 0 and variance ,

and error terms and block effects are independent. The
standard ANOVA theory using parametric F distributions
to test the treatment effect assumes a normal distribution

for εijk. However, in this paper, we avoid the normality

assumption by using a permutation resampling method
in testing and a large-sample approximation in sample
size calculation.

For gene i(= 1,..., m), the hypotheses for testing the treat-
ment effect are described as

against

We reject Hi in favor of  for a large value of F-test sta-

tistic
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where , and

. If the error terms are nor-

mally distributed, Fi marginally has the FK-1, (K-1)(n-1) distri-

bution under Hi. The normality assumption can be

relaxed if n is large.

Without the normality assumption, the joint null distri-
bution of the statistics can be approximated using a block
permutation method, where the array data sets for K treat-
ments are randomly shuffled within each block: the per-
muted data may be represented as

, where  is a

random permutation of (1,..., K). Note that there are (K!)n

different permutations, among which (K!)n-1 give different
F-statistic values. The R language package multtest [11]
can be used to implement the permutation-based multi-
ple testing procedure for blocked microarray data. We
consider adjusting for the multiplicity of the testing pro-
cedure by controlling the FDR [12,13].

Permutation-based multiple testing for FDR-control
(i) Compute the F-test statistics (F1,..., Fm) from the origi-
nal data, (f1,..., fm).

(ii) From the b-th permutation data (b = 1,..., B), compute

the F-test statistics .

(iii) For gene i, estimate the marginal p-value by

where I(A) is an indicator function of event A.

(iv) For a chosen constant λ ∈ (0, 1), estimate the q-value
by

(v) For a specified FDR level q*, discover gene i (or reject
Hi) if qi < q*.

Sample size calculation

Let 0 and 1 denote the sets of indices of genes that are

equally and differentially expressed, respectively, in K

treatments, and {  = δik/σi, i ∈ 1, 1 ≤ k ≤ K} denote the

standardized effect sizes for the differentially expressed
genes. Let m0 and m1 = m - m0 denote the cardinalities of 0
and 1, respectively.

Suppose that we want to discover gene i (or reject Hi) if the
marginal p-value pi is smaller than α ∈ (0, 1). For large m
and under the independence assumption or weak
dependence among the F-test statistics, the FDR corre-
sponding to the cutoff value α is approximated by

where βi(α) = P(pi ≤ α) is the marginal power of a single α-

test applied to gene i ∈ 1 and  denotes the

expected number of true rejections when we reject Hi for

pi <α, see Jung [6].

Now, we derive βi(α) for gene i ∈ 1. By the standard
blocked one-way ANOVA theory under the normality
assumption for εijk,

and

are independent, where  is the noncentral χ2-distri-

bution with ν degrees of freedom and noncentrality

parameter η, and . Hence, for the F-test statis-

tic (2), we have

where  is the noncentral F-distribution with ν1

and ν2 degrees of freedom, and noncentrality parameter η.

Note that, for i ∈ 0,  and Fi ~F(K-1),(K-1)(n-

1)(0) = F(K-1),(K-1)(n-1), the central F-distribution.

The marginal powers are expressed as
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where  denotes the 100(1 - α) percentile of 

distribution. The marginal powers can be calculated using
R, SAS or some other packages. Suppose we want r1 true

rejections while controlling the FDR at q*. By combining
this with (3) and (4), we obtain two equations

and

Note that r1/m1 denotes the probability of true rejection.

At the design stage of a study, m is given by the number of
genes included in the chips to be used for microarray

experiment, m1 and { , i ∈ 1, 1 ≤ k ≤ K} are projected

based on biological knowledge or estimated from pilot
data, and K, r1 (or r1/m1) and q* are prespecified. The only

unknown variables in (5) and (6) are α and n. By solving

(6) with respect to α, we obtain α* = r1 q*/{m0 (1 - q*)}

and, by plugging this in (5), we obtain an equation for r1

depending only on n,

The marginal power function (4) includes n in the degrees
of freedom of the denominator as well as the noncentral-
ity parameter of the F-distributions. The impact of the
degrees of freedom of the denominator of the F-statistic
on the marginal power is much weaker than that of the

noncentrality parameter, so that βi(α) is a monotone

increasing function of n, and consequently equation (7)
has a unique solution. Figure 1 demonstrates the relation-

ship between n and βi(α) with α = 0.05;  = {k - (K + 1)/

2}/K for 1 ≤ k ≤ K; K = 3, 4 or 5. This monotone relation-
ship becomes clear for large n as shown by an approxi-

mate sample size formula given below. Note that the
variance of block effect vi has no impact on the sample size

and power of the test statistic for treatment effect.

