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Abstract

Background: Cluster analysis has become a standard computational method for gene function
discovery as well as for more general explanatory data analysis. A number of different approaches
have been proposed for that purpose, out of which different mixture models provide a principled
probabilistic framework. Cluster analysis is increasingly often supplemented with multiple data
sources nowadays, and these heterogeneous information sources should be made as efficient use
of as possible.

Results: This paper presents a novel Beta-Gaussian mixture model (BGMM) for clustering genes
based on Gaussian distributed and beta distributed data. The proposed BGMM can be viewed as a
natural extension of the beta mixture model (BMM) and the Gaussian mixture model (GMM). The
proposed BGMM method differs from other mixture model based methods in its integration of two
different data types into a single and unified probabilistic modeling framework, which provides a
more efficient use of multiple data sources than methods that analyze different data sources
separately. Moreover, BGMM provides an exceedingly flexible modeling framework since many
data sources can be modeled as Gaussian or beta distributed random variables, and it can also be
extended to integrate data that have other parametric distributions as well, which adds even more
flexibility to this model-based clustering framework. We developed three types of estimation
algorithms for BGMM, the standard expectation maximization (EM) algorithm, an approximated EM
and a hybrid EM, and propose to tackle the model selection problem by well-known model
selection criteria, for which we test the Akaike information criterion (AlC), a modified AIC (AIC3),
the Bayesian information criterion (BIC), and the integrated classification likelihood-BIC (ICL-BIC).

Conclusion: Performance tests with simulated data show that combining two different data
sources into a single mixture joint model greatly improves the clustering accuracy compared with
either of its two extreme cases, GMM or BMM. Applications with real mouse gene expression data
(modeled as Gaussian distribution) and protein-DNA binding probabilities (modeled as beta
distribution) also demonstrate that BGMM can yield more biologically reasonable results compared
with either of its two extreme cases. One of our applications has found three groups of genes that
are likely to be involved in Myd88-dependent Toll-like receptor 3/4 (TLR-3/4) signaling cascades,
which might be useful to better understand the TLR-3/4 signal transduction.

Page 1 of 16

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/10/165
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19480678
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10:165

Background

In the field of gene clustering, gene expression data has
been widely used assuming that genes that have similar
expression patterns should have similar cellular functions
and are likely to be involved in the same cellular processes
[1]. However, this assumption might be too simplistic
considering the complexity of real biological systems. It
has become more and more acknowledged that different
data sources offer information from different perspectives,
and their combinations might make the prediction more
accurate. There are many types of biological data available
besides gene expression data, such as protein-DNA bind-
ing data, protein-protein interaction data, evolutionary
conservation data, gene ontology information, et cetera.
However, different data types have different characteris-
tics, and thus how to integrate multiple heterogeneous
data types into a single framework and make the results
more accurate has become one of the most challenging
problems. In this study, we developed a clustering algo-
rithm that can cluster genes based on beta distributed and
Gaussian distributed data, which are represented by pro-
tein-DNA binding probabilities (predictions from a soft-
ware [2]) and gene expression data, respectively, in a real
case study. Other possible data sources that can be natu-
rally modeled with beta distributions include e.g. correla-
tions [3] and pair-wise and multiple sequence similarities
[4], and other possible Gaussian distributed data sources
include various other microarray-based measurements.

Many unsupervised methods have been developed and
widely used in gene clustering. They can be roughly classi-
fied into three categories, which are heuristic, iterative
relocation and model-based methods [5]. The first two
approaches suffer from solving some basic practical issues
such as 'how to define the number of clusters' and 'how to
handle outliers', which can be easily handled by model-
based methods. For the first issue, the problem can be
recasted as the model selection problem; and for the sec-
ond question, the outliers can be handled by adding one
or more components which represent a different distribu-
tion for them [3,5]. Moreover, model-based clustering
methods outweigh approaches within the other two cate-
gories in their statistical nature [5]. So in this study, we
choose model-based clustering as the framework for the
unsupervised data fusion.

Expectation maximization (EM) algorithm is often used
to solve the problem of maximum likelihood estimation
with incomplete data, and thus is commonly adopted in
model-based clustering. Although EM algorithm for Gaus-
sian distribution is well-known, less information is avail-
able about that for other distributions, not mentioning
combinations of different distributions. In this study, beta
distributed data and Gaussian distributed data are inte-
grated into one combined mixture model. We have devel-
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oped three types of EM algorithms, the standard EM
(EM,), an approximated EM (EM,) and a hybrid EM (EM,)
algorithm for BGMM, whose comparisons were done
using simulated data. EM;, was used for BGMM in the sim-
ulations and real case studies. Performance tests with
BGMM and its component models (BMM, GMM) were
done both with simulated and real data, and the results
show that our joint mixture model can yield more accu-
rate results. These results also demonstrate the idea that
the more data that are integrated the more comprehensive
the result will be.

Two commonly used model selection criteria are likeli-
hood-based methods and approximation-based methods,
of which approximation-based methods are widely pre-
ferred due to their simplicity and less computational cost
[6]. These methods include penalized likelihood, closed-
form approximations to the Bayesian solution, and Monte
Carlo sampling of the Bayesian solution, among which
the first two methods are most prevalent. Four well-
known model selection criteria, Bayesian information cri-
terion (BIC), integrated classification likelihood-BIC
(ICL-BIC, we call it ICL for simplicity in this paper),
Akaike information criterion (AIC), and modified AIC
(AIC3) were tested for BGMM and its two extreme models
in this study. ICL is reported to work well for BMM [3],
and AIC as well as BIC are commonly used as the criterion
in GMM [3,7]. Our simulation results in this study sug-
gests that AIC or ICL is preferred in BGMM depending on
which EM algorithm is employed.

