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Abstract
Background: Protein secretion is a cell translocation process of major biological and technological
significance. The secretion and downstream processing of proteins by recombinant cells is of great
commercial interest. The yeast Kluyveromyces lactis is considered a promising host for heterologous
protein production. Because yeasts naturally do not secrete as many proteins as filamentous fungi, they
can produce secreted recombinant proteins with few contaminants in the medium. An ideal system to
address the secretion of a desired protein could be exploited among the native proteins in certain
physiological conditions. By applying algorithms to the completed K. lactis genome sequence, such a system
could be selected. To this end, we predicted protein subcellular locations and correlated the resulting
extracellular secretome with the transcription factors that modulate the cellular response to a particular
environmental stimulus.

Results: To explore the potential Kluyveromyces lactis extracellular secretome, four computational
prediction algorithms were applied to 5076 predicted K. lactis proteins from the genome database. SignalP
v3 identified 418 proteins with N-terminal signal peptides. From these 418 proteins, the Phobius algorithm
predicted that 176 proteins have no transmembrane domains, and the big-PI Predictor identified 150
proteins as having no glycosylphosphatidylinositol (GPI) modification sites. WoLF PSORT predicted that
the K. lactis secretome consists of 109 putative proteins, excluding subcellular targeting. The transcription
regulators of the putative extracellular proteins were investigated by searching for DNA binding sites in
their putative promoters. The conditions to favor expression were obtained by searching Gene Ontology
terms and using graph theory.

Conclusion: A public database of K. lactis secreted proteins and their transcription factors are presented.
It consists of 109 ORFs and 23 transcription factors. A graph created from this database shows 134 nodes
and 884 edges, suggesting a vast number of relationships to be validated experimentally. Most of the
transcription factors are related to responses to stress such as drug, acid and heat resistance, as well as
nitrogen limitation, and may be useful for inducing maximal expression of potential extracellular proteins.
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Background
The General Secretory Pathway (GSP) is a protein export
process of major biological and technological signifi-
cance. Cell communication, as well as intercellular signal-
ing and growth during development in multicellular
organisms depends on the secretion pathway. The export
of a commercial protein into the extracellular medium by
a recombinant cell can facilitate its downstream process-
ing. The yeast Kluyveromyces lactis is considered a promis-
ing host for heterologous protein production. Because
yeasts naturally do not secrete as many proteins as fila-
mentous fungi, they can produce secreted recombinant
proteins with few contaminants in the medium [1]. An
ideal system for secreting a desired protein could be devel-
oped from analysis of the native proteins. The completed
K. lactis genome sequence provides the tools to construct
such a system [2]. As the genomes of several hemiasco-
mycetes yeasts are now sequenced [3-5] and cross-com-
parison does not reveal significant differences, the
prospect of discovering a potentially significant secreted
protein using bioinformatics techniques is high [6-8]. In
K. lactis, as in other eukaryotes, secreted proteins are typi-
cally recognized by the presence of an N-terminal signal
sequence to direct them to GSP [11]. Signal sequences
usually have a well-characterized structure composed of a
central hydrophobic core (h-region). This consists of an
average of 6–15 amino acid (aa) residues that are flanked
by hydrophilic N- and C-terminal regions. The h-region is
important for correct targeting and membrane insertion
of the peptide. At the polar C-terminal region, helix break-
ing often occurs because of proline and glycine residues
and small uncharged residues at the -3 and -1 positions
that determine the signal peptide cleavage site [9,10]. The
polar N-terminal region is variable in length and fre-
quently positively charged [11]. Although some proteins
lacking N-terminal signal sequences reach the extracellu-
lar medium, the majority of soluble secreted proteins in K.
lactis are likely to be transported via the GSP [1]. A wide
variety of computational methods have been used to pre-
dict the subcellular localization of proteins [12]. The
methods differ in the input data they demand and the
techniques applied to make decisions or predictions
about location. Once the input data type are fixed, the
methods for making predictions are basically by two
methods: the manual construction of explicit rules for
localization prediction using current knowledge of sorting
signals, or applying data-driven, machine-learning tech-
niques (e.g., Neural Networks (NN) or Hidden Markov
Models, (HMMs)) [12]. The latter automatically extracts
decision rules from the sets of proteins with known loca-
tion, without making any prior, detailed assumptions
about the features of interest.