In summary, the sample size (i.e., number of blocks) n for
r1 (≤ m1) true rejections is calculated as follows, assuming
that the error terms in model (1) are normally distributed.

Sample size calculation based on the noncentral F-distribution
(i) Specify the input variables:

- K = number of treatments;

- m = total number of genes for testing;

- m1 = number of genes differentially expressed in K
treatments (m0 = m - m1);

- { , i ∈ 1, 1 ≤ k ≤ K} = standardized effect sizes for

prognostic genes;

- q* = FDR level;

- r1 = number of true rejections

(ii) Using the bisection method, solve
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with respect to n, where α* = r1q*/{m0(1 - q*)}.

(iii) The required sample size is n blocks, or nK array
chips.

In the sample size formula based on the noncentral F-dis-
tribution, the relationship between n and the marginal
power functions based on the F-distribution is compli-
cated and a normal distribution assumption of the error
terms is required. In the large sample case, we can loosen
the normality assumption and simplify this relationship.
If the error terms have a finite 4-th moment, then, for large
n, the distribution of Fi is approximated by

A proof is given in the Appendix. Similarly, for large n, the
F(K-1),(K-1)(n-1) distribution can be approximated by (K - 1)-

1 , so that F(K-1),(K-1)(n-1),α ≈ (K - 1)-1 , where

 is the 100(1 - α) percentile of the χ2 distribution

with ν degrees of freedom. Hence, the marginal power for
Fi is approximated by

and a sample size based on the χ2-distribution approxi-
mation is obtained by solving

with respect to n, where α* = r1q*/{m0(1 - q*)}. In this
equation, n appears only in the noncentrality parameter
of the χ2 distributions.

Equation (8) is especially useful when we want to com-
pare the powers between a blocked one-way design and
an unblocked one-way design. Using similar approxima-
tions, it is easy to show that an approximate sample size
N = nK for a study with unblocked one-way design with a
balanced allocation is obtained by solving

with respect to n, where . The only dif-

ference between (8) and (9) is the standardized effect

sizes,  = δik/σ i and . The latter is

always smaller than the former because of the variance
among blocks, vi. If vi is large compared to the variance of

experimental errors, , then a blocked one-way design

requires much smaller number of arrays than an
unblocked one-way design. Let nu and nb denote the sam-

ple sizes n calculated under an unblocked and a blocked

design, respectively. If  are constant f among the

prognostic genes, then from (8) and (9), we have nu = (1

+ f)nb. As an example, consider the design of the fibrosis

study as discussed in Background Section and suppose
that the variance of the block effects is half of that of meas-
urement errors for the prognostic genes, i.e. f = 0.5. In this
case, if a blocked design requires nb = 100 patients and 3nb

= 300 array chips, then the corresponding unblocked
design with a balanced allocation requires nu = 150

patients per group or a total 450 patients. For an
unblocked design, the number of array chips is identical
to that of patients, and compared to the blocked design,
the unblocked design requires 1.5 times more chips and
4.5 times more patients.

