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Abstract
Background: DNA sequence binding motifs for several important transcription factors happen to be self-overlapping.
Many of the current regulatory site identification methods do not explicitly take into account the overlapping sites.
Moreover, most methods use arbitrary thresholds and fail to provide a biophysical interpretation of statistical quantities.
In addition, commonly used approaches do not include the location of a site with respect to the transcription start site
(TSS) in an integrated probabilistic framework while identifying sites. Ignoring these features can lead to inaccurate
predictions as well as incorrect design and interpretation of experimental results.

Results: We have developed a tool based on a Hidden Markov Model (HMM) that identifies binding location of
transcription factors with preference for self-overlapping DNA motifs by combining the effects of their alternative
binding modes. Interpreting HMM parameters as biophysical quantities, this method uses the occupancy probability of a
transcription factor on a DNA sequence as the discriminant function, earning the algorithm the name OHMM:
Occupancy via Hidden Markov Model. OHMM learns the classification threshold by training emission probabilities using
unaligned sequences containing known sites and estimating transition probabilities to reflect site density in all promoters
in a genome. While identifying sites, it adjusts parameters to model site density changing with the distance from the
transcription start site. Moreover, it provides guidance for designing padding sequences in gel shift experiments. In the
context of binding sites to transcription factor NF-κB, we find that the occupancy probability predicted by OHMM
correlates well with the binding affinity in gel shift experiments. High evolutionary conservation scores and enrichment
in experimentally verified regulated genes suggest that NF-κB binding sites predicted by our method are likely to be
functional.

Conclusion: Our method deals specifically with identifying locations with multiple overlapping binding sites by
computing the local occupancy of the transcription factor. Moreover, considering OHMM as a biophysical model allows
us to learn the classification threshold in a principled manner. Another feature of OHMM is that we allow transition
probabilities to change with location relative to the TSS. OHMM could be used to predict physical occupancy, and
provides guidance for proper design of gel-shift experiments. Based upon our predictions, new insights into NF-κB
function and regulation and possible new biological roles of NF-κB were uncovered.

Published: 7 July 2009

BMC Bioinformatics 2009, 10:208 doi:10.1186/1471-2105-10-208

Received: 20 June 2008
Accepted: 7 July 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/208

© 2009 Drawid et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 26
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10/208
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19583839
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2009, 10:208 http://www.biomedcentral.com/1471-2105/10/208
Background
Identification of short, degenerate DNA sequences (sites)
that bind to a transcription factor is a difficult problem
[1]. The particular sub-problems of identification of sites
corresponding to self-overlapping motifs, determination
of a threshold for this purpose, biophysical interpretation
of statistical quantities used in probabilistic site identifica-
tion methods and estimation of occupancy of these sites
by a transcription factor have not been addressed in detail
before. These problems form the focus of this study.

Several transcription factors bind to self-overlapping DNA
motifs. When a motif overlaps with itself with a particular
shift, the transcription factor can bind in more than one
sequence windows, i.e. to overlapping sites. Examples
include Drosophila developmental transcription factor
Hunchback [2], worm PHA-4 [3], human Sp-1, C/EBPal-
pha, yeast ADR1, MIG1, chicken Cdx-1, Arabidopsis Aga-
mous, etc. [4]. Furthermore, when binding by the
transcription factor in either orientation is permissible,
the corresponding DNA site and its reverse complement
can be considered as two different types of sites that are
overlapping, as long as the motif is not exactly palindro-
mic. Problems similar to the identification of overlapping
sites also arise in the context of prediction of nucleosome
positioning [5].

Self-overlapping motif of NF-κB family of factors
The NF-κB family of transcription factors is a prominent
example of transcription factors with self-overlapping
motifs. These factors are key mediators of the cellular
response to infection, injury, inflammation, or other
stress conditions that lead to rapid alterations in cellular
gene expression [6,7]. The vertebrate members include the
c-Rel, RelA, RelB, NFKB1/p105 and NFKB2/p100 proteins
that form homo- or heterodimers with one another and
bind to similar sites. These NF-κB binding sites (κB sites),
with the consensus being GGGRNNYYCC [8], often over-
lap because a κB site contains multiple G's at the 5' end
and multiple C's at the 3' end with a high probability (Fig-
ure 1). For a good κB site, when the sequence window is
shifted by one base in either the 5' or the 3' direction the
resulting sequence is also a putative κB site. Moreover, we
can have additional possibility of self-overlap because the
reverse complement of a κB site is often a κB site, allowing
functional binding in the opposite direction. Many com-
putational methods do not take into account these alter-
native binding modes while scoring a candidate
regulatory site.