In addition to using direct algorithm analysis to predict
extracellular proteins, the extracellular secretome can be

analyzed through its possible transcription factors (TFs).
TFs are part of the signal transduction pathway that mod-
ulates the cell metabolism in response to environmental
stimuli [13]. The TFs that contain DNA binding motifs are
the component of the signaling pathway that is closest to
the level of the DNA. To a large degree, the combinatorial
presence and absence of transcription factor binding sites
(TFBSs) is responsible for gene regulation complexity [14-
17]. The identification of TFBSs has been used to infer reg-
ulatory networks for several different yeasts [18].

Using an algorithm approach, we proposed identifying
extracellular protein candidates in the yeast K. lactis and
determining TFBSs in the promoters of their genes. Anal-
ysis of the relationship to transcriptional regulators used
the dataset of Bussereau et al [18], and putative promoter
regions 1 kb upstream of the genes that encode the pre-
dicted extracellular proteins.

Results
Prediction of K. lactis extracellular proteins
A flowchart of the algorithms used to generate the data-
base of potential extracellular K. lactis proteins is in Figure
1. Using the standard criteria of SignalP v3.0 [11], and the
NN and HMM scores from 5076 K. lactis open reading
frames (ORFs), 698 ORFs containing consensus
sequences for N-terminal signal peptides and signal pepti-
dase cleavage sites within 10–40 amino acid residues were
predicted. When the 418 deduced proteins harboring N-
terminal signal peptides were submitted to the Phobius
algorithm [19], only 242 were predicted to carry extra
transmembrane domains, excluding the transmembrane
domain of the signal peptide. The following analyses were
conducted with the remaining 176 ORFs. To identify GPI
modification sites, the ORFs were submitted to big-PI Pre-
dictor [20], with the results indicating that 150 ORFs con-
tained a signal peptide, no transmembrane domain, and
no GPI modification site. As some GSP proteins may be
targeted to intracellular organelles rather than the extra-
cellular medium, the algorithm WoLF PSORT [21] was
used to detect conserved addresses to organelles. The out-
come indicated 150 ORFs predicted with extracellular
addresses. Among these, 109 had the highest k-NN score
(~17.78 ± 5.68)l the remaining 41 had lower k-NN scores
(~5.354 ± 3.989) and were excluded, to increase the prob-
ability of selecting actual secreted proteins for further cor-
relation with the transcription factor dataset.

Using a statistical approach, the first GPS criteria, the sig-
nal peptide, was tested against the following datasets: YEP
(yeast extracellular proteins sequences), KLRS (K. lactis
random sequences), the predicted extracellular proteins
determined by WoLF PSORT, and EPMS dataset by Swain
et al [22] (Figure 2). The YEP scores showed NN S/D
greater than 0.66 and HMM around 0.8, whereas KLRS
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Flowchart of the strategy adopted for mining K. lactis gene sequences for extracellular proteins and the outcomeFigure 1
Flowchart of the strategy adopted for mining K. lactis gene sequences for extracellular proteins and the out-
come.
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Analysis of the distribution of SignalP v3.0 scores: (A) 95 yeast extracellular proteins (YEP) dataset; (B) 109 K. lactis predict extracellular proteins; (C) 95 K. lactis ramdom sequences (KLRS) from genome; (D) EPMS dataset from Swain et al [22] (E) Multivariate tests using Hotelling T2 to verify the statistical significanceFigure 2
Analysis of the distribution of SignalP v3.0 scores: (A) 95 yeast extracellular proteins (YEP) dataset; (B) 109 K. 
lactis predict extracellular proteins; (C) 95 K. lactis ramdom sequences (KLRS) from genome; (D) EPMS data-
set from Swain et al [22] (E) Multivariate tests using Hotelling T2 to verify the statistical significance.
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simultaneously presented scores below 0.4 and 0.3 (Figs.
2A and 2C). The comparison between the controls for Sig-
nalP and the secreted ORFs scores revealed that the scores
of the 109 ORFs were very similar to YEP, specifically, NN
S/D was 0.56 and HMM was 0.78 (Figure 2B). Thus, the
standards criteria provided by SignalP were correctly
encountered in all 95 sequences from the positive control.
The EPMS dataset showed a high NN score (>0.8) and
high HMM score (>0.75) in 67% of sequences (Figure
2D). Although the other 33% were not detected as
secreted by the predicted algorithms, the remaining 67%
had a 0.74 probability of being equal to the predicted
dataset according to T-square test (Figure 2E).

