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Abstract
Background: High-dimensional biomolecular profiling of genetically different individuals in one or
more environmental conditions is an increasingly popular strategy for exploring the functioning of
complex biological systems. The optimal design of such genetical genomics experiments in a cost-
efficient and effective way is not trivial.

Results: This paper presents designGG, an R package for designing optimal genetical genomics
experiments. A web implementation for designGG is available at http://gbic.biol.rug.nl/designGG.
All software, including source code and documentation, is freely available.

Conclusion: DesignGG allows users to intelligently select and allocate individuals to experimental
units and conditions such as drug treatment. The user can maximize the power and resolution of
detecting genetic, environmental and interaction effects in a genome-wide or local mode by giving
more weight to genome regions of special interest, such as previously detected phenotypic
quantitative trait loci. This will help to achieve high power and more accurate estimates of the
effects of interesting factors, and thus yield a more reliable biological interpretation of data.
DesignGG is applicable to linkage analysis of experimental crosses, e.g. recombinant inbred lines,
as well as to association analysis of natural populations.

Background
Genetical genomics [1] has become a popular strategy for
studying complex biological systems using a combination
of classical genetics, biomolecular profiling and bioinfor-
matics [2-5]. By measuring molecular variation, using
transcriptomics, proteomics, metabolomics and related
emerging technologies, in genetically different individu-
als, genetical genomics has the potential to identify the

functional consequences of natural and induced genetic
variation. Recently, genetical genomics has been general-
ized to achieve a comprehensive understanding of the
dynamics of molecular networks by combining environ-
mental and genetic perturbation [6,7]. This type of large
scale "omics" study leads to a better understanding of why
individuals of the same species respond differently to
drugs, pathogens, and other environmental factors.
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Screenshot of the designGG web interfaceFigure 1
Screenshot of the designGG web interface.
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However, most molecular profiling experiments are very
costly, and as a consequence most genetical genomics
studies are performed at the verge of statistical feasibility.
Therefore, experimental design needs careful considera-
tion to achieve maximum power from limited resources,
such as microarrays and experimental animals [8,9]. But,
even in standard scenarios this requires sophisticated
application of statistical concepts to intelligently select
genetically different individuals from a population and
allocate them to different conditions and experimental
units. This topic has motivated classical statistical research
since a long time [10]. More recently, the concepts devel-
oped there have been adapted to the high dimensional
data sets of post-genomics research [8,11-13], and useful
simplified design strategies have been suggested [11,14].
However, to transfer these statistical ideas to the even
more complex context of genetical genomics [9,15,16]
still requires considerable expertise in statistics.

Here we present an online web tool to make these selec-
tions and allocations easy for biologists with little/no sta-
tistical training. The program will find the best
experimental design to produce the most accurate esti-
mates of the most relevant biological parameters, given
the number of experimental factors to be varied, the gen-
otype information on the population, the profiling tech-
nology used, and the constraints on the number of
individuals that can be profiled. Advanced users can
download the underlying methods as an R package to
adapt the program for a more tailored design. Without
loss of generality, we will illustrate the method using
microarrays, while they apply equally well to other profil-
ing technologies, such as mass spectrometry. Also, we will
only discuss molecular technologies that profile samples
individually (e.g., single color microarrays) or in pairs
(e.g., dual color microarrays), but an extension of the R
scripts to more advanced multiplex technologies would
be straightforward [17].

Implementation
The objective of designGG is to find an optimal allocation
of genetically different samples to different conditions
and experimental units (arrays) favoring a precise esti-

mate of interesting parameters, such as main genetic
effects and interaction effects between genotype and drug
treatment. A simple case with one environmental factor
can be expressed as y = μ + G× E + ε, where y is the meas-
urement vector, ε is the error term, and G×E denotes main
effect and interaction effects of genotype and environ-
ment. In matrix notation, a model with one or more gen-
otype factors (quantitative trait loci; QTL) and one or
more environmental factors can be written as: Y = Xβ + E,
where X is the design matrix of samples by parameters and
β is the effect of genotype and environmental factors. The
least squares estimate of β is b = (XTX)-1XTY with var(b) =
σ2(XTX)-1. The optimal experiment design is defined as
the one that minimizes the double sum of the variances of
b firstly summed over all parameters and then summed
over all genotypic markers. We use an optimization algo-
rithm (simulated annealing [18]) to search the experi-
mental design space of all possible allocations to produce
an optimal design matrix X. During the optimization, the
algorithm utilizes the available marker information from
the individuals to optimize the allocation of individuals
to microarrays and conditions.

