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Abstract
Background: There are several techniques for fitting risk prediction models to high-dimensional
data, arising from microarrays. However, the biological knowledge about relations between genes
is only rarely taken into account. One recent approach incorporates pathway information, available,
e.g., from the KEGG database, by augmenting the penalty term in Lasso estimation for continuous
response models.

Results: As an alternative, we extend componentwise likelihood-based boosting techniques for
incorporating pathway information into a larger number of model classes, such as generalized linear
models and the Cox proportional hazards model for time-to-event data. In contrast to Lasso-like
approaches, no further assumptions for explicitly specifying the penalty structure are needed, as
pathway information is incorporated by adapting the penalties for single microarray features in the
course of the boosting steps. This is shown to result in improved prediction performance when
the coefficients of connected genes have opposite sign. The properties of the fitted models
resulting from this approach are then investigated in two application examples with microarray
survival data.

Conclusion: The proposed approach results not only in improved prediction performance but
also in structurally different model fits. Incorporating pathway information in the suggested way is
therefore seen to be beneficial in several ways.

Background
When using microarray data for analyzing connections
between gene expression and a clinical response, such as
survival time, additional knowledge is often available,
e.g., on pathway or ontology relations. While several pro-
posals exist, that take the latter into account, for statistical
testing, there are only few techniques that consider such
meta-information for building of predictive models.

One prominent source of knowledge on genes is the
KEGG database [1]. Several authors have demonstrated
that it can be highly beneficial to consider the pathway
information found there into approaches for statistical
testing [2-4]. While pathways can directly provide infor-
mation on relations of genes, annotation databases, such
as Gene Ontology [5], can also be employed for testing for
the association between a clinical response and groups of
genes (see [6], for example).
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When building predictive models, Gene Ontology infor-
mation, or the knowledge that two microarray features
belong to the same pathway, can be incorporated by
approaches that allow for explicit grouping of features
[2,7]. Alternatively, pathway signatures can be developed.
For example in [8], pathway signatures are determined by
experimental techniques, and it is shown that these are
related to survival in several independent cancer data sets.

However, simple grouping of features discards informa-
tion on specific relations between genes within a pathway.
A recent approach [9] not only uses the information that
two genes are in the same pathway, but allows to incorpo-
rate information on specific gene relations. This is imple-
mented by augmenting the log-likelihood criterion, to be
maximized for estimating the parameters of a predictive
model, by a penalty term that explicitly takes differences
between the coefficients of linked genes into account.

As a basis for the approach in [9], the Lasso [10] is used,
which provides for sparse estimates, i.e., predictive mod-
els where only few microarray features have non-zero
influence. Similar to the fused Lasso [11], an additional
term is added to the Lasso penalty. While there are tech-
niques for fitting models to various response types when
employing the original Lasso penalty [12], often only con-
tinuous response techniques are available for approaches
which extend the Lasso penalty. Also, only an algorithm
for estimation with a continuous response is provided for
the approach in [9]. However, mainly binary and time-to-
event responses are of interest for predictive microarray
models.

Another problem with extensions of the Lasso approach is
that several assumptions have to be made when choosing
the structure of the penalty term. For example, the crite-
rion employed in [9] penalizes the squared difference
between (standardized) parameter estimates, which
might be problematic when the true parameters have
opposite sign. This is, e.g., the case when in a pair of con-
nected genes one is up-regulated and the other one is
down-regulated for patients with increased risk.

Boosting is an alternative technique for fitting high-
dimensional predictive models (see, e.g., [13] for an over-
view). It uses a stepwise approach that allows to build up
an overall model from many simple fits, refining the over-
all fit in every boosting step. When only the parameter
estimate for one covariate is updated in each boosting
step, componentwise boosting is obtained, resulting in
sparse fits similar to the Lasso [14]. In addition, likeli-
hood-based componentwise boosting allows for adequate
consideration of clinical covariates in predictive microar-
ray models [15,16]. The latter approach is available for all
response types where estimation can be performed by
Newton-Raphson steps for maximization of a likelihood,

which are then adapted for penalized estimation in every
boosting step.