To evaluate the criteria for predicting the presence or
absence of N-terminal signal peptides in the K. lactis data-
set, the Hotelling T-square multivariate test (Figure 2E)
was employed on the basis of NN Mean S/D and HMM
scores. The vector parameters for each control set were
compared to the predicted set and confirmed by T-square
test. The estimated 109 ORFs were closer to the YEP data-
set (p = 0.9401) than the KLRS (p < 0.01).

Analysis of annotations
The biological significance of the predicted extracellular
proteins of K lactis was determined on the basis of anno-
tations available at the Genolevures website http://
www.genolevures.org. Of the 109 predicted K. lactis extra-
cellular proteins, 85 were annotated as similar to S. cerevi-
siae, and five as documented K. lactis proteins. Enzymes
were the largest functional group (48%) of known pre-
dicted proteins. A smaller group (4%) was predicted as
having a pheromone or mating-type function. Among the
known sequences, 9% were considered intracellular pro-
teins or wrong predictions (Figure 3A). For those
unknown potential K. lactis extracellular proteins (25%),
the Protein Family database (PFam) was applied to
attempt to find relationships to known protein families
through conserved domains (Figure 3B). The results dem-

onstrated nine singletons among 21 that harbored con-
served domains with varying PFam scores. The alpha
mating factor precursor N-terminus (KLLA0A00154g,
KLLA0F00220g), kappa casein (KLLA0B05731g), NADH
dehydrogenase subunit 2 C-terminus (KLLA0C10054g),
bacterial regulatory protein-Fis family (KLLA0D00660g),
thioredoxin (KLLA0E05544g), mucin-like glycoprotein
(KLLA0E10967g, KLLA0E19657g), and collagen triple
helix repeat (KLLA0F01595g) all gave higher PFam scores.
Analysis of the improbable secreted domains was carried
out by alignment using BLAST tools http://
blast.ncbi.nlm.nih.gov/Blast.cgi. From nine sequences, six
with nonsecreted domains were found to have a possible
relation to extracellular proteins in other taxons.

Relationship between the predicted extracellular proteins 
and transcriptional factors repertoire
The putative promoter region was taken as one kb
upstream of each predicted extracellular protein-encoding
ORF and analyzed using the Yeastract website tool [23] to
identify TFBSs related to S. cerevisiae. The results indicated
the presence of 65 different TFBSs. In addition, the sup-
porting algorithms in Supplementary Materials found 23
TFs homologs in K. lactis when comparing the K. lactis TFs
dataset published by Bussereau et al [18] to S. cerevisiae. At
least two TFBS in each promoter region were established
by this analysis. In the Yeastract database, all the TFs have
Gene Ontology (GO) terms http://www.geneontol
ogy.org, that is, known details about the cellular function
and address. These data (Table 1) showed that all 109
sequences have the TFBS for Mot3p (involved in repres-
sion of a subset of hypoxic genes and repression of ergos-
terol biosynthetic genes), 100 had a site for Stb5p
(activator of multidrug resistance genes), 97 for Fkh1p (a
minor role in the expression of G2/M-specific transcrip-
tion in mitotic cell cycle), 45 for Gcn4p (activator of aa
biosynthetic genes in response to aa starvation), 40 for
Hac1p (regulates the unfolded protein response), 35 for
Mcm1p (pheromone response), 33 for Rgt1p (regulates

