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Abstract

Background: Noise filtering techniques are needed in electron tomography to allow proper
interpretation of datasets. The standard linear filtering techniques are characterized by a tradeoff
between the amount of reduced noise and the blurring of the features of interest. On the other
hand, sophisticated anisotropic nonlinear filtering techniques allow noise reduction with good
preservation of structures. However, these techniques are computationally intensive and are
difficult to be tuned to the problem at hand.

Results: TOMOBFLOW is a program for noise filtering with capabilities of preservation of
biologically relevant information. It is an efficient implementation of the Beltrami flow, a nonlinear
filtering method that locally tunes the strength of the smoothing according to an edge indicator
based on geometry properties. The fact that this method does not have free parameters hard to
be tuned makes TOMOBFLOW a user-friendly filtering program equipped with the power of
diffusion-based filtering methods. Furthermore, TOMOBFLOW is provided with abilities to deal
with different types and formats of images in order to make it useful for electron tomography in
particular and bioimaging in general.

Conclusion: TOMOBFLOW allows efficient noise filtering of bioimaging datasets with
preservation of the features of interest, thereby yielding data better suited for post-processing,
visualization and interpretation. It is available at the web site http://www.ual.es/%7ejjfdez/SW/
tomobflow.html.

Background

The advent of bioimaging technology has made it possible
to observe the molecular and cellular architecture and
interactions that underlie essential functions within cells
and tissues. The availability of bioimaging techniques
(e.g. light, confocal, X-ray, electron microscopies) in labo-
ratories is growing rapidly. So is the need for advanced
image processing methods that facilitate analysis and
interpretation at different scales of resolution and com-
plexity.

Electron tomography (ET), which combines electron
microscopy with the power of three-dimensional (3D)
imaging, is the leading technique to elucidate the molec-
ular architecture of biological specimens in a close-to-
native state [1-3]. ET produces extremely noisy and low
contrast 3D density maps (known as "tomograms" in the
field). The poor signal-to-noise ratio (SNR) severely hin-
ders visualization and interpretation. Sophisticated filter-
ing techniques are thus indispensable [4]. Similar filtering
needs arise in other bioimaging modalities (e.g. [5-8]).
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Noise reduction is paramount for proper interpretation or
post-processing of multidimensional images in bioimag-
ing in general, and electron tomography in particular.
Standard linear filtering techniques based on local aver-
ages or Gaussian kernels succeed in reducing the noise,
but at the expense of blurring edges and features [4,9].
Anisotropic nonlinear diffusion (AND) is currently one of
the most powerful noise reduction techniques [10]. It
achieves feature preservation and enhancement as the
strength and direction of the smoothing are adaptively
tuned to the local structures [11,12]. However, AND may
be intensive in terms of computation time and memory
consumption [13] and, moreover, there is need for tuning
their parameters, which may be certainly far from trivial.
These drawbacks have led to the proposal of other sim-
pler, more practical, but less powerful, methods like itera-
tive median filtering [14], or attempts for automated
parameter tuning [15].

TOMOBFLOW is a program for noise reduction with fea-
ture-preserving capabilities based upon geometric flow,
particularly the so-called Beltrami flow. The fact that this
approach is parameter-free is one of its main advantages
and makes it user-friendly. Therefore, TOMOBFLOW
combines the power of diffusion-based noise filtering
approaches with the easiness from the user's point of
view. Furthermore, the program has been implemented
efficiently in order to minimize the memory requirements
and reduce the computation time.

Implementation

Several approaches for noise reduction in multidimen-
sional image processing are based on considering images
as maps that are embedded into a higher dimension and
that flow towards minimal surfaces [16]. In these
approaches, a 2D image is considered as a 2-manifold
embedded in 3D, i.e. the image I(x, y) is regarded as a sur-
face S = (x, y, I(x, y)) in a 3D space (see Figure 1). Simi-
larly, a 3D volume I(x, y, z) is considered as a 3-manifold
embedded in a 4D space S = (x, y, z, I(x, y, z)). Embedding
the multidimensional image into a higher dimension
allows the use of powerful differential geometry operators
[16].