For incorporating pathway information into boosting
algorithms, one approach is to dedicate each single boost-
ing step to the genes in one specific pathway [2]. However,
just like grouping Lasso approaches, this does not take
into account specific relations between genes.

As an alternative, we are going to adapt the component-
wise likelihood-based boosting approach [15,16] for spe-
cifically incorporating pathway knowledge about gene
relations into estimation of predictive models from gene
expression data. The proposed PathBoost approach can be
used for various response types, including binary and
time-to-event responses. As pathway information is incor-
porated by adapting penalty parameters of connected
genes in the course of the boosting steps, the approach
also does not require an explicit specification of a penalty
structure.

After outlining the details of the PathBoost algorithm in
the following, it will be evaluated in a small simulation
study, where it will be compared to the approach given in
[9]. Its advantages on terms of prediction performance
and interpretability are furthermore illustrated in two
application examples with microarray survival data.

Results and discussion
The PathBoost algorithm
There are different response types for predictive models
built from microarray data, the two most prominent
being binary responses, employed, e.g., when classifica-
tion of tumors is wanted, and time-to-event responses
when prediction of survival is wanted. Our proposal for
incorporating pathway information is based on likeli-
hood-based boosting [15-17]. It is therefore suitable for
all settings where parameter estimation can be performed
by maximization of a likelihood via Newton-Raphson
steps. For generalized linear models, the response, which
might be continuous, binary or a counting response, is
taken to be from an exponential family. Given observa-
tions (yi, xi), i = 1,..., n, with response yi and covariate vec-
tor xi = (xi1,..., xip)', the structural part of such models is

E(yi|xi) = h(ηi),

where h is a known link function and ηi is the linear pre-
dictor

with intercept parameter βinter and parameter vector β =
(β1,..., βp)', which are estimated by maximization of the
log-likelihood l(β) (see e.g. [18] for more details).

h b bi inter ix= + ′ ,
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In a time-to-event setting, observations (ti, δi, xi), i = 1,...,
n, typically comprise of an observed time ti, a censoring
indicator δi, that takes value 1 if the observed time is the
time of the event of interest and value 0 if it is the time of
censoring, and a covariate vector xi. Due to censoring,
direct modeling of ti as a continuous response is problem-
atic. Models for the hazard λ(t|xi), i.e., the instantaneous
risk of having an event at time t, given the covariate infor-
mation, are preferred.

The Cox proportional hazards model has the form

λ(t|xi) = λ0(t) exp(ηi),

where λ0(t) is an unspecified baseline hazards and ηi is a
linear predictor of the form

with parameter vector β. Estimation of β is performed by
maximizing the partial log-likelihood

where I( ) is an indicator function that takes value 1 if its
argument is true and value 0 otherwise, avoiding estima-
tion of the baseline hazard.

Componentwise likelihood-based boosting
The basic idea of boosting is to fit several models to the
data in a stepwise manner. In each boosting step, a new
model is fitted, which gives larger weight to those obser-
vations that were fitted poorly in the previous boosting
steps [19]. All individual fits are then combined into one
overall model. It has been recognized that this procedure
is in specific settings equivalent to gradient descent in
function space [20], which in turn is equivalent to
repeated fitting of residuals for the continuous response
case with squared error loss function [14].

In [15], the latter idea is extended to generalized linear
models by incorporating the previous boosting steps as an
offset into the linear predictor ηi. In [16], a similar
approach for boosting estimation of the Cox proportional
hazards model is suggested. The basic likelihood-based
boosting algorithm is given in the following for both
types of models.

Starting with parameter estimate  = (0,...,0), in each of

k, k = 1,..., M, boosting steps, for each covariate xij, j = 1,...,

p, candidate models with linear predictor

are fitted by estimating parameters γ j, k. The offset 

incorporates the information from the previous boosting
steps, i.e.,

for the Cox model and

for generalized linear models. The intercept parameter

 is updated before each boosting step by fitting an

intercept-only model.

For estimation of the γ j, ks, a penalized log-likelihood cri-
terion

is employed, where λj, k is a penalty parameter that deter-
mines the size of the boosting steps. Typically, the same
value of λj, k = λ is employed for all covariates and all
boosting steps. As the number of boosting steps M, which
can, e.g., be determined by cross-validation, is the more
important tuning parameter, the penalty parameter λ is
chosen only very coarsely, such that the resulting number
of boosting steps is not too small (say larger than 50).

