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Abstract
Background: Despite increasing popularity and improvements in terminal restriction fragment
length polymorphism (T-RFLP) and other microbial community fingerprinting techniques, there are
still numerous obstacles that hamper the analysis of these datasets. Many steps are required to
process raw data into a format ready for analysis and interpretation. These steps can be time-
intensive, error-prone, and can introduce unwanted variability into the analysis. Accordingly, we
developed T-REX, free, online software for the processing and analysis of T-RFLP data.

Results: Analysis of T-RFLP data generated from a multiple-factorial study was performed with T-
REX. With this software, we were able to i) label raw data with attributes related to the
experimental design of the samples, ii) determine a baseline threshold for identification of true
peaks over noise, iii) align terminal restriction fragments (T-RFs) in all samples (i.e., bin T-RFs), iv)
construct a two-way data matrix from labeled data and process the matrix in a variety of ways, v)
produce several measures of data matrix complexity, including the distribution of variance between
main and interaction effects and sample heterogeneity, and vi) analyze a data matrix with the
additive main effects and multiplicative interaction (AMMI) model.

Conclusion: T-REX provides a free, platform-independent tool to the research community that
allows for an integrated, rapid, and more robust analysis of T-RFLP data.

Background
The high-throughput nature of terminal restriction frag-
ment length polymorphism (T-RFLP) makes this tech-
nique amenable for generating comprehensive datasets in
the study of microbial communities. Despite continued
improvements, the analysis of these datasets still requires
numerous steps and data manipulations in order to inter-
pret the results. These steps often become obstacles to the

analysis, as they are time-intensive and prone to user and
analytical error. Currently, some of the greatest obstacles
of T-RFLP data analysis are: i) distinguishing true peaks
from noise, ii) aligning peaks across samples iii) creating
a two-way data matrix of T-RFs by samples from tabulated
raw data, iv) rapid manipulation of data matrices, and v)
determining which multivariate analysis is most appropri-
ate for a particular dataset. Collectively, these obstacles
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create research inefficiencies, reduce method standardiza-
tions and may limit the amount of information gained
from the analysis overall. To address these obstacles, we
have developed T-REX (T-RFLP analysis EXpedited), a
free, web-based tool to aid in the analysis of T-RFLP data.
In this paper, we introduce and outline the functions of T-
REX and how it addresses each of the above obstacles.

Distinguishing true terminal restriction fragments (i.e.,
true peaks) from background fluctuations in fluorescence
is often a major challenge in T-RFLP data analysis. The
selection of a baseline threshold can dramatically affect
the complexity of the community fingerprint and down-
stream analyses, resulting in signal loss or noise retention.
A common procedure is to apply an arbitrary baseline
threshold across all samples to delineate true peaks from
noise [1-3]. However, this approach is less than optimal,
as noise in a sample varies in proportion to the amount of
DNA subject to analysis, causing variation in the propor-
tions of signal to noise between profiles. Various
approaches have been described to address this issue [2-
5]. In particular, those that seek to objectively eliminate
noise on a sample by sample basis, such as a variable per-
centage threshold [5] or recursively selecting true peaks
based on standard deviations of peak areas [3] can be
more effective at minimizing this bias.

While the base pair size of every T-RF is determined in
relation to an internal size standard, sizing errors can
occur due to random fluctuations, purine content, and
fluorophores [6,7]. These analytical errors in determining
fragment length can result in TRF-drift between samples,
in which the same fragment is incorrectly assigned a dif-
ferent size in different samples. These errors are either
ignored and treated as analytical error, corrected through
painstaking manual alignment [1], or aligned using an
automated approach [2,8]. However, to date, there have
been no reports on the effects of these three approaches.
Since most peak alignment software isn't integrated with
downstream multivariate analyses, it is often difficult to
determine the effects of this alignment on the overall
interpretation of the data.

Multivariate statistical analyses are commonly required to
interpret T-RFLP data and to examine the impact of envi-
ronmental variables or treatments on microbial commu-
nity composition. Raw T-RFLP data exported from
Genemapper™, Peak Scanner™, or similar size-calling soft-
ware is typically in a tabulated or listed format, where one
column contains all the records for each variable (i.e., one
column for all T-RF sizes, one column for all peak heights,
etc.). However, these data often need to be formatted into
a two-way data matrix to facilitate import into a statistical
software package capable of analyzing multivariate data.
The formatting of tabulated raw data into a data matrix is

generally performed manually or with an application such
as a pivot table in MS Excel, after samples have been
labeled with information pertaining to the experimental
design (sampling period, treatment, replicate number,
etc.). These formatting approaches can be laborious and
error-prone.