The Beltrami flow is an efficient geometric diffusion flow
approach that aims to minimize the area of the image
manifold, driving the flow towards a minimal surface
solution while preserving edges. The Beltrami flow is for-
mulated as follows [17]:

1 VI
_ di 1
I, =— IV( ,_) (1)

where I, = 0I/0t denotes the derivative of the image density
I with respect to the time t; V1 is the gradient vector, that
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Figure |

Principles of Beltrami flow. An image I(x, y) made up of a
white square over black background (top) is viewed as a sur-
face S = (x, y, I(x, y)) in a 3D space (bottom). The edges are
seen as cliffs in the Z direction. At each point of the surface,
the projection of the normal n (arrows in blue) to the Z

direction (arrows in black) is the edge indicator -L in Equa-

Jg

tion (1), yielding little value at sharp edges. In uniform areas,
however, the normal to the surface n runs parallel to Z and
the projection thus yields maximum value.

is VI= (I, I,) for 2D images whereas VI = (I,, I, ) for
3D volumes, being I, = 0I/& the derivative of I with
respect to x (similar applies for y and z); div is the diver-
gence operator, defined for a vector function f = (f,, f, f,)
as div(f) = of,/0x + 0f, /0y + 0f,/0z. Finally, g denotes the
determinant of the first fundamental form of the surface,
whichisg=1+|VI|2

The term g comes from an induced metric for the Eucli-
dean (n + 1)-D space where the density of a n-D image is
embedded in the (n + 1)-th dimension [16] (with n = 2 for
2D images and n = 3 for 3D volumes). This g provides the
measure of the area expansion between the image domain
I and the surface domain S, and thus plays an important
role to drive the flow towards a surface with the least area.

Moreover, the term -L in Equation (1) acts as an edge

NG
indicator since it is proven to be the projection of the nor-
mal-to-the-surface to the vector representing the (n + 1)-
th dimension [16] (see Figure 1). Therefore, the Beltrami
flow is a selective noise filtering method that preserves
edges as minimizes diffusion at and across edges whereas
it applies extensive diffusion elsewhere [17].
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In TOMOBFLOW, the implementation of the partial dif-
ferential equation derived from Equation (1) is based on
finite differences, using an Euler forward difference
approximation for I, and central differences to approxi-
mate the spatial derivatives (for brevity, only the numeri-
cal approximation for the 2D case is shown):

L (HIE )+ Ty (L4 1)-20 Iyl
22,2
(1+I% +Iy)

1% =15 4 p,

(2)

where I*is the image in the k-th iteration, h, is the time step
(for stability, the maximum value is the inverse of the
squared number of dimensions, i.e. 0.25 for 2D images),
I..is the derivative with respect to x (similar applies for y),
I, is the second order derivative with respect to x (similar
applies for y) and I, is the mixed second order partial
derivative with respect to x and y. The derivatives are com-
puted from the image in the previous iteration I*!, and are
numerically approximated by central differences, as
shown for x (similar applies for y):
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Ly(i )= (G +1,j+ 1) =1 +1,j-1) = I(=1,j+1) +I(i-1,j—-1)) /4
(5)

where i, j are the indices of the pixel. TOMOBFLOW has
the option of applying a slight Gaussian filtering (stand-
ard deviation typically in [0.5,1.0]) to the input dataset.
This initial Gaussian filtering is employed for regulariza-
tion purposes to yield better estimates of the derivatives,
as commonly used in other diffusion approaches [10].

An efficient implementation has been carried out using
single processor optimization [18] to reduce memory and
time consumption. Only one copy of the input dataset,
which is progressively updated during the processing, is
held in memory. A sliding window (3 slices for 3D vol-
umes, 3 rows for 2D images) is used to keep the data
needed for the current slice/row in order to avoid over-
writing. Figure 2 illustrates how the sliding window is
used during the processing of 3D volumes. This optimiza-
tion allows processing of huge datasets, as commonly
found in ET, on computers with modest amounts of
memotry.

L, j) =0 j+1)-1(j-1))/2 3)
To make it suitable for bioimaging in general, TOMOB-
Do e .. .. FLOW is capable of dealing with most image formats in
I..(,7)=1(,j+1)=2I(,§)+1(,j—1 4 . . .
wells ) =100, +1) () + 16 =1) @) electron microscopy (e.g. EM, MRC, Spider), in other
. . v 0l
' sliding window
slices at
iteration
l+ i -
H+1 slice n-1 sl!ce il *
slice n sl!ce g *
_ slice n+1 e n-l'-1
slices at ;
iteration
i \j
Figure 2