Characterization of the predicted proteins from (A) subcellular location in Génolevures annotation (release 3) and (B) by func-tion and conserved domains in Protein Family (PFam 23.0)Figure 3
Characterization of the predicted proteins from (A) subcellular location in Génolevures annotation (release 3) 
and (B) by function and conserved domains in Protein Family (PFam 23.0).
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Table 1: Cluster of transcription factors with GeneOntology terms related to the predicted ORFs

Biological Process T.F. ORFs Description Yeastract/GO

Aerobic/Anaerobic and Sterol metabolism Mot3p 109 Repression of hypoxic genes, several DAN/TIR genes during aerobic growth, and 
ergosterol biosynthetic genes

Hap4p 2 Subunit of the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding 
complex, a transcriptional activator and global regulator of respiratory gene 
expression; provides the principal activation function of the complex

Cell Cycle Fkh1p 97 The expression of G2/M phase genes; negatively regulates transcriptional elongation; 
positive role in chromatin silencing at HML and HMR.

Cbf1p 11 Required for nucleosome positioning at this motif; targets Isw1p to DNA

Ace2p 9 Activates expression of early G1-specific genes, localizes to daughter cell nuclei after 
cytokinesis and delays G1 progression in daughters.

Rlm1p 5 Maintenance of cell integrity; phosphorylated and activated by the MAP-kinase Slt2p

Swi5p 9 Transcription factor that activates transcription of genes expressed at the M/G1 
phase boundary and in G1 phase

Drugs and metal resistance Stb5p 100 Activator of multidrug resistance genes, forms a heterodimer with Pdr1p; interacts 
with a PDRE (pleotropic drug resistance element)

Yap1p 6 Required for oxidative stress tolerance; activated by H2O2; mediates resistance to 
cadmium

Yrr1p 7 Activates genes involved in multidrug resistance; paralog of Yrm1p, acting on an 
overlapping set of target genes

General stress response Hac1p 40 Regulates the unfolded protein response, via UPRE binding, and membrane 
biogenesis; ER stress-induced splicing pathway utilizing Ire1p, Trl1p and Ada5p 
facilitates efficient Hac1p synthesis

Gis1p 20 JmjC domain-containing histone demethylase; transcription factor involved in the 
expression of genes during nutrient limitation; also involved in the negative 
regulation of DPP1 and PHR1

Msn2p 17 Transcriptional activator related to Msn4p; activated in stress conditions, which 
results in translocation from the cytoplasm to the nucleus; binds DNA at stress 
response elements of responsive genes, inducing gene expression

Rtg3p 82 Basic helix-loop-helix-leucine zipper (bHLH/Zip) transcription factor that forms a 
complex with another bHLH/Zip protein, Rtg1p, to activate the retrograde (RTG) 
and TOR pathways (1, 2)

Pheromone response Mcm1p 35 Involved in cell-type-specific transcription and pheromone response; plays a central 
role in the formation of both repressor and activator complexes.

Amino acid/Nitrogen starvation response Gcn4p 45 Amino acid biosynthetic genes in response to amino acid starvation; expression is 
tightly regulated at both the transcriptional and translational levels

Met4p 6 Responsible for the regulation of the sulfur amino acid pathway, requires different 
combinations of the auxiliary factors Cbf1p, Met28p, Met31p and Met32p

Carbon source response Rgt1p 33 Glucose-responsive transcription factor that regulates expression of several glucose 
transporter (HXT) genes in response to glucose; transcriptional activator and 
repressor
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expression of several HXT glucose transporter genes in
response to glucose), 28 for Nrg1p (mediates glucose
repression and negatively regulates a variety of processes
including filamentous growth and alkaline pH response),
21 for Adr1p (peroxisomal protein genes and genes
required for ethanol, glycerol, and fatty acid utilization),
20 for Pho4p (phosphorylation at multiple sites and by
phosphate availability), and 06 for Yap1p (required for
oxidative stress tolerance; mediates resistance to cad-
mium). From this analysis, the TFs dataset is estimated to
be a group that us likely to have a major influence on the
extracellular secretome.