In the optimization, the experimenter can, of course, give
more weight to parameters of higher interest, which will
then be estimated with higher accuracy. Particularly, prior
knowledge about expected effect sizes of interesting fac-
tors can be incorporated as weight parameters for the
algorithm and the weight is inversely proportional to the
expected effect size of the corresponding factors. In addi-
tion, it is also possible to specify the genome regions that
are of major interest in a particular experiment, by speci-
fying a region parameter. For example, if the relevant phe-
notype is known to map to certain genome regions,
parameters for the markers in these regions can be given
full weight in the optimization algorithm, whereas
parameters for other markers can be given lesser or even
zero weight. Thus, mapping resolution can improve and
the power for finding QTLs in focal regions can be
increased.

DesignGG is a package entirely written in the R language
[19]. Every function of the designGG library is available as
a stand-alone R tool and detailed help is available accord-
ing to the standard format of R documentation.

Results
Web tool
Users can apply this method using a web interface (Figure
1) that we have generated using MOLGENIS [20,21]:

1. Choose the platform. Select the single- or dual-channel
option for one-color or two-color gene expression micro-
arrays (the dual-channel option is also used for any other
technology profiling pairs of samples).

Table 1: Example table of genotype data. Heterozygous loci are 
indicated by an H.

Strain 1 Strain 2 Strain 3 Strain 4 Strain 5 ...

C1M1 A B B B A ...

C1M2 A H A B A ...

C1M3 A A B H A ...

... ... ... ... ... ... ...
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Table 2: The description and possible values of designGG arguments

Arguments Description Possible value(s)

bTwoColorArraya The type of platform T(RUE) or F(ALSE) for the dual- or single-channel option, 
respectively. For example, F for one-color and T for two-color 
gene expression microarrays 
(the dual-channel option is also used for any other technology 
profiling pairs of samples)

genotypea Genotype information A matrix of marker genotypes for each marker and each strain. 
The values can be numeric: "1" and "0" for two homozygous 
genotypes, respectively (optionally, "0.5" for heterozygous allele). 
They can also be characters: "A" "B" or "H" and "H" is for 
heterozygous allele; NA for missing data. The column names are 
strain names, such as "Strain 1", "Strain 2", etc. The row names are 
marker names, such as "C1M1", "C2M2", etc.

nEnvFactorsa Number of environmental factors in the study A numeric integer value between 1 and 3 which indicates the 
number of environmental factors to be studied. Experiments with 
more than three environmental factor are not recommended here 
since the power to estimate the high-order interactions is very 
limited for a realistic number of samples (several hundreds).

nLevelsa Number of levels for each environmental factor A numeric integer vector. For example, there are two different 
levels for two environmental factors under study, then we use 
nLevels <- c(2, 2)

Levelb Level values for each environmental factor A list which specifies the levels for each factor in the experiment. 
The element is a vector describing all levels of the environmental 
factor. In the given example, temperature levels are 16 and 24 and 
drug treatment levels are 5 and 10. The we use:
Level <- list(c(16, 24), c(5, 10))

nSlidesc Total number of slides available for the experiment. A numeric integer value

nTuplec Average number of strains to be assigned onto each 
condition

A numeric value which is larger than 1

regionb Genome region of biological interest A numeric integer vector which indicates the markers of biological 
interest, for example those previously detected for phenotypic 
quantitative trait loci. The value is the marker index (i.e., the row 
number in the genotype data table), not the marker name.