Sliding window for processing of 3D volumes. The sliding window keeps the data needed for the processing of the cur-
rent slice. This allows TOMOBFLOW to allocate memory only for one copy of the dataset, which is progressively updated
during the processing. The solid lines show the information transfer during the processing of the slice n: (I) the slice n+1 from
the current volume is got from the volume, (2) the processing of the slice n is carried out using only the data in the sliding win-
dow, (3) the processed version of the slice n is updated and stored in the volume and (4) the slices in the sliding window are
pushed backward to make space for a new slice coming from the volume. The dotted lines show how the sliding window is
pushed forward for the processing of a new slice. The working principle of the sliding window for processing 2D images is sim-
ilar.
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microscopies (e.g. Biorad) and general formats (e.g. TIF,
JPG, PNG) by using the Bsoft library [19]. Furthermore,
TOMOBFLOW is also able to filter 3D volumes, individ-
ual 2D images, or stacks of 2D images. Finally, it is avail-
able for most Unix platforms, including OS X and
Windows (under cygwin). The command line user inter-
face follows the Unix-style and the options follow the
conventions of Bsoft [19]. A comprehensive documenta-
tion is provided at the website http://www.ual.es/
%7ejjfdez/SW/tomobflow.html.

Results

The performance of TOMOBFLOW is illustrated with its
application to a number of experimental datasets
obtained from electron tomography. Tomograms (3D
volumes) of (a) spiny dendrite, (b) algae chloroplast, (c)
mitochondrion, (d) small unilamellar liposomes with
integrin, (e) vaccinia virion and (f) human immunodefi-
ciency virions (strain HIV-1) were tested. Different con-
trast and signal-to-noise ratio were present in those
datasets as they were obtained by using different prepara-
tion techniques. The specimens in (a-c) were stained
before imaged, hence their much better contrast in the
original dataset compared to the other specimens in (d-f),
which were imaged while frozen in close-to-native condi-
tions without stain. The datasets in (a, b) were taken from
the Cell Centered Database [20,21] (accession codes 13
and 3408, respectively). The datasets in (d, f) were taken
from the Electron Microscopy Data Bank (EMDB) at the
European Bioinformatics Institute [22,23] (accession
codes 1487 and 1155, respectively). The Vaccinia virus
dataset was obtained from a previous work [24]. The
mitochondrion dataset was kindly provided by Dr. G. Per-
kins. In order to compare TOMOBFLOW with other com-
parable standard (isotropic) nonlinear noise reduction
technique, the datasets were also subjected to iterative
median filtering [14] as implemented in Bsoft [19,25].
This method is getting increasing interest in the electron
microscopy field [8,25-27]. The standard number of three
iterations was used for all the experiments carried out in
this work where the iterative median filtering was
involved. For TOMOBFLOW, a number of iterations
between 50 and 150 were used, which yielded a satisfac-
tory level of smoothness for the background of the data-
sets. A Gaussian filtering with standard deviation of 1 was
used to regularize the derivative estimation in TOMOB-
FLOW. For the results obtained with TOMOBFLOW, the
median filtering was not used prior to the iterations of the
Beltrami flow.

Figure 3 shows the effects of noise reduction with
TOMOBFLOW and the iterative median filtering on the
tomograms obtained from the stained specimens: spiny
dendrite, algae chloroplast, mitochondrion, respectively.
TOMOBFLOW and the median filtering succeed in reduc-
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ing the noise and preserving details. However, the results
obtained with TOMOBFLOW clearly show a background
substantially smoothened while showing more sharpness
in the structural features of interest. The results provided
by the median filtering are not that sharp and the back-
ground still contains some noisy texture.

Figure 4 shows the results with the datasets of the
unstained specimens: small unilamellar liposomes with
integrin, vaccinia virion and HIV-1 virions, respectively.
The behaviour of the methods is similar to that shown
with stained specimens. Both methods yield datasets that
overcome the extremely low contrast and signal-to-noise
ratio, thereby facilitating the interpretation. However, the
results provided by TOMOBFLOW have their background
further smoothened and the structural features are better
preserved. For a more exhaustive analysis of the perform-
ance of TOMOBFLOW, a representative electron cryotom-
ography dataset was selected, HIV-1 [28] (emd-1155),
which was also used elsewhere to illustrate the perform-
ance of the iterative median filtering [14]. Figure 5 shows
the appearance of the tomograms (original and denoised
with TOMOBFLOW and the median filtering) when iso-
surfaced. Both methods allow a clear visualization of the
virions, with similar levels of residual noise. However, a
noticeable difference is seen at the membranes of the vir-
ions. They appear quite flat with the median filtering
whereas more corrugations and details are seen with
TOMOBFLOW, which is indicative of better structural
preservation of the latter method. This effect can also be
seen on the slices shown in Figure 4c.