Using score function U(γ ) = ∂l(γ )/∂γ  and information
matrix I(γ ) = -∂2l(γ )/∂2γ , more specifically the scalar val-
ues Uj, k = U(0) and Ij, k = I(0), we employ Newton-Raph-
son steps, resulting in estimates

This is based on only one Newton-Raphson step, as fur-
ther refinements can potentially be performed in later
boosting steps.

The estimate  for the covariate with index j* which

improves the fit the most (in terms of log-likelihood for
generalized linear models or according to the penalized

score statistic /(Ij, k + λj, k) for the Cox model) is then

used to update the elements of the overall parameter vec-
tor via

h bi ix= ′ ,
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This componentwise boosting approach results in sparse
fits, i.e., where many elements of the estimated parameter
vector are equal to zero.

One of the advantages of likelihood-based boosting is
that it is very easy to incorporate mandatory, unpenalized
covariates (see [16], for example). This is useful when
clinical covariates have to be incorporated in addition to
microarray features, in order to compare the resulting
model fit to a purely clinical model. The clinical covariates
are then added to the linear predictor ηi, and their coeffi-
cients are updated in or after every boosting step, but they
do not enter into the penalty term.

Incorporating pathway information
The sparseness of the fits, resulting from approaches such
as the Lasso or componentwise boosting, is a desirable
property in settings with many microarray features, as it
potentially results in a short list of genes, that are deemed
influential. It can, however, also have a negative effect on
interpretability. For example, if the level of activity of
(parts of) a specific pathway is related to the response, the
microarray features associated with that pathway will be
highly correlated and have similar predictive power. How-
ever, sparse fitting techniques will probably pick out only
one of the features. This makes it difficult to identify the
underlying pathway. Also, model fits might be less stable
when relying only on one measurement instead of several
features.

For discouraging selection of only single microarray fea-
tures associated with a pathway, we suggest to increase the
penalty λj*, l, l > k, used for a specific covariate xij*, after it
has been selected in boosting step k. This decreases the
size of the boosting steps for this covariate and makes it
less likely that this covariate will be selected in future
boosting steps. In turn, the penalties for the microarray
features that belong to genes that are directly connected in
the respective pathway are decreased, making it more
likely that they will be selected in future steps.

This approach requires specification of two rules, one for
increasing the penalty of a selected covariate and one for
decreasing the penalties for connected covariates. In the
following, we provide such rules for penalty updates,
which, in combination with componentwise likelihood-
based boosting, constitute the PathBoost algorithm.

Increasing the penalty for a selected covariate

In order to provide a rule for penalty updates, a common
metric for all covariates is needed. Therefore, we quantify

the size of the boosting step k, performed for a covariate
with index j* that has been selected in this step, by consid-

ering the estimate  relative to the estimate

obtained from unpenalized estimation, i.e., for λj*, k = 0.
The step-size factor νj*, k then is given by

For incorporating pathway information, we suggest to
decrease the step-size factor for a selected covariate by a
constant step-size modification factor 0 <csmf ≤ 1. So, after
the covariate with index j* has been selected in boosting
step k, the new step-size factor for further boosting steps l
> k becomes

νj*, l = csmf · νj*, k,

implying a penalty increase via

For computational simplicity, we will use a fixed value of
Ij*, k+1 instead of the flexible term Ij*, l in this penalty
update rule. This means that the new penalty for a covari-
ate can be calculated immediately after it has been
selected in a boosting step and that the penalty stays the
same until the covariate, or a covariate that is connected
to it, is selected again.

Decreasing the penalty for connected covariates
If the penalty for a covariate xij* is increased, and it is then
selected again in a later boosting step, the explained vari-
ability due to this covariate and the pathways it belongs to
will be decreased. To maintain the amount of variability
explained by a pathway, the loss in explained variability
for covariate xij* is distributed to related covariates, e.g., to
covariates that are connected to covariate xij* in the path-
way. The amount of potentially lost explained variability,
that is to be distributed after a boosting step therefore has
to be quantified. A proposal for this is provided in the fol-
lowing.