The following sections are organized as 'Methods',
'Results and Discussion’, and 'Conclusions'. In section
'Methods', we introduced BGMM together with all its
three types of EM algorithms, and described the formula-
tion of the four tested model selection criteria. In section
'Results and Discussion', we first compared the three types
of EM algorithms in BGMM (where EM,, is chosen to be
used in the simulations and real case studies), and then
compared the performance of BGMM with BMM and
GMM. In section 'Conclusions', we first summarized the
main work of this study, discussed the possible extension
and limitations of the current work, and in the end briefly
mentioned the related future work.

Methods

In this section, BGMM and all its three types of EM algo-
rithms are first introduced, and then the approximation
based model selection criteria which are compared in this
study are described in detail.

Mixture model based clustering

In model-based clustering methods, each observation x;,
where j = 1,..., n and n is the number of genes, is drawn
from a finite mixture distribution with the prior probabil-
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ity m, component-specific distribution fi(g) and its

parameters 6. The formula is given as [8]

g
f(x; |9)=Z”ifi(g)(xj 10,), (1)

i=1
where 6= {(z, 6}:i=1,.., g} is used to denote all the
unknown parameters, with the restriction that 0 <7;< 1 for

any i and 21_3:1 7; = 1. Note that g is the number of com-
ponents in this model. In the following texts, we ignore

the superscript (g) from fi(g) for simplicity.

BGMM
In BGMM, we define 0 = [z, 6,, 6|7, = = [m,..., 7|7,
0, =lctyys s gy s Bryses By, 1" and

0y =M1/ Hgp, o1, ...,ng 171, where p, and p, each rep-

resents the dimension of the observations in BMM and
GMM, respectively. We also denotes Y and Z as the obser-
vations of beta distributed and Gaussian distributed data,
respectively, function f of y and f of z as the density func-
tion of beta and Gaussian distribution, respectively, and x
= [y%, zT]T. Y and Z can be used to denote different data
sources in different contexts, which for example denote TF
binding probabilities and gene expression data in our bio-
informatics application.

BGMM is built from BMM and GMM with the assumption
that, for each component i, the beta distributed and Gaus-
sian distributed data are independent. In the BMM part,
each component is assumed to be the product of p1 inde-
pendent beta distributions, whose probability density
function is defined as

b agy =l Biy—1
_Hy (I—yy)
fily 101) = 2 U B(aiu/giu) , (2)

where 0y; =[ajy,....aj,  Bit, . Bip, ] and y = [yl,...,ypl]T.
Likewise, each component is assumed to follow a Gaus-
sian distribution in the GMM part, whose probability den-

sity function of each component for each gene is defined
as
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iz 02) = exp(1 = (z =) V(2 ),

(27) 2 |V|2

3)
where 921’:[:uill'-".uipz'o-lz'"'70132]r i =i i, 1

V= diag(cf,czz,...,cgz) and |V |= HZ;GVZ . We assume

the commonly used Gaussian model where the covariance
matrix is a diagonal matrix. This approximation is useful
especially for high-dimensional data since it significantly
reduces the number of parameters that need to be esti-
mated from data. It is worth noting that the above mixture
model construction implicitly assumes that the two data
sources share the same clustering structure, which is a rea-
sonable assumption for the general problem of clustering
gene expression and TF binding data (see, e.g., [9]). How-
ever, this assumption does not necessarily hold in all
other clustering problems, in which case our method is
not applicable (see the Section 'Conclusions' for further
discussion).

EM algorithm is applied to estimate the parameters & iter-
atively. We have developed three types of EM algorithms
for BGMM, the standard EM (EM,), an approximated EM
(EM,) and a hybrid EM (EM,), which are described in
detail in the following sections.

EM algorithms

The standard EM algorithm

In the standard EM algorithm, the data log-likelihood
(natural logarithm is referred to throughout this paper)
can be written as

n 8
logL(0) = ) log(| Y mifi(x;16) ), (4)

j=1 i=1

given X = {x: j = 1,.., n}, whose direct maximization,
however, is difficult.

In order to make the maximization of Equation 4 tracta-
ble, the problem is casted in the framework of incomplete
data. Since we assume that the beta distributed and Gaus-
sian distributed data are independent, L, can be factored
as

L(0)=f(Y |c.0)f(Z]c 0)f(c|0), (5)

If we define ¢; € {1,..., g} as the clustering membership of

x;, then the complete data log-likelihood can be written as
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n &
logL(0)= D" ) x(c; =i)log(r fi(x;16,)), (6)

j=1 i=1

where x(c; = i) is the indicator function of whether x; is
from the ith component or not.

In the EM algorithm, E step computes the expectation of
the complete data log-likelihood

Qo |0™)

E xm(logL;)
= D Ey, gwllog(f(y;1¢;01))]
j=1
n
P E , pllog(f(z;]c;0,))]
j=1
+Z E.y o omllog(fle; | 7)),
j=

(7)

where ™) represents the parameters estimated in the mth
iteration (derivation of Q is referenced from [8]). By com-
puting the expectation, Equation 7 becomes

n 8
QO10™) =" Yt log(mifily; 10:)fi(z;0:)

j=1 i=1

(8)
where
Tg:") = plej=ilx; ,6(m)
2" e fic08)
s8_ a0 ity 100 ez 105M)
9)

according to Bayes' rule. Note that r(m) is the estimated

posterior probability of x; coming from component i at
iteration m, and we can assign each x; to its component
based on {i, |7;; =max;7;}. Equations 7 and 8 show

that our assumption of the beta distributed and Gaussian
distributed data being independent carries over to the
expected log-likelihood as well.