Results and discussion
Simulations

First, we investigate the accuracy of the FDR control based
on blocked one-way ANOVA tests and the sample size for-
mulas via simulations. For the simulations on FDR con-
trol, we consider blocked one-way designs with K = 3
treatments and n = 10, 30, or 50 blocks. For gene i (= 1,...,
m) from treatment k (= 1,..., K) of block j (= 1,..., n), block

effect γij and error terms ijk are generated from N (0, 0.52)

and N(0,1), respectively. For differentially expressed

genes i ∈ 1, the standardized treatment effects are set at

 = (1, 0, -1) or (1, -2, 1). We set the total

number of genes m = 4000; the number of differentially
expressed genes m1 = 40 or 200; and the nominal FDR

level q* = 0.05, 0.1, 0.2, 0.3, 0.4, or 0.5. We conducted N
= 1000 simulations under each setting, and the null distri-
bution of the test statistics is approximated from B = 1000
permutations for each simulation sample. In simulation
l(= 1,..., N), the FDR-control multiple testing method is

applied to the simulated data using tuning parameter λ =

0.95 [12] to count the numbers of total rejections  and
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false rejections  and to estimate the FDR, .

Then the empirical FDR is obtained as

Table 1 reports the simulation results. The testing proce-

dure controls the FDR accurately, i.e.  ≈ q*, when

m1 is large (m1 = 200), but tends to be anti-conservative,

i.e.  > q*, when m1 is small (mi = 40). Jung and Jang

[13] made similar observations for two-sample t-tests and
Cox regression.

For the simulations on sample size calculation, we set m =
4000; m1 = 40 or 200; number of treatment K = 3; treat-

ment effects  = (1/4, 0, -1/4) or (1/4, -1/2, 1/

4) for i ∈ 1; γij ~N (0, 0.52) and ijk ~N (0. 1). We want the

number of true rejections r1 to be 30%, 60% or 90% of m1

while controlling the FDR level at q* = 1%, 5% or 10%.
For each design setting, we first calculate the sample size n
based on the F-distribution or the chi-square approxima-

tion, and then generate N = 1000 samples of size n under
the same setting. From each simulation sample, the
number of true rejections are counted while controlling

the FDR at the specified level using λ = 0.95. The first, sec-
ond and third quartiles, Q1, Q2 and Q3, of the observed

true rejections, , are estimated from the 1000 simula-

tion samples.

Table 2 summarizes the simulation results by the two
methods. As expected, sample size increases in r1 and

decreases in m1 and q*. Since the standardized effect sizes

for the differentially expressed genes influence the sample
size through their sum of squares, the combination of
effect sizes (1/4, 0, -1/4) requires a larger sample size than
(1/4, -1/2, 1/4). The sample size based on the chi-square
approximation is always smaller than that based on the F-
distribution. The median (Q2) of the empirical true rejec-

tions  is smaller than the nominal r1 for the sample size

based on the chi-square approximation, especially with a
small n, while the sample size based on the F-distribution

is always accurately powered, i.e. Q2 ≈ r1.

r̂0 ˆ ˆ / ˆq r rl = 0

ˆ ˆ .q
N
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l

N

=
=
∑1

1

q̂ q≈ ∗
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( , , )d d di i i1 2 3

r̂1
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Table 1: Empirical FDR from N = 1000 simulations with B = 1000 permutations for each simulation data set

n

m1 q* 10 30 50

40 (1, 0, -1) 0.05 0.1766 0.0921 0.0925
0.1 0.1819 0.1647 0.1705
0.2 0.2736 0.2462 0.2506
0.3 0.3636 0.3478 0.3512
0.4 0.4546 0.4449 0.4431
0.5 0.5435 0.5389 0.5399

(1, -2, 1) 0.05 0.0936 0.0899 0.0915
0.1 0.1619 0.1663 0.1665
0.2 0.2402 0.2498 0.2421
0.3 0.3373 0.3469 0.3461
0.4 0.4347 0.4481 0.4421
0.5 0.5318 0.5446 0.5340

200 (1, 0, -1) 0.05 0.0653 0.0573 0.0603
0.1 0.1120 0.1093 0.1130
0.2 0.2076 0.2105 0.2146
0.3 0.3079 0.3086 0.3176
0.4 0.4070 0.4056 0.4171
0.5 0.5051 0.5013 0.5162

(1, -2, 1) 0.05 0.0567 0.0554 0.0591
0.1 0.1108 0.1079 0.1111
0.2 0.2142 0.2061 0.2116
0.3 0.3120 0.3052 0.3113
0.4 0.4124 0.4049 0.4148
0.5 0.5141 0.5010 0.5162