Ignoring the self-overlapping nature of the motif can also
complicate the interpretation of in vitro experiments. For
example, a 3' padding sequence, starting with nucleotide
C, in a gel shift experiment can form a spurious strong κB
site and thus confer higher binding affinity to the experi-

mental sequence even when the test sequence, in the con-
text of the native promoter, makes for a very weak κB site.
A computational method that naturally considers multi-
ple binding windows and help in the design of padding
sequences is useful for avoiding this problem.

The commonly used site identification methods often
assume equal probability of a site everywhere in a partic-
ular window around the transcription start site (TSS) and
thus fail to adjust according to the observed distribution
of sites within the gene structure. Whereas proximal pro-
moters, up to 200 bp upstream of the TSS, contain several
sites, further upstream distal promoters contain fewer
sites [9,10]. While identifying sites, a method should
adjust its parameters to reflect this change in the density
of sites with respect to the distance from the TSS.

A computational method that links to the biophysical
process of transcriptional regulation can offer more bio-
logical insight than most of the current site identification
methods [11,12]. Such a method can interpret statistical
quantities as biophysical variables like binding energy
and transcription factor concentration. It can also esti-
mate how often a transcription factor is bound to the gene
promoter, i.e. its occupancy probability. Interestingly, the
use of occupancy probability as a discriminant function
during site identification has a number of advantages (dis-
cussed later). One advantage of this approach is that it
goes beyond just site identification and provides a meas-
ure of the importance of a site in modulating gene regula-
tion. For example, for an activator, highly occupied sites
may result in high gene expression and thus may be bio-
logically more significant. Most methods that identify
transcription factor binding sites or regulatory modules,
however, leave unexplored the occupancy of the transcrip-
tion factor on the promoter and its impact on gene regu-
lation.

The lack of biophysical interpretation prevents these
methods from using a natural threshold for classifying
sequences into sites. They declare that a sequence is a site
if its score is above an arbitrary threshold or is statistically
significant compared to the score of the random back-
ground. They often have a high threshold resulting in sev-
eral false negatives or a low threshold resulting in several
false positives. Thus, identification of weak sites is diffi-
cult. On the contrary, saturation effects in the physical
occupancy provides a natural threshold and this fact has
been utilized to develop class support vector machines
like QPMEME [11,12]. Alternatively, Hidden Markov
Models (HMMs), when interpreted as biophysical mod-
els, overcome this problem by learning the threshold
based on the transition probability to the motif state,
namely the hidden state associated with a sequence pat-
tern which is distinct from the background.
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HMM for binding site identification
HMMs, now popular in Bioinformatics for more than a
decade [13], have been used in two different ways for
motif identification. (1) For identification of one or more
occurrences of non-overlapping sites: 'Profile HMMs' [14-
16], originally designed to model protein domains, have
more recently been used to identify binding sites of tran-
scription factors, for example, of cAMP receptor protein in
cyanobacterium Anabaena [17], liver X receptor [18] and
CREB [19]. A profile HMM library was built using TRANS-
FAC sequences to classify transcription factors [20]. In a
profile HMM, each position within a motif has three
states. A match state is associated with a nucleotide being
present at that position and has corresponding emission
probabilities. A deletion state corresponds to absence of
any nucleotide at that position. An insertion state allows
for insertion of nucleotides between the current position
and the next position within the motif, and has its own

emission probabilities. (2) For identification of cis-regula-
tory modules (CRMs) that contain multiple sites of differ-
ent types: This is usually performed using 'motif HMMs'
[21-26]. In a motif HMM, the entire motif, i.e. all posi-
tions within the motif, is represented by one state. Differ-
ent states correspond to different motif types (i.e. motifs
associated with different transcription factors). Phyloge-
netic conservation has been incorporated in motif HMMs
to reduce false positives [23,27-31].

Both types of HMMs, however, do not generally train their
parameters properly. A profile HMM has a complicated
architecture and requires a large number of parameters as
a consequence. Because the number of known sites is gen-
erally small, training of a profile HMM using known sites
in their native promoters (which effectively requires their
simultaneous alignment) is usually not possible. There-
fore, a profile HMM is generally trained using pre-aligned

Overlapping κB sitesFigure 1
Overlapping κB sites. A. Sequence logo of the κB site, based upon the initial motif profile used in HMM training, where the 
overall height of the nucleotide stack at each position is proportional to the information content at that position and the height 
of each nucleotide within the stack is proportional to its frequency. B. Four overlapping κB sites are present on the two 
strands in three adjacent 10-base pair sequence windows.
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sites. Because the whole promoters containing the train-
ing sites are not used, transition probability to the motif z
from background is not trained, and the relationship
between transition and emission probabilities is likewise
not captured. Motif HMMs, on the other hand, are more
focused on identifying motifs of multiple types. But while
they attempt to estimate the transition probability to the
motif z, they generally use only the promoters containing
the motifs for training z and thus overestimate z. Moreo-
ver, they usually train emission probabilities of motifs
separately using pre-aligned training sites, thus ignoring
the effect of z on emission probabilities.