If k is the first boosting step where covariate xij* is selected,

then the unpenalized estimate  (obtained with λj*, k

= 0) will be approximately equal to the (unpenalized)
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maximum likelihood estimate  obtained from stand-

ard non-boosting estimation. As the relative step size, not
realized due to penalized estimation, in boosting step k is

given by 1 - νj*, k, for boosting step k + 1, the unpenalized

estimate  will be approximately equal to

Thus, the penalized estimate  will be

The approximate fraction πj,(m) of the maximum likeli-
hood estimate that has been realized for covariate xij in the
mth boosting step, where this covariate has been selected,
then is

Let now j1 be the index of a covariate that has been

selected in boosting step k and j2 be the index of the cov-

ariate to which a potential loss in explained variability is
to be transferred. There is a potential loss that is incurred

for  in a future boosting step l by employing a penalty

that is updated via (1), with corresponding step-size factor

, instead of not modifying the penalty, i.e., keeping

the step-size factor . In terms of the fraction of the

maximum likelihood estimate this loss is given by

The aim is now to choose the penalty , or correspond-

ingly the step-size factor , for the covariate with index

j2 for a future boosting step l (compared to step k), such

that the loss for covariate  is compensated by covariate

. Equating

results in an update for the step-size factor

This implies a decrease of the penalty parameter  via

Again, for computational simplicity, we use a fixed value

of  instead of , and a value of  instead of

 in this update rule. Therefore, the new penalties of

connected covariates can be calculated immediately after
the boosting step, avoiding recalculation after every
boosting step and storage of results from past boosting
steps.

As an increase of the penalty via (1) would leave the
potential loss in explained variability undistributed for a
covariate without connections, the penalty update is only
performed for covariates that correspond to genes that
have a connection to another gene, with corresponding
covariate, in a pathway. For connected genes, however,
the question remains whether the total amount should be
transferred to every connected covariate or whether the
right-hand side of (2) should be divided by the number of
connections. As componentwise boosting results in very
sparse fits, it can be expected that only few connected cov-
ariates will be selected in the remaining boosting steps. It
therefore seems to be reasonable to assign the amount to
each connected covariate.

While a measure of uncertainty is not available for con-
nections in a pathway in the KEGG pathway database, it
might be available from other sources. Such information
could easily be incorporated into the PathBoost algorithm
by multiplying the right-hand side of (2) by the measure
of uncertainty (given that the latter has values between 0
an 1). Also, information on the direction of relations
could be incorporated by propagating changes of a pen-
alty only into one direction.

Choice of tuning parameters
The proposed PathBoost algorithm has three flexible
parameters: an initial penalty λj,1 = λ, j = 1,..., p, common
to all covariates, the number of boosting steps M, and the
step-size modification factor csmf. The initial penalty
parameter is of minor importance and can be chosen very
coarsely. A value that roughly corresponds to initial step-
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size factors of about 0.01 works very well in our experi-
ence. For determining the step-size modification factor
csmf, a coarse line search is performed. For each value of
csmf, the optimal number of boosting steps is determined
by 10-fold cross-validation. Then the value of csmf, which
results in the overall maximum of cross-validated (partial)
log-likelihood, is chosen.

Simulation study
To evaluate the performance of the PathBoost approach,
we perform a small simulation study that is identical, in
terms of design, to the study employed in [9]. Models for
a continuous response are built from p = 2200 covariates.
Of these, 200 take the role of transcription factors. The
remaining 2000 covariates comprise of blocks of 10 cov-
ariates, where the covariates in each block are correlated
with one specific transcription factor. The connection
information, required for the approach given in [9] and
for the PathBoost approach, is chosen such that there is a
bidirectional connection between each transcription fac-
tor and each of the 10 covariates associated with it.

The true parameter vector in the generating linear model
is chosen such that only four transcription factors (and
the corresponding blocks of correlated covariates) have an
effect on the response. There are six types of generating
models with varying size and type of effect.