The evolution of the denoising with the iterations was
then studied on the HIV-1 dataset. Figure 6 shows the
result of TOMOBFLOW after 10, 25, 50, 100 and 150 iter-
ations. It is clearly observed that the background is pro-
gressively flattened whereas the structural features are well
preserved in general. However, the decrease in resolution
at high number of iterations is expected to blur some
details of interest. For instance, at 150 iterations some
edges begin to look blurred. A more objective assessment
of these results was carried out based on SNR (signal-to-
noise ratio) measures, as defined in [29]: SNR = (I;- I,,)/ o},
where I, and [, denote the average intensity in the structure
of interest and in the background, respectively, and ¢ is
the standard deviation of the background. This SNR met-
ric is similar to the contrast-to-noise ratio (CNR) used in
other disciplines [30]. The background in this tomogram
was determined based on the isosurfacing thresholds (cal-
culated according to the optimal thresholding algorithm
in [24]) used in Figure 5, and refined afterwards by means
of some morphological operators applied in this
sequence: flooding, dilation (2 cycles) and erosion (2
cycles). This background was used for computing all the
SNR measures presented in this work. Table 1 summarizes
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Figure 3

Filtering results on the tomograms of stained specimens. (a) spiny dendrite; (b) algae chloroplast; (c) mitochondrion.
The original tomograms (left), the results with TOMOBFLOW (centre), and the results with three iterations of the median fil-
tering (right) are shown. Only a representative slice of the tomograms is presented. The number of iterations of TOMOB-
FLOW were (a) 150, (b) 150 and (c) 70. The datasets (a) and (b) were taken from the Cell Centered Database (accession
codes |3 and 3408, respectively). The dataset (c) was kindly provided by Dr. G. Perkins (National Center for Microscopy and
Imaging Research-NCMIR, UCSD, USA). In the three datasets, the results with TOMOBFLOW have the background particu-
larly flat with respect to the original tomogram, and also with respect to the results with median filtering. Moreover, TOMOB-
FLOW outperforms the median filtering in the preservation of the structural features. The arrows point to areas where the
sharpness of the features is especially apparent after the processing with TOMOBFLOW.
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Figure 4

Filtering results on the tomograms of unstained specimens. (a) small unilamellar liposomes with integrin; (b) Vaccinia
virion, (c) HIV-I virions. The original tomograms (left), the results with TOMOBFLOW (centre), and the results with three
iterations of the median filtering (right) are shown. Only a representative slice of the tomograms is presented. The number of
iterations of TOMOBFLOW were (a) 100, (b) 50 and (c) 70. The datasets (a) and (c) were taken from the Electron Microscopy
Data Bank (EMDB) at the European Bioinformatics Institute (accession codes 1487 and | 155, respectively). The dataset (b)
comes from a previous work [24]. The behaviour of the methods are similar to that shown for unstained specimens. In general,
TOMOBFLOW smoothens the background better than the median filtering and allows better identification of fine structural
details (see for instance the areas pointed by the arrows, e.g. the spikes of the core of the Vaccinia virion or the membranes of
the HIV-I virions).
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Figure 5
Isosurface of the tomograms of unstained HIV-1 virions. From left to right, the 3D visualization of the original tomo-
gram of unstained HIV-I virions and the denoised versions with TOMOBFLOW (70 iterations) and the iterative median filter-
ing (3 iterations) are shown. A slice of each tomogram was previously shown in Figure 4c. Both filtering methods allow the 3D
inspection of the dataset, though TOMOBFLOW preserves more details at the membranes of the virions.

http://www.biomedcentral.com/1471-2105/10/178

the SNR results of the tomograms shown in Figure 6. The
SNR measures quantitatively reflect the effects of the
denoising seen in the visual results in Figure 6. The SNR
for the original tomogram was 1.23. TOMOBFLOW out-
performs the median filtering (SNR 2.63) at 50 or more
iterations (SNR > 2.79). The SNR was also computed for
200, 250 and 300 iterations of TOMOBFLOW (visual
results not shown in Figure 6). As reflected by the SNR
metric, the results begin to degrade at a number of
TOMOBFLOW iterations between 150 and 200. There-
fore, the SNR metric acts as an indicator of the degrada-
tion with high number of iterations.

The SNR metric was also used to assess the results shown
in Figure 4c. The result from 70 iterations of TOMOB-
FLOW yielded SNR 3.03, higher than the result from the
median filtering (SNR 2.63). These measures complement
and confirm the visual results shown in Figure 4c. For
comparison, the SNR was computed for a denoised ver-

sion of the tomogram with anisotropic nonlinear diffu-
sion, which is the leading denoising method in the field.
The package TOMOAND http://www.ual.es/%7ejjfdez/
SW/tomoand.html was used [4,11] with the automated
parameter tuning activated [15]. The number of iterations
(70) and the initial Gaussian filtering (std.dev.1) was set
up as with TOMOBFLOW. The SNR of the TOMOAND-
denoised tomogram turned out to be 4.11. Therefore,
AND is superior to TOMOBFLOW, though at the expense
of higher computation time and memory consumption.
This behaviour was expected because the Beltrami flow is
an isotropic nonlinear method and thus it is not equipped
with the enhancement capabilities of anisotropic nonlin-
ear methods, hence these two methods are not directly
comparable.