In the EM algorithm of BGMM, ¢;,'s and S,'s, which are
the parameters of the BMM part, are estimated using New-
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ton-Raphson method. Let 4;; = (
ters are updated by

a;, f;), then the parame-

61(im+1) — Ql(im) _ H_l(el(im))VG],-‘C(@l(im)) (10)

with the constraint 6,;> 1, where H™ (9(’")) is the Hes-

sian matrix evaluated at 91(1'" ) and £(G(m)) is the Lagrang-

ian function of Q(O) (derivations shown in

Appendix). The parameters of the GMM part, x;,'s and
ol’s, in BGMM can be estimated by the standard EM

algorithm of GMM with diagonal covariance matrix,
which works by iterating over (derivations are referenced
from [8])

n
A 1
HO =Y ez Y e,

(11)
j=1 j=1

n g
G =D Py -l i (12)

j=1 i=1

and 7's are updated by
n

ﬁi(m+l)=271(‘l'm)/n’ (13)

j=1

where r( ) is calculated from Equation 9 (derivation

shown in Appendix). Note that {u=1,...
P2}

,p1yand {v=1,..,

From the above equations, it is easy to see that the stand-
ard EM for BGMM will reduce to the standard EM for
BMM when p, goes to 0 and shrink to the standard EM for
GMM when p, = 0.

Approximated and hybrid EM algorithms

We also developed an approximated EM algorithm for
BGMM, whose main difference compared with the stand-
ard one is that it maximizes Equation 6 instead of Equa-
tion 7.

In E step, 7;'s are first calculated with the current parame-
ters, accordlng to which x;'s are clustered to their corre-
i ;- Then
in M step, the new parameters are estimated so as to max-
imize Equation 6 (in maximum likelihood sense) given
the hard clusters obtained in E step. Given that the beta

sponding clusters using ¢; = i, where i, = arg max;
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and Gaussian distributed data are assumed to be inde-
pendent, ML parameter estimates for beta and Gaussian
parts can be computed separately, which corresponds to
the basic ML estimation using standard techniques. In the

approximated EM, the new &,,"s and B, s are estimated
with a numerical optimization method, 'betafit', which is
implemented in matlab, and the new f;,’s and &,’s are

calculated by

/’A‘i(mH) — Z zg:’l) /”Em)’

jEI,(’n)

(14)

~2,(m+1) _
o, =

D Eg‘,(zjv - 1) /n,

jerm i=1

(15)

respectively, where I l(m) is composed of all the genes in

cluster i estimated from E step, f; refers to the f's of

cluster i, and n{™ =1 |. Update of z's and calculation

of z;/'s remain the same with the standard EM algorithm.

In the end, we developed one type of hybrid EM algo-
rithm, whose ¢,,'s and f,,'s are maximized by the approx-

imated EM, u,'s, o?

;'s and z's are updated by the
standard EM.

The approximate EM for clustering is analogous to the
Viterbi training for hidden Markov models (HMM).
Viterbi training has been proposed as an alternative to the
standard EM in the cases where the standard EM becomes
computationally too expensive. Although there are no
convergence guarantees in general, the Viterbi training has
been found useful due to its efficiency and, in particular,
when one seeks to decode the state (path) via Viterbi algo-
rithm. The same considerations apply for the clustering
problem as well, where the approximate EM optimizes the
hard clustering and parameters iteratively. Moreover,
because parameter estimates remain fixed for a given hard
clustering, the optimization is a discrete process and,
therefore, convergence is achieved exactly. The hybrid
method shares (approximately) the benefits from both
the standard EM and the approximate EM.

In order to avoid the possible local maxima, we run the
algorithm (all the three types of EM algorithms) multiple
times with different initial values. The parameters «;,'s

and fS,'s for each dimension of the beta distribution u (u

e {1,.., p,}) are initialized by method-of-moments so
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that their means are randomly distributed within the
range of y;,,..., ¥, and variances are equal for all clusters

(), 4;,'s and ¢2’s are obtained from the randomly ini-

tialized fuzzy c-means clustering results, and z's are ini-

tialized with the uniform probability 1/g.

In this study, for each data set, we run each EM algorithm
100 times with different initial values, and for all the
tested models, we set the convergence threshold (where
the absolute difference of Q is used to monitor the conver-
gence) and maximum number of iterations to 0.0001 and
100 respectively. All the simulations have reached their
convergence according to the statistics stored during the
simulations.

Model selection

Four well-known approximation-based model selection
criteria, BIC [10,11], ICL [3], AIC [7,12], and AIC3 [7,13]
are compared in BGMM and its extreme models, accord-
ing to which the best-performing criterion for each model
is chosen. Calculations for the above criteria are defined as

AIC = -2log L(0) + 2d, (16)
AIC3 = -2log L(0) + 3d, (17)
BIC = -2log L(8) + d log(nM), (18)

ICL = -2logL(0)+ dlog(nM)
(19)

—2i zg:rﬁ log(rﬁ),

j=1 i=1
where d is the number of free parameters, and M (in equa-
tions 18 and 19) is the total amount of the data
(M= Zyzl M,, , M, is the size of data set w and W is the

number of input data sets). Note that

—22?:1 zi:lr jilog(r;;) is the estimated entropy of the

fuzzy classification matrix C; = (z7;) [3].

The number of free parameters d are distinct in different
models. In BMM, we have p,g free ;,'s, p,g free S,,'s, and
g-1freez's (Zilﬂi =1),s0dz=2p,g+8-1.In GMM,

as we have p, free o,'s, p,g free 1,'s, and also g - 1 free 7's,
thus d; = p, + p,8 + g - 1. In the joint model, the number
of free parameters is the summation of those in its
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extreme models minus one set of free 7's, therefore we

have dp.=2p,g +p,+ P8 + 8- 1.

Results and discussion

In this section, we first compared the performance of
BGMM with different EM algorithms by artificial data,
according to which one EM was chosen for later simula-
tions. Then we tested the integration idea (the more data
sources that are integrated the more reasonable the results
turn out to be) by comparing BGMM with its two extreme
cases.