weightb The weights for estimating genetic and environmental 
factors, and their interaction terms

A numeric vector which indicates the parameters of biological 
interest. Higher weights correspond to higher interest, and the 
optimization is adjusted in such a way as to result in a higher 
accuracy of the estimate for the parameters with higher weight. 
Prior knowledge about expected effect sizes of interesting factors 
can also be incorporated as weight parameters for the 
algorithm. The weight is inversely proportional to the expected 
effect size of the corresponding parameter, if the same relative 
accuracy is intended. When there is no environmental 
perturbation, weights is 1, as there is only one parameter of 
interest (genotype); When nEnvFactor = 1, weight = c(wQ, 
wF1, wQF1); When nEnvFactor = 2, weight = c(wQ, wF1, wF2, 
wQF1, wQF2, wF1F2, wQF1F2); When nEnvFactor = 3, weight = 
c(wQ, wF1, wF2, wF2, wQF1, wQF2, wQF3, wF1F2, wF1F3, wF2F3, wQF1F2, 
wQF1F3, wQF2F3, wQF1F2F3). Here wQ represents the weight for 
genotype effect, wF1 represents the weight for environmental 
factor F1 effect and wQF1 represents the weight for interaction 
between genotype and F1 effect, etc.

nIterationsb Number of iterations of the simulated annealing 
method

A numeric integer value larger than 1. Default = 3000
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2. Upload a tab separated value (TXT) file containing the
genotype data matrix (individuals × markers). Each cell
contains a genotype label (e.g. A or B for the parental alle-
les, H for heterozygous loci; NA for missing data).

3. Set parameters. Specify the number of environmental
factors, their number of levels, and the possible values of
these levels. Specify either the total number of slides
(assays) or the number of samples allocated within each
condition.

4. Use advanced options if only one or a few genome
regions or particular factors are of major interest. It is pos-
sible to optimize the experimental design by focusing on
certain regions (e.g. the first 20 markers on chromosome
I). Prior knowledge about expected effect sizes of interest-
ing factors can also be incorporated as weight parameters
for the algorithm.

5. Start the optimization algorithm by clicking on the but-
ton Optimize Experimental Design (Figure 1).

6. Get results. After the optimization is finished, the opti-
mal experimental design will be displayed online (in table
format), and will be available as text files for download.

R package
Here we illustrate how to apply the designGG R package
using an example: suppose we are studying the effect of
genetic factors (Q), temperature (F1), drug treatment (F2)
and their interaction on gene expression using two-colour
microarrays. There are 100 microarray slides available for
this experiment, and we plan to study two different levels
for each environment, which are 16°C and 24°C for F1
(temperature), and 5 μM and 10 μM for F2 (drug treat-

ment). Then the R package can also be used in command
line form as follows:

1. Prepare the input file specifying the genotype of each
individual at each marker position. The file should be for-
matted as tab separated values (TXT), as illustrated in
Table 1.

2. Load the designGG package by starting the R applica-
tion and typing the command:

> library(designGG)

Specify the input arguments (Steps 3–5 correspond to
steps 2–4 of using the web tool. The order of the following
commands in steps 3–5 does not matter).

3. Choose the platform of the experiment. In this exam-
ple, we use two-color microarray, thus:

> bTwoColorArray <- T #if paired; F oth
erwise

4. Load the marker data and specify the following
required arguments (number of environmental factors,
number of levels per factor, the values of each level, and
the number of available slides):

> data(genotype) #an example data attached
with the designGG package

# The command below can be used to read TXT
data

# genotype <- read.table("geno
type.txt")

> nEnvFactors <- 2

> nLevels <- c(2, 2)

> Level <- list(c(16, 24), c(5, 10))

> nSlides <- 100; nTuple <- NULL

An alternative to specifying nSlides is to specify nTu
ple, the number of strains to be allocated onto each con-
dition. For example,

Table 3: Example table of the allocation of strains to arrays.