In Model 1, the true parameters of the covariates that are
related to a transcription factor have the same sign as the
parameter of the transcription factor itself. This is
expected to be favorable for the approach given in [9], as
the penalty term employed there penalizes the squared
(standardized) differences of parameters. However, for
true parameters with opposite sign, this difference will be
large, making it rather unlikely that the true values are
recovered. Model 2 features such a setting, where in each
block of 10 informative covariates, the parameters of three
covariates have a sign opposite to that of the associated
transcription factor. In [9] it was found that this consider-
ably affected the performance of the approach with an
explicit penalty structure. In contrast, we do not expect a
performance degradation for the PathBoost approach as it
does not rely on differences of parameters.

Model 3 is similar to Model 1, and Model 4 is similar to
Model 2, the only difference being a smaller effect of the
covariates. Extending the design given in [9], we added
two further settings, Model 5 and Model 6, which are
based on Model 2 and Model 4 respectively. In these set-
tings, only the first and the third block of informative cov-
ariates contain effects with opposite sign. Therefore, only
six of a total of 40 informative connected covariates have
an effect with a sign opposite to the associated transcrip-
tion factor.

As a minimal performance reference, an intercept-only
model, i.e., a model that does not use any covariate infor-
mation, is fitted. A more specific performance reference
for the PathBoost approach is provided by component-
wise likelihood-based boosting without pathway infor-
mation [15]. The main tuning parameter there is the
number of boosting steps, which is determined by 10-fold
cross-validation. As already suggested, the additional
parameter csmf for the PathBoost approach is determined
by a coarse line search.

As a performance reference for the approach given in [9],
models are fitted by the Lasso [10], which also penalizes
the absolute values of the parameters, but does not incor-
porate pathway information. For both approaches, fitting
is performed by the least angle regression technique [21],
which allows for fast computation of solutions for a large
range of values for the penalty parameter that governs the
absolute value term in the penalty. For the Lasso, only the
latter has to be chosen, which is done by 10-fold cross-val-
idation. For the approach given in [9], a second penalty
parameter is required, which, similar to the PathBoost
approach, is determined by a coarse line search.

All approaches are fitted to training sets of size n = 100,
and prediction performance is evaluated on a test set of
the same size. This is repeated 50 times. Table 1 shows the
corresponding mean values and standard errors of the
predictive mean squared error.

The predictive mean squared error for all approaches is far
below that of the intercept-only model, indicating that the
prediction problems are very simple. As would be
expected, the performance of the Lasso and component-
wise boosting is very similar. So, there is no disadvantage
of choosing one of the two as a basis for an approach that
incorporates pathway information.

The approach given in [9] outperforms the Lasso in all six
settings. However, the performance difference is greatly
diminished with Models 2 and 4, where several of the

Table 1: Results of the simulation study.

Model intercept Lasso Li&Li lik.boost PathBoost

1 762.5 (14.4) 83.6 (2.6) 42.5 (1.1) 83.4 (2.4) 61.0 (1.7)
2 305.8 (5.1) 91.0 (2.7) 80.8 (1.9) 89.7 (2.7) 64.8 (1.8)
3 215.6 (4.1) 32.6 (0.9) 24.9 (0.8) 32.1 (0.9) 26.5 (0.7)
4 131.1 (2.4) 32.6 (0.9) 29.9 (0.7) 32.5 (0.9) 26.9 (0.7)
5 525.7 (9.9) 87.9 (2.6) 61.6 (1.5) 85.6 (2.2) 62.2 (1.6)
6 171.6 (3.3) 32.9 (0.9) 27.6 (0.7) 32.2 (0.9) 26.9 (0.8)

Predictive mean squared error, mean and standard errors (in 
parentheses), for an intercept-only model, the Lasso, the pathway-
based procedure proposed in [9] (Li&Li), componentwise likelihood-
based boosting (lik.boost), and boosting with pathway information 
(PathBoost) for six types of generating models.
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parameters of connected covariates have opposite sign.
This highlights the difficulties potentially arising from an
explicitly specified penalty structure. In contrast, the Path-
Boost approach is seen to result in a consistent improve-
ment over boosting without pathway information in all
settings. As would be expected from the design of the algo-
rithm, the sign of the true parameters does not matter.