Performance test of BGMM with artificial data

To evaluate the overall performance of a clustering
method, we developed one scoring system to evaluate the
clustering accuracy when dealing with artificial data. It
searches the best matching between the cluster labels of
the results (selected by the model selection criterion) and
the ground truth clustering among all of their possible
associating ways. The score for the best match is denoted
as 'E score', and is defined as

1 if ¢c;=i and 1, =T,
e () S o= =T
0 otherwise
n
E = maxZej(r)/n (20)
reR
j=1
R = {r=(n,...T):Vizjr#r;

r;€{1,...,max{g, g} } }.

In this scoring system, T; denotes the ground truth cluster-

ing membership of data j; R stands for all possible associ-
ating ways between the estimated and the true clusters,
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where r;is the label of data belonging to component i pre-
dicted by the clustering algorithm, and r is chosen from
labels 1, 2,...,max{ g, g} (g and g are the largest labels in

the estimated and ground truth clustering respectively).
Also note that e represents the individual score of each
gene, E is the average score of all the genes for each repe-
tition, 'E score' of each repetition is the one corresponding
to the optimal Q, and the final 'E score' of each data set is
the median of the 10 'E score's. It is worth noticing that
the estimated and assumed number of clusters, § and g,

vary with the model selection criteria, and thus cause dif-
ferent 'E scores', rendering this scoring system not only
records the accuracy of the results but also reflects the
influence of model selection criterion.

Performance test of different EM algorithms in BGMM

We first compared the performance of EM,, EM, and EM,,
in BGMM. For simplicity, we denote BGMM that employs
EM,, EM, or EM,; as BGMM,, BGMM, or BGMM,, corre-
spondingly. The artificial data set for the performance test
was designed according to our model, whose parameters
are listed in Table 1. The data set was divided into high
quality (good) and low quality (bad) data, namely 'gB'
(good, Beta distribution), 'bB' (bad, Beta distribution),
'gG' (good, Gaussian distribution) and 'bG' (bad, Gaus-
sian distribution) respectively. We also designed two
kinds of 'bG's, 'bG,,' and 'bG,’, which were hard to be clus-
tered compared to 'gG' with respect to close means and
large variances, respectively. The data set was designed to
have three underlying clusters, 100 genes (n = 100) and
four features (p, = p, = 4). The simulation was repeated 10
times with randomly generated data sets, and the compar-

Table I: Dataset designed for comparing different EM algorithms in BGMM

cluster | cluster 2 cluster 3
gB alpha I5 20 25 20 20 25 I5 5 | 20 | 30
beta 20 15 20 25 20 25 15 5 20 | 30 |

bB alpha 15 10 25 20 10 5 15 12 30 25 30 35

beta 10 15 20 25 5 10 12 15 25 30 35 30

gG mean 9 -9 I -1 10 -10 12 -12 Il -1 13 -13
variance 0.1 0.2 0.15 0.25 0.1 0.2 0.15 0.25 0.1 0.2 0.15 0.25
bG,, mean 9.1 9.1 1.1 =111 9.2 9.2 11.2 -11.2 9.3 -9.3 1.3 -11.3
variance 0.1 0.2 0.15 0.25 0.1 0.2 0.15 0.25 0.1 0.2 0.15 0.25

bG, mean 9 -9 Il -1 10 -10 12 -12 Il -1 13 -13

variance | 2 1.5 2.5 | 2 1.5 2.5 | 2 1.5 2.5

'gB', 'bB' and 'gG' stand for good, bad beta distributed data and good Gaussian distributed data re-spectively; 'bG,,' and 'bG,' represent bad Gaussian
distributed data which are hard to be clustered with respect to close means and large variances respectively.
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ison results of the clustering accuracy were depicted in Fig-
ure 1.

In order to choose the best model selection criterion (with
the highest E score) for each type of BGMM, we summed
up the number of hits of the correct number of clusters for
each tested case. The summation results for BIC, ICL, AIC
and AIC3 are 24, 26, 17 and 19, respectively, in BGMM,
23,22, 29 and 23, respectively, in BGMM,, and 16, 16, 30
and 21, respectively, in BGMM,,. Therefore, ICL is upheld
by BGMM,;,, and AIC is embraced by both BGMM, and
BGMM,;, in this simulation.

We evaluated the clustering accuracy of different types of
BGMM with each best model selection criterion. Simula-
tion results show that, although different algorithms per-
form slightly different for different cases (small
performance differences can also depend on how well dif-
ferent algorithm converge to global maximum), the over-
all prediction accuracy of the three methods are similar as
shown in Figure 1. We also compared the running time of
the three methods under the same background frame-
work, where no significant difference among them was
detected.

One important application of the proposed algorithm is
to cluster genes based on protein-DNA binding probabil-
ities and gene expression data, which are assumed to be of
beta and Gaussian distributions in BGMM. This paramet-
ric assumption is supported by our good clustering results
and additional distributional assessments. In some cases,
however, our parametric assumptions might be violated
due to various reasons, especially for expression data. For
example, different platforms used to measure transcrip-
tome might affect the distribution of expression data.
Although this problem can be solved by extending the
current algorithm to other parametric distributions quite
easily, it is important to know how sensitive BGMM is to
the violation of the parametric assumptions and how
robust the algorithm is in dealing with noisy variables. To
address this, we run three additional simulations with the
three EM algorithms, where gene expression and protein-
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DNA binding data are simulated from Laplace and
Kumaraswamy distributions, respectively. Laplace and
Kumaraswamy distributions are used to replace Gaussian
and beta distributions separately in simulation 1 and 2,
and both distributions are replaced in simulation 3. Note
that Laplace and Kumaraswamy distributions have the
same support as Gaussian and beta distributions, respec-
tively. Means and variances used in Laplace distribution
are the same with those of Gaussian distribution ('gG' in
Table 2), and ' 's and £'s used in Kumaraswamy distribu-
tion are also the ones used in beta distribution ('gB' in
Table 1). As shown in Figure 2, all three EM algorithms
work similarly, and are not excessively sensitive to the par-
ametric assumptions used in this study.