( , , )d d di i i1 2 3
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Example
We applied the permutation-based blocked one-way
ANOVA and the sample size calculation method to the
fibroid study discussed in the Background Section. From
each patient, specimens are taken from two sites of fibroid
tissue, center (C) and edge (E), and one normal myo-
metrium (M). Five patients are accrued to the study. We
regard the three sites as treatments (K = 3) and the patients
as blocks (n = 5). mRNA was amplified and hybridized
onto HG-U133 GeneChips according to the protocols rec-
ommended by Affymetrix (Santa Clara, CA), and m =
54675 probe sets on the array were analyzed. Expression
values were calculated using the Robust Multichip Average
(RMA) method [14]. RMA estimates are based upon a

robust average of background corrected PM intensities.
Normalization was done using quantile normalization
[15]. We filtered out all "AFFX" genes and genes for which
there were 4 or fewer present calls (based on Affymetrix's
present/marginal/absent (PMA) calls using mismatch
probe intensity, the ratio of PM to MM). That is, a gene is
included only if there are at least 3 present calls among the
15 PMA calls. Filtering yielded 30711 genes to be used in
the subsequent analyses.

In order to group the samples according to the degree of
similarity present in the gene expression data, we first
applied a hierarchical clustering analysis to the filtered
30711 gene expression data and generated a dendrogram

Table 2: Q2 (Q1, Q3)/n, where n is the sample size and Qk (k = 1, 2, 3) are the k-th quartile of the empirical true rejections  from N = 

1000 simulations

Based on the chi-square approximation

m1 r1 q* = 1% 5% 10%

 = (1/4, 0, -1/4)

40 12 11 (9, 13)/123 10 (8, 13)/100 11 (8, 14)/90
24 23 (20, 26)/166 23 (21, 26)/138 23 (21, 25)/125
36 36 (34, 37)/242 36 (34, 37)/207 36 (35, 37)/191

200 60 56 (49, 61)/100 55 (47, 61)/77 55 (49, 61)/67
120 115 (109, 120)/138 118 (112, 124)/110 117 (110, 122)/96
180 179 (176, 182)/207 178 (176, 182)/171 179 (175, 182)/154

 = (1/4, -1/2, 1/4)

40 12 8 (6, 10)/41 8 (5, 10)/34 7 (5, 10)/30
24 21 (19, 23)/56 21 (18, 24)/46 21 (19, 24)/42
36 35 (33, 37)/81 35 (34, 36)/70 36 (34, 37)/64

200 60 42 (36, 48)/34 41 (35, 47)/26 44 (36, 52)/23
120 103 (98, 109)/46 108 (101, 114)/37 104 (98, 111)/32
180 176 (173, 180)/70 177 (173, 180)/57 178 (174, 180)/52

Based on the F-distribution

m1 r1 q* = 1% 5% 10%

 = (1/4, 0, -1/4)

40 12 12 (10, 15)/129 12 (10, 14)/104 12 (10, 15)/94
24 24 (21, 27)/171 25 (23, 27)/142 24 (22, 26)/129
36 36 (35, 37)/246 36 (35, 38)/211 36 (35, 38)/194

200 60 60 (55, 66)/104 61 (54, 66)/80 62 (54, 70)/70
120 123 (117, 128)/142 122 (118, 128)/113 120 (114, 126)/99
180 179 (177, 184)/211 180 (177, 183)/174 181 (178, 184)/157

 = (1/4, -1/2, 1/4)

40 12 13 (10, 15)/47 13 (10, 15)/38 13 (10, 16)/34
24 23 (21, 26)/60 25 (23, 27)/50 25 (23, 27)/46
36 36 (35, 37)/86 35 (35, 38)/73 36 (34, 37)/67