Comparing the PathBoost approach to that given in [9],
the latter shows better prediction performance for Models
1 and 2, i.e., where its penalty structure matches the sign
of the true parameters. However, for Models 3 and 4,
where the sign of parameters of connected covariates may
be different, the approach given in [9] performs worse.
The performance of the two approaches is similar for
Models 5 and 6, implying that already a small mismatch
in sign information can nullify potential performance
advantages gained by explicitly specifying the penalty
structure in the approach given in [9].

Application examples
In the following, we investigate the properties of the Path-
Boost approach in two application examples with micro-
array survival data, where a Cox proportional hazards
model is fitted. When applying a technique for fitting pre-
dictive models that incorporates pathway information in
a real application setting, there are two objectives. The first
is to get better interpretability of the model fit, but the
interpretation of a fit will only be credible if the second
objective, that of improved prediction performance, is
met. For adequately evaluating a potential gain in predic-
tion performance from incorporating pathway informa-
tion in a time-to-event setting, we employ bootstrap .632+
prediction error curve estimates [22-24].

Pathway information is extracted from the KEGG pathway
database [1]. Similar to [9], we restrict analyses to regula-
tory pathways, but also include cancer pathways. As a
restriction to gene-gene relations would have resulted in a
very small number of connections, any genes that are
linked by some kind of KEGG relation are considered to
be connected.

While the glioblastoma data analyzed in [9] has a time-to-
event response, closer inspection showed that the genes
which have predictive power are not represented in KEGG
pathways. Therefore, an approach focussed on the latter
cannot improve over a null model that does not use any
microarray information [25]. We investigate two other
data sets, one from patients with large B-cell lymphoma
[26] and a second from patients with ovarian cancer [8].

Diffuse large B-cell lymphoma
The data from patients with diffuse large B-cell lymphoma
(DLBCL) has already been used for illustrating prediction
error curve techniques [23] and the likelihood-based

boosting technique for the Cox proportional hazards
model [16], on which the PathBoost approach is based.
Details of preprocessing are described there. There are n =
240 observation with p = 7399 microarray features. Only
1281 of the latter could be related to KEGG pathways,
based on the information available. To avoid restriction to
a (relatively) small number of microarray features and to
maintain comparability to previous analyses, also the fea-
tures not represented in KEGG pathways are considered.

A coarse line search, in combination with 10-fold cross
validation, results in selection of a step-size modification
factor of csmf = 0.9, which indicates that there might be
some predictive pathway information in the data. Use of
this factor results in 47 non-zero coefficients. In compari-
son, application of boosting without pathway informa-
tion results in only 27 non-zero coefficients. There is an
overlap of 20 non-zero coefficients, indicating that seven
microarray features are no longer deemed important
when pathway information is included, with 27 new fea-
tures being added to the model.

For checking whether the 27 added features just contain
information similar to the seven features not found in the
PathBoost fit, we applied componentwise boosting to a
data set where the seven features were removed. If the 27
seven features would be a substitute for the seven
removed features, some of the former should now be
included. However, the resulting model has 20 non-zero
coefficients, which all belong to the same covariates as the
overlapping coefficients above, i.e., none of the 27 micro-
array features, identified by PathBoost, are included in the
model. The prediction performance decreases (not
shown), indicating that the seven microarray features con-
tain information which is useful in combination with
componentwise boosting. However, as PathBoost does
not utilize these seven microarray features and neverthe-
less performs better, this underlines that PathBoost results
in structurally different model fits.

While in the model, fitted by boosting without pathway
information, only two connected microarray features
receive non-zero coefficient estimates, PathBoost results
in 12 connected microarray features that receive non-zero
estimates. This indicates that the fit from the latter algo-
rithm reflects pathway knowledge. The coefficients of con-
nected microarray features have different sign in several
instances. As such a constellation did not influence the
performance of PathBoost in the simulation study, an
impact is also not expected in this application example.