A thorough analysis of large T-RFLP datasets requires var-
ious data matrix manipulations, such as examining all
three types of data (presence/absence, peak height, peak
area), relativization of peak height or peak area, averaging
replicated samples, examining specific experimental fac-
tors, deleting spurious T-RFs, etc. Most spreadsheet soft-
ware applications aren't amendable to these more
sophisticated manipulations, making an exhaustive anal-
ysis of these data difficult. In our experience, the rational
exploration of T-RFLP data, which properly accounts for
experimental design, replication, and differences in signal
to noise ratios can reveal patterns in ordinations that are
obscured in less complete approaches to data analysis
[9,10].

Finally, there is a lack of consensus in the literature today
about which statistical analyses are more appropriate to
analyze T-RFLP data. In a comparative study of multivari-
ate methods, Culman et al. [10] reported that the sample
heterogeneity and percent interaction effects of a T-RFLP
dataset can be used as criteria to select the appropriate sta-
tistical approach for data analysis. Although sample heter-
ogeneity can easily be calculated, the calculation of
interaction effects is more algorithmically involved. Cul-
man et al. [10] also demonstrated the utility of the Addi-
tive Main Effects and Multiplicative Interaction (AMMI)
model as a robust and advantageous method for T-RFLP
analysis. This model is found in only a few multivariate
software packages offered today.

Currently Available Software for T-RFLP Analysis
Currently, there are few options to choose from when ana-
lyzing T-RFLP microbial community data. Most software
that has been developed is aimed at referencing T-RFLP
profiles with a sequence database (e.g. TAP-TRFLP
[11,12], MiCA [13], PAT [14], TRAMPR [15]. There are,
however, a few available packages that do aid with explor-
atory multivariate data analysis. T-Align [8] implements
an algorithm to align peaks, hence reducing the potential
for subjective bias during peak alignment. Another pack-
age, T-RFLP Stats [3] allows users to align peaks (as does
T-Align), group samples based on various classification
procedures and then reference these profiles to a clone
library. However, a drawback is that this software is writ-
ten in three separate languages (R, Perl and SAS) requiring
three separate platforms. These platforms are all primarily
command line driven and can be cumbersome to inexpe-
rienced users. SAS also requires a purchased license for
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use. In addition, T-RFLP Stats offers no labeling procedure
to designate and format raw data, nor does it perform any
ordination analyses, argued by some to be superior to
classification procedures for the exploratory analysis of
microbial community data [16]. A few commercial soft-
ware packages have become available in recent years that
offer a range of features regarding electropherogram
manipulation, with some limited multivariate proce-
dures, most notably GelQuest (SequentiX, Germany),
Genemarker (SoftGenetics, USA), and Torast (Dresden,
Germany). However, the high costs of these programs
make them inaccessible to some research labs. In addi-
tion, features and functions vary widely between these
programs, as most were not primarily designed to facili-
tate T-RFLP analysis.

We developed T-REX to address current obstacles encoun-
tered in T-RFLP data analysis. We sought to build a pro-
gram that integrated pertinent functions to streamline T-
RFLP analysis. T-REX allows users to i) label raw data with
attributes related the experimental design of the samples,
ii) determine a baseline threshold for identification of
true peaks over noise, iii) align T-RFs in all samples (bin
T-RFs), iv) construct a two-way data matrix from labeled
data and process the matrix in a variety of ways, v) pro-
duce several measures of data matrix complexity, includ-
ing the distribution of variance between main and
interaction effects and sample heterogeneity, and vi) ana-
lyze a data matrix with the AMMI model. T-REX offers
users a consolidated, flexible and rapid analysis of T-RFLP
data.

Implementation
T-REX is a web-based application found at the address:
http://trex.biohpc.org/. The program is free and requires
only a web browser and an internet access to use. The
home page outlines the program's features and introduces
the user to a template of menu buttons (Figure 1). These
menu buttons correspond to a certain action performed
on the data. Since these actions are to a large extent inde-
pendent, any of the buttons can be used at any time, with-
out the need to reload or upload the same data again.
Although no particular sequence of actions is imposed on
the user, a typical flow of analysis is illustrated in Figure 2.
Users can work as a guest or may become a registered user,
for increased functionality.