The relationship between the transcriptional regulators
and predicted extracellular proteome has great complex-
ity. Therefore, to create an ab initio model, the data were
shaped by graph theory. One of the graph representations

was a square-directed non-weighted adjacency matrix,
with 134 rows and columns. Among them, 109 were the
predicted proteins identified in this study, 25 with their
related TFs. The graph was created with 134 nodes and
884 edges. As illustrated in Figure 4, a three-spanning tree
was extracted to illustrate the complexity of the regulatory
network for each predicted ORFs. Three well-known extra-
cellular proteins in K. lactis were use, along with α-factor
mating pheromone (KLLA0E19075g), invertase
(KLLA0A10417g), and acid phosphatase precursor
(KLLA0A00176g). Supporting material can be found at
our website, http://www.yeastmolphys.ufv.br/klactis.

Discussion
Because of its distinctive physiological properties, K. lactis
has become an important model as a non-Saccharomyces
yeast. In addition, K. lactis has great potential for biotech-

Adr1p 21 Required for transcription of the glucose-repressed gene ADH2, of peroxisomal 
protein genes, and of genes required for ethanol, glycerol, and fatty acid utilization

Azf1p 15 Involved in induction of CLN3 transcription in response to glucose; genetic and 
physical interactions indicate a possible role in mitochondrial transcription or 
genome maintenance

pH stress response Nrg1p 28 Recruits the Cyc8p-Tup1p complex to promoters; mediates glucose repression and 
negatively regulates a variety of processes including filamentous growth and alkaline 
pH response

Phosphate response Pho4p 20 Binds cooperatively with Pho2p to the PHO5 promoter; function is regulated by 
phosphorylation at multiple sites and by phosphate availability

DNA Damage Rph1p 17 JmjC domain-containing histone demethylase which can specifically demethylate 
H3K36 tri- and dimethyl modification states; transcriptional repressor of PHR1; 
Rph1p phosphorylation during DNA damage is under control of the MEC1-RAD53 
pathway

Table 1: Cluster of transcription factors with GeneOntology terms related to the predicted ORFs (Continued)

Spanning trees of the carbon and aerobic response of the predicted transcriptional regulatory networks of (A) acid phos-phatase precursor (KLLA0A00176g) (B) Invertase (KLLA0E19017); (C) α-factor mating pheromone (KLLA0E19075g); Tran-scriptional factors are represented by the small ellipses and target ORFs by larger ellipseFigure 4
Spanning trees of the carbon and aerobic response of the predicted transcriptional regulatory networks of (A) 
acid phosphatase precursor (KLLA0A00176g) (B) Invertase (KLLA0E19017); (C) α-factor mating pheromone 
(KLLA0E19075g); Transcriptional factors are represented by the small ellipses and target ORFs by larger 
ellipse. The edges are the presence of TFBSs in putative promoter region.
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nological applications including expression of heterolo-
gous proteins [2]. These possibilities motivated us to
study the global extracellular proteome and correlate it to
TFs using a bioinformatics approach. The final results
have shown 109 proteins that are potentially secreted by
K. lactis. In addition to using the TMHMM and TargetP
algorithsm used by Lee et al [10] and Swaim et al [22], the
Phobius [19] and WoLF PSORT [21] were applied to find
transmembrane domains and subcellular addressing that
would direct targeted proteins to organelles such as the
endoplasmic reticulum, golgi, and proteasomes. The
WoLF PSORT algorithm appeared to be more accurate;
also, when the dataset of secreted proteins detected exper-
imentally by Swain et al [22] was compared by the predict-
ing methods of Lee et al [10], it has detected more proteins
(37) than WoLF PSORT (33). However, analysis of the
prediction error rate was 69.3% for WoLF PSORT and
about 79.2% for TargetP. The appearance of proteins in
the medium changes in different physiological conditions
[24], so the predictive methods chosen here decrease error
rates and improve the chances of obtaining an actual
extracellular protein in a given physiological condition.
The error reduction may come from the incremented algo-
rithmic Phobius [19] combining transmembrane topol-
ogy and signal peptide prediction, and the new algorithm
WoLF PSORT [21] to predict the subcellular localization
of proteins on the basis of their amino acid sequences
using k-NN (k-nearest neighbor). As described by Swain et
al [22], in the signal peptide detection step, the prediction
algorithm SignalP v3.0 [11] was used to give two NN pre-
diction scores, mean S and mean D, and one HMM score.
These NN scores were used for statistical analysis in the
first step to identify extracellular proteins by the conserved
secretory pathway features of a signal peptide and a signal
peptidase cleavage site [10]. Accuracy in identifying extra-
cellular proteins may be decreased because proteins that
act in the periplasmic space or the cell wall also pass
through the GPS. Motifs or conserved addresses for the
perisplasmic space or cell wall have not yet been found.
Thus, the strategy adopted to classify the results in this
study focused on annotation terms and on PFam, a data-
base of conserved domains and families [25]. The Genole-
vure third release is the main publicly available
annotation dataset for K. lactis sequences. Therefore, the
PFam [25] database was used in addition to updating the
Genolevures annotation. Both showed five K. lactis anno-
tated secreted proteins: acid phosphatase, repressible acid
phosphatase precursor, guanosine diphosphatase, exo-
1,3-beta-glucanase and invertase. Although some of these
proteins have not been described as acting in the extracel-
lular space according to Domínguez et al [26], S. cerevisiae
proteins are not found free in the extracellular medium
but are retained in the periplasmic space or associated
with the cell wall. K. lactis, however, does not seem to have
the same characteristic; in fact, it has been reported to