200 60 61 (55, 67)/38 66 (60, 72)/30 66 (59, 71)/26
120 121 (116, 127)/50 123 (116, 128)/40 121 (116, 126)/35
180 180 (177, 183)/73 181 (177, 184)/60 182 (178, 185)/55

r̂1

( , , )d d di i i1 2 3

( , , )d d di i i1 2 3

( , , )d d di i i1 2 3

( , , )d d di i i1 2 3
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(Figure 2). We used the Complete Linkage method [16]
and Pearson's correlation coefficient as a measure of sim-
ilarity. In the dendrogram, the height of each branch point
indicates the similarity level at which each cluster was gen-
erated. We obtained the same clustering using the L2 norm
as a measure of similarity. Except for patient 2, E and C are
clustered together for each patient. In spite of the block
effect, M is clustered separately from E and C regardless of
patient assignment. We conclude that C and E have simi-
lar gene expression profiles, but M has a different gene
expression profile from either C or E. While the clustering
analysis investigates the genome wide expression profile,
blocked one-way ANOVA helps us identify individual
genes differentially expressed among the three sites. Using
the blocked one-way ANOVA method, we selected the top
50 genes in terms of parametric p-values (Table 3). The
expression patterns of six genes that are identified as dif-
ferentially expressed are presented in Figure 3. The expres-
sion levels of each patients are connected among three
sites. These genes are similarly expressed between C and E,
but differentially expressed in M. Further, 220273_at,
210255_at, 229160_at, 204620_s_at and 217287_s_at are
under-expressed in M while 1553194_at is over-expressed
in M.

The results of our analysis of the two sites of fibroid tissue,
center and edge, compared to the normal myometrium

using a blocked one-way design suggest that reduced FDR
provides an enhanced approach to clinical microarray
studies. Our findings are consistent with previously
reported genome-wide profiling studies [17,18]. We
believe that these results support the hypothesis that uter-
ine fibroids develop through altered wound healing sign-
aling pathways leading to tissue fibrosis [19,20]. Using
the method described in this paper, genes differentially
over-expressed in the fibroid tissue compared to myo-
metrium are related to extracellular matrix (ECM) and
ECM regulation such as collagen IV, alpha 1, versican
(chondroitin sulfated 2) and IL-17β [21]. IL-17β, a cell-
cell signaling transducer has been reported to enhance
MMP secretion and to rapidly induce phosphorylation of
the extracellular signal-related kinases (ERK) 1/2 and
p38MAPK in colonic myofibroblasts and has been shown
to stimulate MMP-1 expression in cardiac fibroblasts
through ERK 1/2 and p38 MAPK [22,23]. Thus IL-17β is
important in remodelling of the extracellular matrix.
According to our analysis, RAD51-like 1, a recombina-
tional repair gene, is also over-expressed in fibroids,
which is consistent with a report that RAD51B is the pref-
erential translocation partner of high mobility group pro-
tein gene (HMGIC) in uterine leiomyomas [24]. HMGIC
codes for a protein that is a non-histone DNA binding fac-
tor that is expressed during development in embryonic tis-
sue and is an important regulator of cell growth,
differentiation and transformation as well as apoptosis
[25]. Arrest of apoptosis appears to be a hallmark of uter-
ine fibroids, a finding that is characteristic of altered
wound healing as well [19]. HMGIC appears to play a role
in the development of uterine fibroids [19,26,27].

Suppose that we want to design a new fibroid study using
the data analyzed above as pilot data. In the sample size
calculation, we set m = 30, 000. We assume that the m1 =

50 genes which were selected as the top 50 genes in terms
of parametric p-value are differentially expressed in the
three sites (K = 3). From the pilot data, we estimate the

standardized treatment effect δik. For illustration, the

effect sizes of these m1 = 50 genes are taken to be δik = 0.1

. We need n = 15 patients (blocks) to discover 90% of

the prognostic genes, i.e. r1 = [0.9 × 50] = 45, while con-

trolling the FDR at q* = 5% level. In a simulation study,
we generated N = 1000 microarray data sets of size n = 15
under this design setting. With q* = 0.05, we observed the
quartiles Q2(Q1, Q3) = 46(45, 47) from the empirical dis-

tribution of the observed true rejections.

d̂ ik

Hierarchical clustering dendrogramFigure 2
Hierarchical clustering dendrogram. kA means site A 
(= E, C or M) for patient k (= 1,..., 5).
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1C 1E