Based on the above test, the three EM algorithms perform
equally well. Therefore, we simply used BGMM,, for the
performance tests and referred to it as 'BGMM ' for simplic-
ity in the following text.

Performance test of BGMM with its component models
Simulations shown in this section were dedicated to test
how well BGMM could integrate different data sources.
We compared the performance of BGMM (hybrid version,
which is composed of approximated EM for the beta com-
ponent and the standard EM for the Gaussian compo-
nent) with its two extreme models, BMM with EM,
(referred to as BMM) and GMM with EM, (referred to as
GMM), for this purpose. A slightly different data set was
used, where the Gaussian distributed data was designed to
be less distinguishable than what has been shown in the
previous section. The parameters of the redesigned data
are shown in Table 2, where all the rest information
including the dimensions of the data (n = 100 and p = 4)
and the repetitions (10 times) remain the same.

We used the same method as what we did in the previous
section to select the best criterion for BGMM, BMM and
GMM. Ordered by BIC, ICL, AIC and AIC3, the summa-
tions of the hits are 0, 0, 23, 14, respectively, in BGMM, 3,
0, 30, 13, respectively, in BMM, and 0, 0, 10, 4, respec-
tively, in GMM, according to which AIC was chosen as the

Table 2: Redesigned part of the data set used for comparing BGMM with BMM and GMM

cluster | cluster 2 cluster 3

gG mean 9 -9.5 I -1 9.5 -10 1.5 -11.5 10 -10.5 12 -12

variance 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
bG,, mean 9.1 9.1 1.1 -1 9.2 9.2 1.2 -11.2 9.3 9.3 1.3 -11.3

variance 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
bG, mean 9 9.5 I -1 9.5 -10 .5 -11.5 10 -10.5 12 -12

variance 1.5 2 2.5 3 1.5 2 25 3 1.5 2 25 3

Parameters of the beta distributed data and the symbols are the same with what has been shown in Table I.
Page 8 of 16

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:165

Kumarswamy

l I beta I kumarswamy

o
Q
o
w
w
hybrid standard approximate
(@)
Laplace
1 : : :
l Il Gaussian Il Laplace ‘
<
Q
(6]
7]
w
hybrid standard approximate
(b)
Kumarswamy+Laplace
1 :
o
o]
[$]
(2]
w
hybrid standard approximate
(©
Figure 2

Robustness test of BGMM_, BGMM, and BGMM.. (a)
Beta distribution replaced with Kumaraswamy distribution.
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(c) both (a) and (b). x-axis corresponds to the different EM
algorithms.
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best criterion for all the three tested models in this simu-
lation.

The comparison results of BGMM with its extreme models
are shown in Figure 3. For expression data whose vari-
ances are not too large, the joint model can improve the
clustering accuracy regardless of the quality of the data
compared with either of its extreme models (E scores for
cases 'gB+gG', 'bB+gG', 'gB+bG,,' and 'bB+bG,,' in BGMM
are higher than those in BMM or GMM). However, when
Gaussian distributed data has too much overlap among
the clusters, BGMM does not necessarily show its superi-
ority (compared to both BMM and GMM) when the vari-
ances are too large as shown in the case of bG,. It is
indicated that BGMM is sensitive to the variances of Gaus-
sian distributed data since bG, is designed to have similar
noise level as that of bG,,. These results demonstrate that
the EM algorithm of BGMM has the power of reinforcing
each extreme model with information from the other one,
but does not necessarily outweigh both of them if the
Gaussian distributed data contains too much noise with
respect to large variances ('gB+bG,’, 'bB+bG,).

Performance test of BGMM with real data

We applied our methods to mouse protein-DNA binding
data and gene expression data. The binding data is mod-
eled as beta distribution, which are the binding probabil-
ities output from a method called 'ProbTF' [2]. ProbTF
uses genome sequences and transcription factor sequence
specificities to compute the protein-DNA binding proba-
bilities. This method answers the question of whether the
whole gene promoter has one or more binding sites for a
TF. Since it processes each promoter as a whole, the com-
putational predictions provide insights into the func-
tional role of a TF in the regulatory program of a target
gene. The rationale for this is the fact that the higher bind-
ing probability anywhere on the promoter (not just in a
particular location) implies higher probability of a regula-
tory relationship. Further, the method is able to make use
of practically any genome-level information, such as evo-
lutionary conservation, nucleosome positioning, ChIP-
chip, and other prior knowledge (for more details, see
[2]). The protein-DNA binding data contains the proba-
bilities of 266 TFs binding to 20397 genes, calculated with
mouse-specific position weight matrices from the TRANS-
FAC database (the web server is available at http://
xerad.systemsbiology.net/ProbTF/[2]). The gene expres-
sion data is modeled as Gaussian distribution, which is
composed of 1960 genes measured from 95 conditions
[14]. There are 1775 genes measured in both data sets. We
removed the genes whose gene expression profiles have
low absolute values (less than 10th percentile) with mat-
lab function 'genelowvalfilter', and then choose genes that
have annotations available for sure with the functional
classification tool of DAVID database (the web server is

Page 9 of 16

(page number not for citation purposes)


http://xerad.systemsbiology.net/ProbTF/
http://xerad.systemsbiology.net/ProbTF/

BMC Bioinformatics 2009, 10:165 http://www.biomedcentral.com/1471-2105/10/165

0.9 . .