Uploading Data and Labeling Procedure (Upload Data 
and My Projects)
The first step in using T-REX is to create a project. A new
project is created by uploading and labeling raw data. This
process happens simultaneously and requires two files: i)
the raw data file and ii) the label file. The raw data file is
the tabulated file that is exported in GeneMapper®, PeakS-
canner™, or similar size-calling software that contains the
peak information for a set of samples. The label file con-
tains a set of labels/attributes that describe each sample
and often correspond to factors in the experimental
design. Both files should be simple text files in tab-delim-
ited format (see the T-REX documentation for specific
guidelines on file formats). Once a project is created, it
can be renamed, merged, or deleted in the My Projects

Screenshot of T-REX Home pageFigure 1
Screenshot of T-REX Home page.
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page. Users can also come back to pre-existing projects
and load them in this page for further manipulation.

T-REX has several functions to appropriately handle repli-
cated, missing or multiplexed [17] T-RFLP data. Users can
define what samples are replicates when uploading data
(or manually in the Sample Summary page) and T-REX
will provide information based on these defined repli-
cates. Missing data occurs when there is a discrepancy
between samples in the raw data and label files, or when
poor quality samples are flagged due to data processing
procedures. T-REX accounts for missing data, allowing
users to omit samples of poor quality without sacrificing
information replicated data provide. In addition to repli-
cated and missing data, T-REX is amenable to multiplex-
ing T-RFLP methodologies. If a sample contains multiple
fluors, peaks of the same fluor are processed as a unit of
peaks, keeping them distinct from peaks of other fluors.
The program documentation outlines specific guidelines
for dealing with replicated, missing, or multiplexed data.

Viewing and Editing Individual Samples (Sample 
Summary)
The Sample Summary page is synonymous with the
home page of a particular project (Figure 3). All samples
are consolidated to show the total number of peaks, total
peak height and peak area, as well as the properties relat-
ing to the experimental factors assigned in the labeling

procedure. The Sample Summary page also shows users
how data processing procedures (such as noise filtering or
T-RF alignment) have removed peaks originally found in
the raw data file.

Individual samples can be viewed, edited, and even
removed from the analysis in the Sample Details page,
accessible by selecting the sample ID in the Sample Sum-
mary page. Once viewing an individual sample, the user
will see individual peak properties and will be able to
manipulate labels, remove individual peaks of that sam-
ple, or mark the entire sample as missing data within the
project. The Sample Details page also allows users see the
effects of data manipulation on the reconstructed electro-
pherograms of samples (Figure 4).

Filtering out Noise from True Peaks (Filter Noise)
T-REX uses the approach outlined by Abdo et al. [3] to
find true peaks and reduce background noise. True peaks
are identified as those whose height (or area) exceeds the
standard deviation (assuming zero mean) computed over
all peaks and multiplied by the factor specified in the box
provided. The procedure is then reiterated with the peaks
which were not identified as true ones. The iterations con-
tinue until no new true peaks are found. The noise filter-
ing can be applied to all samples or just selected samples
in the active project. Users should select an appropriate
standard deviation multiplier based on the original elec-

Typical flow of project analysis in T-REXFigure 2
Typical flow of project analysis in T-REX.
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tropherograms and results of the filtering procedure. The
program allows for rapid manipulation of the multiplier
and subsequent reviewing of results in the Samples Sum-
mary page if a user wants to determine an appropriate
multiplier empirically (Figure 4). At any time the filtering
procedure can be cleared and the data reverted to their
original state with the 'Clear filtering' button.

Automated Alignment of Peaks (Align T-RFs)
Peak alignment in T-REX is performed on the set of cur-
rently active peaks and occurs automatically whenever
this set changes as a result of data manipulation by the
user. T-REX offers users two functions to align peaks in the
Align T-RFs page. With the default option ('Round to the
nearest integer'), peaks are simply rounded to the nearest
nucleotide (integer) size. Alternatively, an automated
alignment of peaks across all samples is also possible. This
function models the approach taken by the software pro-
gram T-Align [8]. Briefly the smallest peak across all sam-
ples is identified and tagged. Peaks within the range
specified by the clustering threshold are then identified
and grouped into a T-RF. The next smallest peak across all
samples not falling into the first T-RF is identified and
tagged. Peaks within the specified clustering threshold are
identified and grouped with the second T-RF. This process
continues until all peaks are grouped into a T-RF.