The change in structure of the fitted models is also seen
from the coefficient paths, i.e., the parameter estimates
plotted against the boosting steps. Figure 1 shows the
coefficient paths for boosting without pathway informa-
tion (left panel) and PathBoost (right panel). While they
Page 7 of 11
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are rather similar, there are some features with strong
effect that appear only in the PathBoost fit (e.g., UNIQIDs
29911 and 27573). As the PathBoost algorithm increases
the penalty for a covariate after it has been selected, it
could be expected that the estimates are somewhat
shrunken compared to the CoxBoost fit. This is seen, e.g.,
for the microarray features with UNIQIDs 32238 and
32679, which are no longer selected by PathBoost after a
certain boosting step, as the penalty for them has become
too large. This is different from approaches that use an
explicit shrinkage term in the penalized (partial) log-like-
lihood criterion, as there it would be expected that the
whole path is shrunken.

While use of pathway information is seen to have influ-
enced the model fit, interpretation of the latter can only
be assumed to be more valid, compared to the fit obtained
without pathway information, if prediction performance
is also improved. The thick curves in Figure 2 indicate
.632+ prediction error curve estimates (based on 100
bootstrap samples of size 0.632n, drawn without replace-
ment). The Kaplan-Meier benchmark (grey curve) that
does not use any covariate information is given as a refer-
ence. All procedures are seen to improve over the Kaplan-
Meier benchmark, where PathBoost (solid curve) seems to
have a slight advantage over boosting without pathway
information (dashed curve). While the difference is not

very large, it nevertheless improves the credibility of the
PathBoost fit.

For 222 patients, a clinical predictor, the International
Prognostic Index (IPI), is available. As it is typically of
interest how much microarray information can improve
over purely clinical models, we include the clinical covari-
ate as a mandatory, unpenalized covariate, as described in
[16]. The corresponding prediction error curve estimates
are indicated by thin curves in Figure 2. The prediction
performance of a purely clinical model is indicated by the
dotted curve. It is seen that the combined models can
improve over the purely clinical model. However, Path-
Boost (solid curve) can no longer improve over boosting
without pathway information (dashed curve). The lack of
additional value of pathway information in this setting is
also reflected by the step-size modification factor, chosen
by a line search, which is csmf = 1. Therefore it seems that,
in the present example, pathway information is most use-
ful in describing phenomena that are already reflected by
the clinical covariate.

Ovarian cancer
The second data set, to be used for illustration of the Path-
Boost approach, is from patients with ovarian cancer. The
original analysis of this data [8] already showed that there
is a connection between pathway activity and survival,
where pathway signatures were derived from prior experi-

Coefficient paths for the DLBCL dataFigure 1
Coefficient paths for the DLBCL data. Coefficient paths for boosting without pathway information (left panel) and Path-
Boost (right panel), applied to DLBCL data. The models selected by 10-fold cross validation are indicated by vertical lines. 
Microarray features common to both models are indicated by solid curves, the others by dotted curves.
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ments. In contrast, we will investigate whether pathway
knowledge derived from the KEGG database can also add
to prediction of survival.

For the 133 patients, where time-to-event information is
available, we performed preprocessing of the microarray
data, using the RMA approach [27], resulting in 21801
microarray features. We restrict analysis to those 4868 fea-
tures that are related to any of the human KEGG path-
ways.

The connections between genes, just as for the DLBCL
data, are extracted from the regulatory KEGG pathways,
including the cancer pathways. The step-size modification
factor, selected by a line search in combination with 10-
fold cross-validation, then is csmf = 1, i.e., pathway infor-
mation would not be expected to be useful for prediction
of survival. However, when only the connections from the
cancer pathways are considered, the resulting factor is csmf
= 0.9. This indicates that targeted pathway information
might be useful, while use of too many pathways is detri-
mental to prediction performance. Figure 3 shows boot-
strap .632+ prediction error curve estimates for boosting
without pathway information (thick dashed curve) and
for PathBoost approach (thick solid curve), when consid-

ering only the cancer pathways. We also investigate mod-
els that incorporate the clinical covariate "tumor stage" as
a mandatory unpenalized covariate (thin curves). All
models perform considerably better than the Kaplan-
Meier benchmark. Just as for the DLBCL data, there is an
advantage of PathBoost over boosting without pathway
information, albeit a smaller one, indicating usefulness of
pathway information for prediction. In contrast to the
DLBCL example, PathBoost also performs better when the
clinical covariate is included. This indicates that the path-
ways provide information in addition to the clinical cov-
ariate.