secrete high molecular weight proteins [1]. Thus, in this
study, proteins from the periplasmic space or associated
with the cell wall have been considered as part of the
potential extracellular proteins dataset.

Bioinformatics identifications are probabilistic in nature,
so the advantage of our analysis lies in the low cost and
high speed with which these identifications can be
obtained [27,28]; hence, this analysis exploited an ab ini-
tio model of physiological inference. The model was cre-
ated using the computational extracellular proteome
dataset, the transcriptional regulators repertoire mined by
Bussereau et al [18], and the Yeastract methodology cre-
ated by Teixeira et al [23]http://www.yeastract.com. Since
gene expression programs depend on recognition of spe-
cific promoter sequences by transcriptional regulatory
proteins [18], we decided to analyze the relationship
between the consensus sequences or DNA binding motifs
and transcriptional regulators. One of the first changes
that occurs in a cell after an environmental stimulus is the
content of transcriptional regulators [24]. When a set of S.
cerevisiae transcriptional regulators orthologues and their
related DNA motifs binding sites was identified, a high
level of polymorphism, or DNA binding factors capable of
binding to both specific and nonspecific sequences, was
observed [23,29]. Because of the complex relation
between TFs and the predicted secretome, the data
obtained was analyzed using graph theory [24]. The
empirical model may suggest many conditions that have
not yet been thought of by intuitive inference. The GO
terms described for each TF dataset showed possible
major interactions related to stress and the cell cycle. The
results of this study are in accordance with the literature,
because expressions of extracellular proteins increase in
stress situations or in the exponential phase when the cell
requires proteins that interact in the cell wall or in the
periplasmic space [1]. However, for a good secretion sys-
tem, a few different proteins that can show high expres-
sion and secretion are needed. An ab initio model allows
searching for both these proteins and the environmental
conditions that might improve their expression and secre-
tion.

Conclusion
Based on selected algorithms SignalP v3, Phobius, bigPI-
predictor and Wolf PSORT, and adopting the highest Wolf
PSORT k-NN scores and using multivariate T-square anal-
ysis for verification, we predicted an extracellular K. lactis
secretome of 109 proteins. The well-known extracellular
K. lactis proteins such as α-factor mating pheromone,
invertase, and acid phosphatase precursor were among
the 109 predicted proteins. In addition, by considering
the Genolevure annotations and comparing to PFam,
48% of the known proteins had enzyme activity. By apply-
ing the S. cerevisiae Yeastract database, 65 transcription
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factor orthologues were found, 23 of which had binding
sites in the promoters of the 109 predicted K. lactis secre-
tome. An ab initio model of physiological inference is pre-
sented. The model is a graph with 134 nodes and 884
edges that suggests a large number of relationships
between the proteins and physiological conditions that
can be experimentally validated. Most of the predicted TF
for extracellular proteins are related to stress responses,
such as drug, acid and heat resistance, as well as nitrogen
limitation, which may prove useful for inducing maximal
expression of the potential extracellular proteins. A condi-
tion that favors secretion could be used to design a system
to improve the secretion of a desired protein. our model
is stored in a public database http://www.yeastmol
phys.ufv.br/klactis.