B sV [ |GMM Il BGMM

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

2 3 4 5 6

0

Figure 3
Performance comparison of BGMM with BMM and GMM. x-axis corresponds to the different combinations of the
tested scenarios: |:gB+gG, 2:bB+gG, 3:gB+bG,,, 4:bB+bG,, 5:gB+bG,, 6:bB+bG,.

Page 10 of 16

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:165

- x 10
histogram
mixture
6f component 1 |
component 2
5f ]
€
=)
g4 1
1S
o
[e2]
23 b
2
T
21 ]
1F ]
0 \ f _J

0 0.2 0.4 0.6 0.8 1

TF binding probability
(a)
histogram
normal fit

2000

& 15001
3
Q
o
£
o
D

£ 1000
@2
T

500

0 L L L L L
4 6 8 10 12 14
Expression value
(b)
Figure 4

Assessment of parametric assumptions. (a) Genome-

wide protein-DNA binding data fitted with two-component
beta mixture model which has been estimated with the pro-
posed EM algorithm. (b) Genome-wide gene expression data
fitted with a Gaussian distribution. In both cases the standard
histogram is shown as a reference distribution.

available at http://david.abcc.ncifcrf.gov/home.jsp[15]).
In the end, we obtained 673 genes for the following stud-
ies.

To see how well our data satisfy the parametric assump-
tions, we did the following test. For protein-DNA binding
data, we grouped all the binding probabilities (20397 x
266) into two beta-distributed clusters (using the pro-

http://www.biomedcentral.com/1471-2105/10/165

posed method) and drew their PDFs, each representing
the binding and unbinding cases, respectively. Figure 4(a)
shows that the genome-wide binding data can remarkably
well be approximated with two beta-distributed compo-
nents. Similarly as shown in Figure 4(b), expression data
can be fitted into a Gaussian distribution. This agrees with
previous studies where gene expression data from a micro-
array platform is commonly assumed to be normally dis-
tributed. Although the above preliminary test does not
correspond to our clustering method exactly, it demon-
strates that our parametric assumptions are indeed rea-
sonably good. The BGMM clustering method effectively
increases the number of clusters to which the data is split
and further improves the fit to the data.

The binding data corresponding to two sets of TFs were
chosen to cluster the genes together with its correspond-
ing expression data by BGMM, BMM and GMM. The clus-
tering results were then compared and evaluated by Gene
Ontology (GO). The first set of TFs was randomly chosen
with respect to their biological significance (called
'Set.,.; ), while the second set was carefully selected by our
model (named 'Set,,,;'). There are three subsets of 'Set,,,;',
each of which was chosen based on certain criterion. We
arbitrarily choose three thresholds to be compared with
the median of the binding probabilities of a certain TF,
and TFs that exceed this threshold are used for clustering
(using thresholds is just a way to define different levels of
binding specificity to the choice of TFs). The thresholds
for 'Set,,, 41" to 'Set,, ;5" are 0.3, 0.4 and 0.5, respectively,
and the number of TFs selected are 11, 3 and 1, corre-
spondingly. 'Set,,,;' was selected by BMM. We first clus-
tered the genes based on two sets of TFs by BMM, which
were Bach1 and Bach2 combined with MafK, respectively.
This is because that the two Bach proteins are both
reported to interact with MafK protein. Then we com-
pared the genes whose cluster has the lowest enrichment
score from each clustering result, and the common set
which contains 44 genes was chosen. We further clustered
all the 266 TFs based on the 44 genes by BMM, and
focused on the cluster that contains Bachl, Bach2 and
MafK. This cluster turns out to be composed of all the TFs
that belong to the families Fos, Jun, Maf and NF-E2
among our tested TFs, which are all AP-1(-like) compo-
nents of the Leucine zipper factors class. There are 19 TFs
(AP1, Fos, Fosb, Fosl1, Fosl2, Jun, Junb, Jund1, Maf, Mafb,
Maff, Mafg, Mafk, Bach1, Bach2, Nfe2, Nfe2l1, Nfe212 and
Nfe2l3) in this cluster, all of which were chosen to form
‘Setreall'

Maf family proteins (contains Maf, Mafb, Maff, Mafg,
Mafk) heterodizes with CNC-related bZip factors which
include NF-E2 family proteins (includes Bach1, Bach2,
Nfe2, Nfe2l1, Nfe212 and Nfe213) [16,17]; while Fos fam-
ily (contains Fos, Fosb, Fosl1, Fosl2) form hetero (Fos-
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Jun; the heterodimer is also called AP1) or homo (Jun-
Jun) dimers with Jun family (includes Jun, Junb, Jund1)
proteins [18]. These dimers bind to DNA at certain motif
that contains AP-1 binding sites [16-18]. The result that
our BMM can cluster TFs which have similar binding pro-
files into one single cluster demonstrates the applicability
of BMM, one extreme case of BGMM.

GO was employed in this study to validate the clustering
results. In order to find the most significant annotated
terms by looking at the probabilities that the terms are
counted by chance, we used the hypergeometric probabil-
ity distribution to calculate the p-values of gene enrich-
ment score (called 'p-values' for simplicity) for each
cluster by each model with each model selection criterion
(Bioinformatics Toolbox 3.1 in Matlab). We compared
the means and medians of those p-values across all the
groups clustered by each model, whose results are shown
in Table 3. It is worth mentioning that the clustering result
is obtained by running the algorithm 100 times and tak-
ing the one whose expected complete data log-likelihood
is the maximum, and each p-value shown in Table 3 is the
mean or median of the p-values of all the ontology groups
(from Gene Ontology) corresponding to the best cluster-
ing result (selected by its corresponding model selection
criterion). From this table, it is clear that, no matter
whether the TFs were randomly selected or not, both
means and medians of the p-values of BGMM are lower