4C 4E 5C 5E

2C

3C 3E
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Expression patterns of six genes that are significantly differentially expressed in three sitesFigure 3
Expression patterns of six genes that are significantly differentially expressed in three sites.
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Table 3: The result of unterine fibroid tissue and adjacent myometrium microarray experiment

parametric non-parametric

probe_set_id Gene_Descriptor p-value q-value p-value q-value

220273_at interleukin 17B 0.0000 0.0000 0.0008 0.0131
213479_at neuronal pentraxin II 0.0000 0.0000 0.0015 0.0144
210255_at RAD51-like 1 (S. cerevisiae) 0.0000 0.0000 0.0008 0.0131

205833_s_at prostate androgen-regulated transcript 1 0.0000 0.0000 0.0077 0.0219
229160_at melanoma associated antigen (mutated) 1-like 1 0.0000 0.0000 0.0008 0.0131

1561122_a_at RAD51-like 1 (S. cerevisiae) 0.0000 0.0000 0.0046 0.0189
210817_s_at calcium binding and coiled-coil domain 2 0.0000 0.0000 0.0015 0.0144
1553194_at neuronal growth regulator 1 0.0000 0.0000 0.0008 0.0131
202965_s_at calpain 6 0.0000 0.0000 0.0108 0.0239
204620_s_at chondroitin sulfate proteoglycan 2 (versican) 0.0000 0.0000 0.0054 0.0196
217287_s_at transient receptor potential cation channel, subfamily C, member 6 0.0000 0.0000 0.0008 0.0131
227875_at kelch-like 13 (Drosophila) 0.0000 0.0000 0.0023 0.0156
205286_at transcription factor AP-2 gamma (activating enhancer binding protein 2 gamma) 0.0000 0.0000 0.0046 0.0189
242737_at RAD51-like 1 (S. cerevisiae) 0.0000 0.0000 0.0062 0.0206

209965_s_at RAD51-like 3 (S. cerevisiae) 0.0000 0.0000 0.0008 0.0131
202007_at nidogen 1 0.0000 0.0000 0.0015 0.0144

221731_x_at chondroitin sulfate proteoglycan 2 (versican) 0.0000 0.0000 0.0077 0.0219
244813_at RAD51-like 1 (S. cerevisiae) 0.0000 0.0000 0.0015 0.0144

201310_s_at chromosome 5 open reading frame 13 0.0000 0.0000 0.0008 0.0131
210258_at regulator of G-protein signalling 13 0.0000 0.0000 0.0008 0.0131
202589_at thymidylate synthetase 0.0000 0.0000 0.0054 0.0196
228766_at gb:AW299226 0.0000 0.0000 0.0054 0.0196
218380_at NLR family, pyrin domain containing 1 0.0000 0.0000 0.0008 0.0131
201417_at SRY (sex determining region Y)-box 4 0.0000 0.0000 0.0015 0.0144
215972_at Prostate androgen-regulated transcript 1 0.0000 0.0000 0.0093 0.0231

212942_s_at KIAA1199 0.0000 0.0000 0.0046 0.0189
202966_at calpain 6 0.0000 0.0000 0.0108 0.0239
205943_at tryptophan 2,3-dioxygenase 0.0000 0.0000 0.0015 0.0144

213668_s_at SRY (sex determining region Y)-box 4 0.0000 0.0000 0.0015 0.0144
219454_at EGF-like-domain, multiple 6 0.0000 0.0000 0.0008 0.0131
235503_at ankyrin repeat and SOCS box-containing 5 0.0000 0.0000 0.0069 0.0212

222834_s_at guanine nucleotide binding protein (G protein), gamma 12 0.0000 0.0000 0.0008 0.0131
210198_s_at proteolipid protein 1 (Pelizaeus-Merzbacher disease, spastic paraplegia 2, uncomplicated) 0.0000 0.0000 0.0015 0.0144
220565_at chemokine (C-C motif) receptor 10 0.0000 0.0000 0.0008 0.0131
237671_at RAD51-like 1 (S. cerevisiae) 0.0000 0.0000 0.0093 0.0231

201220_x_at C-terminal binding protein 2 0.0000 0.0000 0.0039 0.0180
217771_at golgi phosphoprotein 2 0.0000 0.0000 0.0015 0.0144