Conclusion
Integration of different sources of information promises
to result in improved predictive models built from micro-
array data. For example, the potential of experimentally
derived pathway signatures was already demonstrated in
[8] for various independent cancer data sets.

Another source of pathway knowledge is the KEGG path-
way database [1]. In [9], an approach was presented that
utilizes this source for tailoring the penalty term in Lasso-
like estimation. However, such approaches are not readily
available for binary response and time-to-event data. Fur-
thermore, they require explicit specification of a penalty
structure, which is, e.g., problematic when the parameters
of connected genes might have different sign.

As an alternative, we proposed a new likelihood-based
boosting approach that also incorporates pathway infor-
mation. Penalties are adapted after every boosting step,
such that a microarray feature that is connected to another
feature that already has a received a non-zero parameter
estimate, is more likely to also receive a non-zero esti-
mate. This avoids specification of a penalty structure, and
therefore is not affected by parameters with opposite sign.

The proposed PathBoost was seen to perform well in var-
ious settings of a simulation study, using the design
employed in [9]. While the approach given in [9] per-
formed better in settings where the sign of the true param-
eters matched with its penalty structure, PathBoost
showed equal or better performance in the other settings.
This pattern of prediction performance might have been
expected, as knowledge of the true sign of the parameters
(in this case incorporated into the penalty structure)
should result in increased prediction performance. How-
ever, in typical application settings such knowledge will
rarely be available. Therefore, the PathBoost approach
should be preferred. There still is a certain arbitrariness
with respect to the suggested updated rules, i.e., other
rules that might also work could be devised. However, the
good performance, resulting from the suggested rules,
provides at least some justification.

Prediction error curves for the DLBCL dataFigure 2
Prediction error curves for the DLBCL data. Boot-
strap .632+ prediction error curve estimates for boosting 
without pathway information (dashed curves) and PathBoost 
(solid curves), applied to DLBCL data, without (thick curves) 
and with clinical covariates (thin curves). The Kaplan-Meier 
benchmark (grey curve) and a purely clinical model (dotted 
curve) are given as a reference.
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We employed the simulation design used in [9] to allow
for better comparison to the results there. However, the
design itself has some limitations, making it difficult to
draw conclusions on performance with real data. For
example, the pathway information employed does not
contain inaccuracies, which will probably be present in
sources such as the KEGG database. Also, the signal-to-
noise ratios are large, resulting in simple prediction prob-
lems, untypical for microarray data. Furthermore, the sim-
ulation study is limited to continuous response settings,
due to lack of an algorithm for the approach given in [9]
for other response types. However, in most microarray
applications the response is binary or a time-to-event
response. Fitting predictive models for these is more diffi-
cult, and, therefore, less benefit from incorporating path-
way information might be expected.

The proposed boosting approach is easily adapted to dif-
ferent response types. Variants for generalized linear mod-
els and the Cox proportional hazards model were given.
The latter was employed in two application examples,
where the gain in prediction performance by incorporat-
ing pathway information was more moderate, compared
to the simulation study. As indicated, this might, e.g., be
due to inaccuracies in the KEGG database. The estimated
parameters of several connected microarray features had

opposite sign, indicating similarity to those scenarios of
the simulation study, where only PathBoost could fully
utilize pathway information.

In comparison to models fitted without pathway informa-
tion, application of PathBoost resulted in structurally dif-
ferent model fits, now honoring knowledge from external
sources such as the KEGG database. Credibility of the
interpretation of the new model fits was underlined by
improved prediction performance. Given more detailed
pathway knowledge, e.g., with information on the direc-
tion of gene relations and measures of uncertainty being
available, further improvement of model fits could be
expected. As demonstrated, the proposed boosting algo-
rithm is highly flexible in terms of being able to incorpo-
rate additional sources of knowledge. While further
refinements could be devised, e.g., for including informa-
tion from Gene Ontology, it can already now be expected
to provide for better model fits with better prediction per-
formance in many applications.
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