TOMOBFLOW and the iterative median filtering were also
compared in terms of computation time. The average time
per iteration was computed in both methods (in a stand-
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Figure 6
Evolution as a function of the iterations. From left to right, the original HIV-1 tomogram and the results with TOMOB-
FLOW at 10, 25, 50, 100 and 150 iterations are shown. The background is progressively flattened with the iterations whereas
the structural features remain sharp. At high number of iterations, some edges begin to look blurred.

ard computer based on Intel Core 2 processor 2.4 GHz
running under linux) and the ratio between both was then
calculated. For the six datasets, which had very different
sizes (from 14 MB to 390 MB), it turned out that a single
iteration in the median filtering took around 20 times
more than a single iteration of TOMOBFLOW, regardless
of the data size. As the number of iterations of TOMOB-
FLOW is usually between 50 and 150, this involves that
the computation times for both methods are of the same
order of magnitude (1-3 minutes for the datasets and the
computer tested here). As far as memory consumption is
concerned, TOMOBFLOW only used space for one copy
of the dataset, as described above. It thus required half the
amount of memory allocated by the median filtering (two
copies of the volume) as implemented in Bsoft.

Table I: Effect of the denoising on the SNR of the HIV-I dataset

Tomogram SNR
Original 1.23
Median filtering 2.63
TOMOBFLOW 10 it. 231

TOMOBFLOW 25 it. 2.48
TOMOBFLOW 50 it. 2.79
TOMOBFLOW 100 it. 3.35
TOMOBFLOW 150 it. 3.55
TOMOBFLOW 200 it. 3.38
TOMOBFLOW 250 it. 3.04
TOMOBFLOW 300 it. 2.67

The SNR was computed for the original dataset and the denoised
versions. For the median filtering, the standard of three iterations
were used. For TOMOBFLOWY, several tests with different iterations
(from 10 to 300) were performed in order to study the evolution
with time and to identify the decrease in resolution at high number of
cycles.

Discussion

TOMOBFLOW allows efficient noise reduction with levels
of background smoothing and feature preservation better
than other comparable standard nonlinear filtering meth-
ods. TOMOBFLOW applies an isotropic nonlinear filter-
ing method based on the Beltrami flow, which tunes the
strength of the smoothing according to a local edge indi-
cator. In contrast to anisotropic nonlinear filtering (e.g.
AND), there is no enhancement of features since the direc-
tion of the smoothing is not tuned. Therefore, it must not
be expected that TOMOBFLOW will outperform AND. In
this regard, the comparison with AND carried out in this
work suggests that the method based on the Beltrami flow
lies between the median filtering and the AND methods.

The main advantage of the method implemented in
TOMOBFLOW stems from the fact that there is no need
for complicated parameter tuning. Nevertheless, it is
indeed an iterative method and one thus needs to specify
a number of iterations. But this does not pose a serious
inconvenience as the program easily allows an experiment
to be continued with further iterations, if necessary. On
the other hand, there has been intense investigation on
objective stopping criteria for iterative noise reduction
methods (e.g. [4,11]). However, none of the proposed cri-
teria have turned out to be generally applicable and the
number of iterations still remains to be fixed subjectively
by visual inspection of the results (e.g. [24,31]).

On the other hand, the computational burden involved
by sophisticated diffusion-based filtering methods pre-
cludes their integration on interactive environments [32].
The fact that the method implemented in TOMOBFLOW
is not computationally expensive along with the opti-
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mized implementation in terms of memory consumption
makes this filtering method very appropriate to be embed-
ded into interactive packages [32,33].

Conclusion

TOMOBFLOW allows efficient noise filtering of datasets
with preservation of the features of interest, thereby yield-
ing data better suited for post-processing, visualization
and interpretation. The program is versatile to deal with
different types and formats of multidimensional images
produced by bioimaging techniques.

Availability and requirements
Project name: TOMOBFLOW

Project home page: http://www.ual.es/%7ejjfdez/SW/
tomobflow.html

Operating system(s): Unix-based (linux, OS X, cygwin
under Windows).

Programming language: C.

Other requirements: none.

License: public domain binaries.

Any restrictions to use by non-academics: none.
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