Methods
Data Sets
The main dataset analyzed in this study was in two files in
FASTA format. Both files contained 5076 K. lactis nucle-
otide and aa sequences. These data are available in the K.
lactis third public release from the Génolevures consor-
tium http://cbi.labri.fr/Genolevures.

To test the criteria for extracellular proteins, a validation
set consisting of 95 non-redundant yeast extracellular pro-
teins sequences (YEP) and 95 nonredundant K. lactis ran-
dom sequences (KLRS) was assembled. The YEP dataset
was obtained by searching in the UniProt protein data-
base http://www.uniprot.org. The KLRS was assembled
using a random number generator and a sequence seeker
algorithm. Another validation dataset was manually
extracted from Swain et al [22], consisting of 81 K. lactis
extracellular proteins identified by mass spectrometry
analysis (EPMS).

The K. lactis TF dataset used in this study was from
Bussereau et al [18]. The retrieved data were composed of
102 TFs identified as orthologues of S. cerevisiae transacti-
vators.

Algorithms and Strategy
The entire K. lactis predicted proteins dataset was applied
to SignalP v3.0 http://www.cbs.dtu.dk/services/Sig
nalP[11] to identify N-terminal signal peptides. To define
a positive SignalP hit, the following simultaneous criteria
were used: (a) signal peptide predicted by SignalP NN
with the scores mean S and mean D; (b) signal peptide
predicted by SignalP HMM considering the value of prob-
ability, and (c) signal peptide cleavage site located 10–40
aa from the N-terminus.

The group of predicted ORFs that encoded sequences with
N-terminal signal peptides was analyzed according to the
three additional characteristics of transmembrane

domain, GPI modification site predicted by Phobius
http://phobius.sbc.su.se[19], and PI-predictor http://
mendel.imp.ac.at/gpi/gpi_server.html[20]; the subcellu-
lar location was estimated using WoLF PSORT http://
wolfpsort.org[21] to identify signal addressing for subcel-
lular locations. The obtained dataset comprised all
sequences of deduced proteins potentially acting in extra-
cellular space. The outcome set was analyzed by the PFam
database http://www.sanger.ac.uk/Software/Pfam[25] in
order to update the Genolevure annotations.

To correlate the computational extracellular proteome
and the TF repertoire, a supporting algorithm was created
on the basis of ANSI/ISO C++ strings operations [30] in
the K. lactis chromosomes dataset. This retrieved one kb
upstream sequence as the putative promoter region from
each predicted extracellular ORF. The recovered dataset is
stored in a FASTA file with the relevant identification. The
relationship between this computational extracellular
proteome and the transcriptional regulators repertoire
was made according to Yeastract [23]. The Yeastract web
tools http://www.yeastract.com and database were used
to find associated TFBSs in S. cerevisiae. A second support-
ing C++ [30] algorithm was created to remove S. cerevisiae
TFs nonhomologous to K. lactis. The Graphviz (Graph Vis-
ualization Software, http://www.graphviz.org) package
was used to draw the graph, and the spanning trees oper-
ations were implemented by Boost library 1.36 http://
www.boost.org.

Statistical Analysis
Multivariate analysis of variance was applied to verify the
accuracy and determine the error rate of the computa-
tional secretome. The SignalP NN scores (mean S and D)
and SignalP HMM probability were used as values in sta-
tistical analysis to determine the matrices of variance-cov-
ariance of the predicted and validations sets, and the
Hotelling T2 multivariate test [31] was applied to calculate
the probability of equality of the means vectors.
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