224002_s_at FK506 binding protein 7 0.0000 0.0000 0.0008 0.0131
213170_at glutathione peroxidase 7 0.0000 0.0000 0.0008 0.0131
211980_at collagen, type IV, alpha 1 0.0000 0.0000 0.0031 0.0167
211981_at collagen, type IV, alpha 1 0.0000 0.0000 0.0031 0.0167
212282_at transmembrane protein 97 0.0000 0.0000 0.0008 0.0131

2013090_x_at chromosome 5 open reading frame 13 0.0000 0.0000 0.0015 0.0144
211917_s_at prolactin receptor///prolactin receptor 0.0000 0.0000 0.0008 0.0131
212281_s_at transmembrane protein 97 0.0000 0.0001 0.0008 0.0131
231930_at ELMO/CED-12 domain containing 1 0.0000 0.0001 0.0123 0.0248

205347_s_at thymosin-like 8 0.0000 0.0001 0.0015 0.0144
223571_at C1q and tumor necrosis factor related protein 6 0.0000 0.0001 0.0015 0.0144

204619_s_at chondroitin sulfate proteoglycan 2 (versican) 0.0000 0.0001 0.0046 0.0189
231741_at endothelial differentiation, sphingolipid G-protein-coupled receptor, 3 0.0000 0.0001 0.0054 0.0196
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Conclusion
We have considered studies where microarray data for K
treatment groups are collected from the same subjects
(blocks). We discover the genes differentially expressed
among K groups using non-parametric F-statistics for
blocked one-way ANOVA while controlling the FDR. We
employ a permutation method to generate the null distri-
bution of the F-statistics without a normal distribution
assumption for the gene expression data. The permuta-
tion-based multiple testing procedure can be easily modi-
fied for controlling the familywise error rate, see e.g.
Westfall and Young [28] and Jung et al. [29].

We propose a simple sample size calculation method to
estimate the required number of subjects (blocks) given
the total number of genes m, number of differentially
expressed genes m1 and their standardized effect sizes

( , 1 ≤ i ≤ m1, 1 ≤ k ≤ K) and the number of true rejec-

tions r1 at a specified FDR level q*. Through simulations

and analysis of a real data set, we found that the permuta-
tion-based analysis method controls the FDR accurately
and the sample size formula performs accurately. While
we specify the individual effect sizes for the prognostic
genes, some investigators [30,31] use a mixture model for
the marginal p-values by specifying a distribution for the
effect sizes among m genes.

Glueck et al. [32] propose an exact calculation of average
power for the Benjamini-Hochberg [2] procedure for con-
trolling the FDR. Their formula may is useful for deriving
sample sizes when the test statistics are independent and
the number of hypotheses m is small. However, it is not
appropriate for designing a microarray study with a large
number of dependent test statistics.

A sample size calculation program in R is available from
http://www.duke.edu/~is29/BlockANOVA/.

Appendix
We want to prove that Fi converges to

 in distribution regardless of

the normal distribution assumption on ijk and γij. We only

assume that . The following is one of key lem-

mas used to derive the distribution of the F-statistics in the
standard ANOVA theory, see e.g. Section 3b.4 of Rao [33].

Lemma: Suppose that, for k = 1,..., K, zk are independent N

(μk, 1) random variables and A is an idempotent K × K

matrix with rank ν. Let z = (z1,..., zK)T and μ = (μ1,..., μK)T.

Then, .

We have

where  and

. By the strong law of large

numbers, we have

,  and

 almost surely (a.s.).

Hence,

Let  and

. Then, z1,..., zK are

independent and, by the central limit theorem, zk is

approximately . Let I be the K × K identity

matrix, 1 = (1,..., 1)T the K × 1 vector with components 1,
z = (z1,..., zK)T A = I - K-1 11T. Note that A is an idempotent

matrix with rank K - 1 and , where

. Then,  is

approximately distributed as  by the

lemma. Since ,

 is approximately distributed as

. By combining this result with (A.1)

using the Slutsky's theorem, we complete the proof.
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