Grouping Samples into Environments (Environments)
The Environments page allows users to rapidly classify
samples into environments based on the given labels. This
approach is especially useful when replication in an exper-
iment occurred at multiple scales (e.g., analytical, field)
and a user wants to compare results based these different
ways of defining replication. Users can assign and/or reas-
sign replicated samples into environments by using the
provided checkboxes to define the set of labels that deter-
mine an environment. Samples will be considered repli-
cates (i.e., belonging to the same environment) if they
have identical sets of checked label values. The Environ-
ments page can be used as an alternative to specifying rep-
licates at data upload, or to change the environment
assignments made at the upload stage.

Export Labeled Data to Use Elsewhere (Export Labeled 
Data)
The Export Labeled Data page was designed for users who
want to take advantage of T-REX's rapid labeling proce-
dure and data manipulation functions, but analyze their
data with another software program. After data are
uploaded and labeled, users can export the labeled data
directly, or can manipulate the data before exporting. The
Sample Summary page indicates the current status of a
project and will reflect the exact details of the data that
will be exported.

Screenshot of T-REX Samples Summary pageFigure 3
Screenshot of T-REX Samples Summary page.
Page 5 of 10
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:171 http://www.biomedcentral.com/1471-2105/10/171
Data Matrix Construction and AMMI analysis (Data 
Matrix/AMMI)
The Data Matrix/AMMI page allows users to first construct
a two-way data matrix and then run the AMMI model on
this data matrix. Data matrix construction involves six
steps. The first two steps require that all peaks be assigned
to a particular T-RF and that each sample be associated
with an environment. Typically, both these conditions are
automatically satisfied and require no special action. The
third step allows users to specify which type of data to use
for data matrix construction (presence/absence, peak
height or peak area), and if these data are to be averaged
across replicates and/or relativized within samples. The
fourth step allows users to select which experimental fac-
tors should be included in the data matrix. Users have the
option of selecting all, or only a subset of specific fluors
and/or factors to be included in the data matrix and sub-
sequent analysis. The fifth step allows users to omit rare T-
RFs or samples with poor peak representation.

T-RFs can be omitted based on number or percentage of
occurrences across samples. Total number of T-RFs or the
cumulative peak height or area can be used to eliminate
certain samples. This T-RF and sample filtering step repre-
sents a final quality control on the resulting data matrix.
Selecting 'Create Data Matrix' in the sixth step will take the
user to another page where a data matrix is ready for
download, and various data matrix properties are dis-

played, including total numbers of samples and T-RFs
present, the maximum, minimum, and average number
(average richness) of T-RFs across samples, and sample
heterogeneity.

At this point the user is able to export the data matrix for
analysis with another software package, or continue with
the AMMI analysis by clicking 'View AMMI Analysis'.
Choosing the latter will take the user to another page
where a scatterplot displays the AMMI ordination scores
and four output tables summarize results. The first table
reports the full ANOVA table; the second table reports the
estimations of interaction sum of squares (SS) for pattern
and noise, if the data are replicated. The third table reports
the percentages of variation from each main effects and
interaction source. The fourth table shows the percentage
of interaction signal variation that is captured by the first
interaction principal components axes (IPCA). Several
output files are also generated and available to download
from this page. The specifics of these files are outlined in
Table 1 and the details of this page are described more
fully in the T-REX documentation.

Summary of Results and Output (Results Summary)
The Results Summary page reports the results of relevant
basic data matrix properties and summarizes the results of
the AMMI analysis in one place. The 'T-RF Abundance
table' reports the number of samples (samples present)

Screenshot of Sample Details page in T-REXFigure 4
Screenshot of Sample Details page in T-REX. Screenshot of Sample Details page in T-REX, before noise filtering function 
was applied to the sample (a) and after the noise filtering function was applied (b).

(a)

(b)
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and percentage of samples (% of samples present) in
which each T-RF occurs. All generated output files are also
available for download at this page.

Example Dataset
We used T-REX to analyze 16S T-RFLP data generated
from soils under two different management histories–har-
vested tallgrass prairie and adjacent agricultural fields–
from five different sites across north central Kansas (Cul-
man et al., unpublished). Soil was sampled at 3 different
depth intervals (0 – 10 cm, 10 – 20 cm, and 20 – 40 cm)
in June 2007. T-RFLP procedures were conducted as previ-
ously described [9]. The data were subjected to several
quality control procedures–T-RF Alignment (clustering
threshold = 0.5), Noise Filtering (peak area, standard
deviation multiplier = 1) and elimination of samples with
less than 20 T-RFs. This initial processing deemed that all
30 samples were of good quality and suitable to include
in the final ordination analyses. Processed data were sub-
ject to the AMMI analysis with T-REX in two separate
ways–first, with data defined as un-replicated (3 depths ×
2 management histories × 5 different sites) and second
with each site defined as a replicate (3 depths × 2 manage-
ment histories × 5 replicates). Analyzing data as un-repli-
cated was performed to gain insight into variability
between sites; a second analysis with sites defined as rep-
licates allowed for a more focused analysis on the experi-
mental factors of primary interest–management history
and depth. With replicated data, the AMMI analysis pro-
vides a calculation of interaction pattern and noise, pro-
viding a more resolute picture of the strength of the
interaction term.