http://www.biomedcentral.com/1471-2105/10/165

than those of either BMM or GMM, regardless of which
aspect (‘All', 'F','C','P') was considered and which model
selection criterion was used. These results indicate that
our BGMM can cluster the genes in a more reasonable way
with respect to their biological functions, localizations
and processes involved. It is also seen from Table 3 that,
there are two cases where the four model selection criteria
have different prediction results, one is in BMM of the case
Set, ..o Where the results chosen by AIC yields the smallest
p-values, and the other is in GMM of the case Set,,,; where
AIC selects the best model in terms of the smallest p-
value, both of which accord well with our simulation
results. Moreover, the choice of TFs whose binding prob-
abilities are used in clustering does obviously affect the
results and, therefore, TFs should be carefully chosen
based on biological knowledge of a specific problem. In
this study, although binding data of randomly (i.e., with-
out prior biological knowledge) chosen TFs (Set,,,;) also
give lower p-values, the obtained clusters might not pro-
vide best insight into our biological problem. We there-
fore carefully studied the results obtained from Set
which are discussed below.

Teal’

There are eight clusters obtained from Set,,,; by BGMM,
among which three groups have p-values below 0.05 if all
the aspects were taken into account (without multiple
testing correction). The three clusters were named 'clul’ to
'clu3' and ordered from the highest average expression

Table 3: Comparison results of BGMM, BMM and GMM in applications to real data

All F C P
Dataset Model Criterion Mean Median Mean Median Mean Median Mean Median
BMM 4 0.2094 0.2246 0.3410 0.3453 0.3512 0.3552 0.3417 0.3404
Set, gl GMM 4 0.1958 0.1658 0.26719 0.3091 0.2925 0.3408 0.2747 0.3398
BGMM 4 0.1568 0.1047 0.2347 0.1826 0.2663 0.2536 0.2451 0.2287
BIC/AIC3 0.2071 0.1863 0.3261 0.3490 0.3408 0.3505 0.3331 0.3585
BMM ICL 0.2013 0.2013 0.3080 0.3080 0.3631 0.3631 0.3594 0.3594
Set g AIC 0.1634 0.1505 0.2699 0.2499 0.2890 0.2772 0.2727 0.2427
GMM 4 0.1958 0.1658 0.2672 0.3091 0.2925 0.3408 0.2747 0.3398
BGMM 4 0.1436 0.0954 0.2198 0.2199 0.2453 0.2526 0.2311 0.2409
BMM 4 0.2204 0.2204 0.3748 0.3748 0.3799 0.3799 0.3769 0.3769
Set,ong3 GMM 4 0.1958 0.1658 0.2672 0.3091 0.2925 0.3408 0.2747 0.3398
BGMM 4 0.1466 0.1155 0.2623 0.2551 0.2838 0.3036 0.2714 0.2811
BMM 4 0.2407 0.2414 0.3228 0.3055 0.3575 0.3695 0.3300 0.3442
Set,eq GMM BIC/ICL 0.1973 0.1957 0.2799 0.2999 0.3040 0.3486 0.2883 0.3214
AIC/AIC3 0.1882 0.1708 0.2747 0.2917 0.3010 0.3325 0.2813 0.3103
BGMM 4 0.0987 0.0610 0.2455 0.2170 0.2894 0.2999 0.2558 0.2658

Statistics shown in this table are the group average of the p-values of gene enrichment score (each p-value is the average of the p-values of all the

ontology groups corresponding to the best clustering result selected by its corresponding model selection criterion). TFs of 'Set,,,4,' to 'Set,;, 3
were randomly chosen according to certain thresholds (details shown in the text), while TFs of ‘Set,,, were carefully selected by BMM.

Note: 'F', 'C' and 'P' stand for the three aspects of gene ontology; 'All' means all aspects are included. '4' represents that all the four criteria indicate
the same clustering result. Statistics shown here are all rounded to 4 decimals.

Page 12 of 16

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:165

pattern 1

1 2345 &8 9 10 1 12

Figure 5

http://www.biomedcentral.com/1471-2105/10/165

median 1
A /\vl\/\n/\/\l\,\f/\/\T »/\/\r\ M
\/ VY V W

7.5

6.5

75F T

~

651

1 2345 &8

Expression patterns of gene groups 'clul’ to 'clu3’ clustered by BGMM. x-axis corresponds to different treatments,
which have been divided into different regions by 12 points; y-axis stands for the expression level; red horizontal bar symbol-
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level to the lowest. The expression patterns (named 'pat-
tern 1' to 'pattern 3') and the medians of the genes
(named 'median 1' to 'median 3') within one cluster are
shown in Figure 5. Six Toll-like receptor (TLR) agonists
which are CpG, Pam,CSK,, Pam;CSK,, LPS, poly I:C and
R848 were used as the treatments, and four gene knock-
out mutants and different time points were included to
increase the diversity of the TLR-stimulated gene expres-
sion data set and the number of measurements [14]. The
first four TLR agonists are bacterial-associated, while poly

I:C is viral-associated and R848 is anti-viral stimuli. They
were used here to stimulate TLR-stimulated macrophages,
which represent various pathogen-associated molecular
patterns. Among the genes that have been deleted, adapt-
ers Myd88 and Ticam1l (product of gene Myd88 and
Ticam1, respectively) could provide a structural platform
for the recruitment of kinases and downstream effector
molecules, were reported crucial for signaling by most
Type I IL-1 receptor(IL1R)/TLR family members [19].
However, Bjokbacka et al. reported that the majority of
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the host response to LPS is regulated independently of
Myd88, and genes appearing to be Ticam1-dependent can
be classified as both Myd88-independent and Myd88-
dependent [20].