Channel 1 Channel 2

array 1 Strain 28 Strain 92

array 2 Strain 70 Strain 47

array 3 Strain 22 Strain 89

... ... ...

This is applicable for technologies that profile samples in pairs, e.g. 
two-color microarrays.

directoryb Output file directory The path where output files will be saved.

fileNameb Output file names The name for output tables in CSV format to be produced.

aRequired input arguments from users
bOptional input arguments
cAlternative arguments: either of them is required

Table 2: The description and possible values of designGG arguments (Continued)
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> nTuple <- 25 ; nSlides <- NULL;

5. In addition to the required arguments specified in step
4, there are some optional ones for a tailored experimen-
tal design: e.g., we might be especially interested in the
genome region between 1st marker and 20th marker, where
a known phenotypic QTL from previous study locates.
They can then specify that the optimization algorithm
should only take genotypes at markers 1 to 20 into
account:

> region <- seq(1, 20, by = 1)

Additionally, if we want that the estimates of all interac-
tion effects are twice as accurate as the estimates of the
main effects (genotype, temperature and drug treatment),
then we specify weights for the estimates:

> weight <- c(0.5,0.5,0.5,1,1,1,1)

Here the order of elements in the weight vector is such
that first the main effects are listed, starting with the gen-
otype, followed by the two environmental factors in the
order used for nLevels and Level, then the one-way
interactions, in the same order, and finally the two-way
interaction between all three factors.

6. The following commands specify the directory where
the resulting optimal design tables are to be stored and the
name of the output files (design tables):

> directory <- "C:\myproject\design"

> fileName <- "myDesign"

A detailed explanation of the above arguments can also be
found in Table 2.

7. Run designGG to obtain your optimal design:

> myOutput <- designGG(genotype, nSlidesn-
ple, nEnvFactors, nLevels, Levelregiogion,
weight = weight, nItera tions = 10)

It should be noted that the number of iteration of the sim-
ulated annealing method (fnIterations)is set to 10
here for testing purposes. The default value (nItera
tions = 3000) is recommended, but it will result in a
longer computing time.

8. Output can be found in the directory or retrieved with:

> optimalArrayDesign <- myOut
put$arrayDesign

> optimalCondDesign <- myOutput$condi
tionDesign

Example output tables for allocation of strains on arrays
and different conditions are shown in Table 3 and 4,
respectively.

9. In addition, users can check the curve of optimization
score recorded as the algorithm iterates using:

> plotAllScores (myOutput$plot.obj)

Details of default settings such as method (SA: simulated
annealing) or nSearch (equals 2) can be found in the
designGG manual or the online help. Example genotype
data and output tables are also provided along with the
package. The R package can be found in Additional file 1
and most up-to-date version of the software can be down-
loaded at http://gbic.biol.rug.nl/designGG.

Expected Results
Two tables summarize the optimal design: The table pair
design is only used for two-channel experiments and
describes how samples are paired together in one assay
e.g., a two-color microarray chip (Table 3). The table envi-
ronment design lists how samples are assigned to environ-
ments/experimental factors (Table 4).

Conclusion
DesignGG, a freely-available R package and web tool pre-
sented in this work, represents a novel tool for the
researcher interested in system genetics. Based on the care-

Table 4: Example table of the allocation of strains to experimental conditions. 

Temperature Drug Selected Strains

condition 1 16 5 Strain 28 Strain 81 Strain 18 Strain 61 ...

condition 2 24 5 Strain 70 Strain 40 Strain 83 Strain 92 ...

condition 3 24 10 Strain 14 Strain 3 Strain 89 Strain 22 ...

... ... ... ... ... ... ... ...

If the number of strains is smaller than the number of combinations of factors, the same strain can be used multiple times.
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ful experimental design provided by designGG, limited
resources, such as arrays and samples, are maximally
exploited, and more accurate estimates of parameters of
interest can be achieved.

Availability and requiredments
Project name: designGG R package and web tool

Project home page: http://gbic.biol.rug.nl/designGG

Programming language: R
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www.r-project.org/ for the stand-alone version.
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