Defining replication was easily performed in the Environ-
ments page. Sample heterogeneity calculations provided
by T-REX were high relative to T-RFLP datasets previously
encountered [10]. As a result, we also used nonmetric

multidimensional scaling (NMS) to analyze the data. The
T-REX-constructed data matrices were then exported and
subjected to NMS in R [18] via the metaMDS function in
the vegan package. NMS parameters were manipulated in
a variety of ways, but the final analyses were performed
with metaMDS default parameters with the following
exceptions: autotransform = false, 100 runs. NMS ordina-
tion results were graphed in R. After observing the AMMI
ordination results in the scatterplot provided by T-REX,
graphing scores were exported and graphed in R for pub-
lication purposes.

In addition to ordination results, the AMMI analysis pro-
vides a breakdown of the contributions of variation from
the three sources in the data matrix, i) T-RFs, ii) environ-
ments, and iii) T-RFs × environments interactions. The
variation from T-RFs reflects variability in the means of
different T-RFs, while the variation from environments
reflects the number of peaks or overall signal strength in
T-RFLP profiles. The variation from T-RFs × environments
interactions reflect how T-RFs differentially respond with
the environments. For our research objectives, the interac-
tion variation was the source of primary interest, as we
were concerned with the response of microbial commu-
nity profiles (T-RFS) to different depths and management
histories (environments). Culman et al. [10] found that
variation due to interaction effects reflect how similar or
dissimilar the microbial communities are, and could be
used as a tool to objectively assess differences across mul-
tiple datasets.

Results and discussion
Analysis of all the samples in the dataset revealed that
depth was the primary driver of bacterial community
structure (Figure 5a), as this factor was captured by the
first interaction principal component (IPCA1). Differ-
ences in management history (prairie vs. agriculture) were

Table 1: Files types generated by T-REX that are available to download.

File Type File Extension Recommended Application Function

Essential Files:
AMMI summary .mm_sum word processor ANOVA calculations

(Tables one – four)
AMMI Graphing Data .mm_grph spreadsheet Environment and T-RF scores for graphing
Data Matrix .matrx spreadsheet Data matrix for additional analyses with other 

software
Transposed Data Matrix .tmatrx spreadsheet Data matrix for additional analyses with other 

software
Other Files:

MATMODEL output file .mm_out word processor Full MATMODEL output
MATMODEL input file .mm_in word processor MATMODEL input file
Environments Assigned to Samples .env spreadsheet Defines which samples are replicates
Labeled Data (list format) .label spreadsheet Labeled raw data

All Files:
Zipped folder containing all files .zip compatible .zip extractor Archive of all output files
Page 7 of 10
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secondary drivers of community structure, separating out
on IPCA2. Some differences between sites could be
observed, but no consistent trends were apparent in this
ordination (Figure 5b). Although sample heterogeneity
was high for this dataset (2.5), NMS analyses proved to be
no more discriminatory than the AMMI analysis in reveal-
ing trends (data not shown). The data were further ana-
lyzed by examining the relationship of depth with each
management history individually. Samples from prairie
soils were easily removed from the dataset by selecting
only the agriculture factor during the data matrix con-
struction in T-REX. Analysis of the agricultural samples
alone revealed similar trends with depth (Figure 6a) and
resulted in a sample heterogeneity of 1.86. Differences in
sites were also observed, as values of the IPCA 2 loosely
reflected differences in sites. The analysis of bacterial com-
munities from prairie soils revealed that differences in site
were the primary driver of community structure in these
soils (IPCA1), while differences in depth were a secondary
driver (IPCA2; Figure 6b). Sample heterogeneity in the
prairie dataset yielded was 1.55.