Figure 5 has three main features. First, 'pattern 2' and 'pat-
tern 3' are similar while opposite to 'pattern 1', and 'pat-
tern 2' differs from 'pattern 3' in different average
expression level (as shown by the red horizontal bar). Sec-
ond, there is a plateau in all patterns in the region between
points 8 and 9 where either mutant Myd88- or Ticam1-is
used, or no treatment is applied or C,G is added. These
profiles tell us that genes Myd88 and Ticam1 are crucial for
the system (which involves the genes that belong to the
three clusters) to response to the external stimuli, and ago-
nist C,G does not have so much influence on it. Third,
whenever LPS or poly I:C is added to the wild type
(regions between points 1 and 2, 3 and 4, 5 and 6, 7 and
8,9 and 10, 11 and 12), there is a sharp drop in 'pattern
1' while there is a peak in 'pattern 2' and 'pattern 3'. This
feature indicates that genes from these three groups are
sensitive to LPS and poly I:C, and genes that exhibit 'pat-
tern 1' are modulated in an opposite manner as those
exhibit the other two patterns. Since poly I.C, LPS and C,G
are TLR-3, TLR-4 and TLR-9 agonists, respectively, and
Myd88 and Ticam1 are adaptors involved in TLR-3/4 sig-
naling according to [19], we can deduce that most of the
genes belonging to these groups are involved in Myd88-
dependent TLR-3/4 signaling cascades.

Conclusion

This paper presents a novel Beta-Gaussian mixture model,
BGMM, for gene clustering from beta distributed and
Gaussian distributed data. We developed three types of
EM algorithms for BGMM in this study, whose overall per-
formance are similar according to our simulations. We
simply chose EM;, as the core of BGMM for further per-
formance test, which was done by comparing BGMM with
its two component models, BMM and GMM, with both
artificial and real data. Results from artificial data indicate
that our joint model works best if the variances of the
Gaussian distributed data were not too large, and GO val-
idation of the real case studies show that the joint model
yields more comprehensive results no matter what model
selection criterion is used and whether the data is carefully
chosen or not. For the carefully selected real data, we
started from limited known TFs (3 TFs) and ended up with
all the TFs (19 TFs) within the tested scope that have the
same common features, which demonstrates the usability
of one extreme case of BGMM (BMM). After clustering the
genes with the 19 TFs, we obtained three distinguished
gene groups which might be involved in the Myd88-
dependent TLR-3/4 signaling cascades. These results not
only tested the performance of the joint model, but also

http://www.biomedcentral.com/1471-2105/10/165

demonstrated its usability in real cases and in some possi-
ble applications.

The main contribution of this paper is that it has proposed
a framework for multiple data integration through mix-
ture modeling that has not been addressed by anyone else
before. The proposed BGMM is designed to integrate beta
distributed and Gaussian distributed data. However, the
way how those data are incorporated is not limited to the
data types that we have used in this study. In principle,
data of other parametric distribution can be easily inte-
grated by combining its particular EM algorithm into this
framework (given that the optimization method for each
case is developed separately). Therefore, the framework
proposed in this paper is applicable to many other prob-
lems and not limited to the particular problem considered
here.

One of the basic assumptions in this paper is that the
ground truth clustering for Gaussian and beta distributed
data are the same. This is because transcriptional regula-
tion is largely controlled by the TFs that bind to the gene
promoters, thus the expression profiles of genes whose
regulatory regions are bound by the same/similar factors
are expected to be similar. Although the above statement
is generally true, it might be violated due to post-tran-
scriptional modifications etc., in which case the method
may not be directly applicable. However, if post-transcrip-
tional or other phenomena become a real problem, it can
be compensated by integrating more information sources,
such as protein-protein interactions, into the proposed
clustering framework. On the other hand, if the two data
sources do not share the same clustering structure, then an
alternative modeling strategy would be needed, such as a
hierarchical Bayes model that would model a true cluster-
ing structure but allow individual structures for both data

types.

Another issue that is worth mentioning is how different
data pre-processing and microarray platforms can affect
the distribution of gene expression data and, thereby,
clustering results. Fortunately, as discussed in section, the
alternative distributions we tried on BGMM had a very
small effect on the clustering results, suggesting that
BGMM is considerably robust to small fluctuations in the
distributional assumptions. More importantly, one major
advantage of BGMM is its flexibility of easily being
extended to other parametric distributions. That is, if in a
particular problem data come from different distribu-
tions, then one can relatively straightforwardly develop a
similar model-based approach as proposed here to model
the problem at hand in a precise way by fitting data to
those specific distributions.
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We employed the diagonal covariance matrix model in
the EM algorithm of GMM to reduce the number of
parameters to be estimated so that it can be easily applied
to large dimensional real data. In particular, the number
of parameters in diagonal matrix is p, which is remarkably

smaller than that of the full covariance matrix

(p2 +p,)/2. Diagonal covariance matrix automatically

assumes no correlations among Gaussian distributed
data. So if we want to preserve the correlation information
among time series data by the proposed framework with-
out introducing too many new parameters, it is possible,
e.g., to develop similar estimation algorithms for a covar-
iance model where off-diagonal constant correlations are
assumed or use a more general covariance matrix [5].

In the future, we could improve the proposed model so
that it can account for the correlations among gene expres-
sions. We could also integrate more data sources into this
framework and apply it to more real problems. In this
aspect, we could either combine other data sources into
the framework as a component model, or convert them
into prior information which can be used to stratify the
model [10].
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Appendix
Derivation of a.'s, B's, and 1t's
Define
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Derivation of o's and B's
Define the parameter vector

61 = (i, B;)
Thus the new estimate 61({"“) is obtained as follows
oY =0 — H7'(0f")V, LOf") 6,21

where H _1(91(1-'”)) is the Hessian matrix evaluated at 01({") .
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Note that ¥ and V' represents the digamma and trigamma
functions respectively, which are the first and second log-
arithmic derivatives of the gamma function.
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Derivation of 1t's
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