Analysis of the sources of variation of the un-replicated
dataset revealed that bacterial communities from agricul-
tural soil had the largest variation from interaction effects
(58.4%, Table 2). Redefining the dataset so that each site
was a replicate resulted in a decomposition of the interac-

tion effects into pattern (signal) and noise. This approach
again revealed that the agricultural soil had the greatest
variation of interaction effects (32.7%), which were com-
posed of 21.5% pattern and 11.2% noise (Table 2). In
contrast, the bacterial communities from the prairie sites
had a relatively low interaction pattern of (7.9%) and
high interaction noise of 11.6%, indicating the majority
of the interaction was idiosyncratic noise. The much larger
contribution of interaction signal in agricultural sites
compared to prairie sites, indicates that bacterial commu-
nities in these soils shared greater differences among sam-
ples than did the bacterial communities in prairie soils.

The T-RFLP dataset in this study contained three factors
(depth, management history, and site), all of which were
detectable drivers of bacterial community structure. How-
ever, the strength of site differences varied depending on
management practice. Hence, exploratory data analyses
and data matrix manipulation were required to elucidate
which factors exerted the greatest influence on bacterial
community structure within a specified treatment. T-REX
aided in an integrated and rapid manipulation of these
data matrices, enabling a thorough analysis of this data-
set.

In addition to rapid data matrix manipulation, T-REX also
produced a more robust dataset, as prior to data matrix

AMMI analysis demonstrating differences in TRFLP patterns due to depth and management history (a) or site (b)Figure 5
AMMI analysis demonstrating differences in TRFLP patterns due to depth and management history (a) or site 
(b). TRFLP profiles with each site treated as an individual sample without replication. The two panels show the same data, but 
labeled with different symbols, illustrating differences due to (a) depth and management history and (b) site. In panel (a), closed 
circles represent agricultural soils; open circles represent prairie soils. 1 = 0 – 10 cm; 2 = 10 – 20 cm; 4 = 20 – 40 cm. In panel 
(b), different colors and symbols represent the five sites.

(a) (b)
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construction, the data were subjected to several quality
control procedures–T-RF Alignment, Noise Filtering, and
elimination of samples with less than 20 T-RFs. This ini-
tial processing ensured that all samples were of acceptable
quality. The calculations of sample heterogeneity and
interaction effects generated by T-REX were also used as
prescriptive indicators that the data were complex and
that non-parametric analyses, such as NMS, may yield
more discriminatory ordination results. However, the

overall trends revealed by NMS did not differ from the
ordination results of the AMMI analyses (not shown).

Conclusion
T-REX facilitates an integrated and streamlined analysis of
microbial community data with a suite of flexible func-
tions that allows researchers to choose the most appropri-
ate data manipulations based on research objectives. T-
REX also enables researchers to implement the AMMI

AMMI analysis of bacterial T-RFLP datasets from agricultural (a) and prairie (b) soilsFigure 6
AMMI analysis of bacterial T-RFLP datasets from agricultural (a) and prairie (b) soils. TRFLP profiles were exam-
ined within management history, thereby eliminating variance due to differences in management. Each site was treated as an 
individual sample without replication to examine the amount of variance due to site within each management history. Different 
colors and symbols represent the five sites from agricultural (a) and prairie (b) soils. 1 = 0 – 10 cm; 2 = 10 – 20 cm; 4 = 20 – 40 
cm.

(a) (b)

Table 2: T-REX output of the percent variation from each source in the three datasets.

Source Agricultural + Prairie Soil Agricultural Soil Prairie Soil

Not replicated
Main Effects
T-RFs 40.7 36.6 41.3
Environment 4.1 5.0 7.2
Interaction
Total 55.2 58.4 51.5

Replicated
Main Effects
T-RFs 63.6 61.3 70.3
Environment 5.0 6.0 10.2
Interaction
Pattern 19.9 21.5 7.9
Noise 11.6 11.2 11.6
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analysis, a method which holds many advantages for
microbial community data analysis. In addition, this soft-
ware provides a tool to the research community to rapidly
and robustly test the effects of various data processing
methods on the overall results of datasets. Many of these
processing methods are known sources of analytical vari-
ability, but there is no consensus in the literature of how
to most appropriately minimize this variability. We
intend to focus the continued development of T-REX on a
more sophisticated T-RF alignment algorithm, as well as
integrating NMS and permutational multivariate analysis
of variance. T-REX will allow microbial community anal-
yses to continue to develop as an important tool in under-
standing microbial community dynamics and their effects
on ecosystem processes.

Availability and requirements
- Project name: T-REX

- Project home page: http://trex.biohpc.org

- Operating system(s): Platform independent for
users

- Programming language: Microsoft ASP.NET and MS
SQL Server platforms

- License: GNU GPL

- Any restrictions to use by non-academics: none
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