Many of these HMMs use the likelihood or the Viterbi
algorithm for scoring (see the Discussion section), and
thus end up using an arbitrary classification threshold.
Furthermore, they leave their relationship with biophysi-
cal models rather obscure and thus fail to calculate the
occupancy probability. These shortcomings are in addi-
tion to their basic failure to explicitly consider the effect of
multiple overlapping sites in the Viterbi method.

Methods specifically developed for κB site identification
In an original approach to specifically identify κB sites,
Udalova et al. developed a principal coordinate model
[32-34]. They determined relative binding affinities of κB
sites using experimental quantitative binding data. They
selected a subset of the 256 possible variants of the fully
palindromic NF-κB binding consensus sequence GGRRN-
NYYCC such that no variant differed from the selected
sequences or their reverse complements by more than one
nucleotide. They mapped these sequences to a Euclidean
space and used the largest principal components for least-
square linear regression of the logarithm of binding affin-
ity in a gel shift assay or microarray. This model automat-
ically incorporated effects of interactions between base
pair positions in the binding site, its predictions were
highly correlated with experimental binding data and it
identified site positions responsible for differential bind-
ing of NF-κB family members consistent with crystallo-
graphic studies. However, the model's disadvantages are
that it (1) requires experimental quantitative binding data
of all selected sequences and (2) only includes variants of
the consensus sequence. Because several known κB sites
do not fit the consensus sequence [4], inclusion of all pos-
sible 10-mer variants for this model will require binding
experiments with a large number of sequences, making
this model infeasible. Furthermore, this model also suf-
fers from the limitations of site identifications described
above.

Alternative interpretation of HMM as a physical binding 
model
Even though in the context of site identification an HMM
is usually interpreted as a sequence generative model, we

focus on a less familiar interpretation as a physical bind-
ing model of a transcription factor on DNA. This interpre-
tation leads us to transform the statistical HMM model
into a biophysical one. We can then determine the occu-
pancy probability of a transcription factor on a DNA
sequence, and think of the prior probability of the motif
(transition probability to the motif z) as a measure of tran-
scription factor concentration and the weight matrix
(motif emission probabilities) as a measure of binding
energies. More importantly, the biophysical model offers
a principled threshold for classifying sequences into sites.
The statistical mechanics model was utilized in [22] while
the equivalent HMM representation is used in [23].
Although we do not know of a paper explicitly describing
the equivalence of these two approaches, the work on
nucleosome positioning by Segal et al. [5] utilizes this
relationship.

An HMM is commonly used as a generative model of a
spatial or time series sequence in the machine learning
field [35]. In our context, the HMM consisting of two
kinds of states – the background state and motif states –
generates a sequence from 5' to 3'. At any position in the
sequence, the HMM (1) determines the probabilities of
the motif and background states at the previous position,
(2) calculates the probability of either state at the current
position using the transition probabilities and (3) gener-
ates the new nucleotide based upon the hidden states'
emission probabilities.

We could also consider the HMM as a physical binding
model that estimates the occupancy probability of a tran-
scription factor on a particular position of a DNA
sequence, i.e. how often the transcription factor is bound
to that position of the DNA sequence. The relation
between the two interpretations of an HMM, are as fol-
lows. In our particular HMM, the start positions of a motif
state, with a particular orientation, specifies the hidden
states. One could ask define the conditional probability
distribution of the hidden states, or, equivalently these
positions, is given the parameters and the observed
sequence. It turns out that this conditional distribution is
exactly the same as that of the edge positions of bound
transcription factors on DNA in the statistical mechanical
model. The occupancy probability at a position is the
probability of finding a motif state at that position in the
HMM language.

If we ignore the possibility of binding in multiple overlap-
ping windows, then, the probability at the jth position of
sequence s being the beginning of a motif is

, where Wj is the weight matrix score

of the motif starting at the jth position of the sequence

p sj
bound z eWj
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( ) .
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(see Methods). We claim that this quantity can be mapped
to the occupancy probability, as we will see below. Thus,
the two factors determining occupancy probability are (i)
the transition probability to the motif z and (ii) the meas-
ure of distinctness of the emission probabilities of the
motif from that of the background (weight matrix). Both
these factors need to be high for the transcription factor to
be bound to a particular position in a DNA sequence with
high probability. For example, even if the weight matrix
score is high, occupancy probability cannot reach one if z
is really small. A site identification method based only on
a weight matrix has no way of dealing with this interplay
with z.

The HMM training techniques offer two advantages over
the calculations made using first principles. First, the
HMM Baum-Welch procedure trains the transition and
emission probabilities. This produces optimized values of
z and the weight matrix, which are essential for an accu-
rate estimation of occupancy probability. Secondly, as
mentioned above, the HMM training procedure also cal-

culates an intermediate variable called the gamma (γ) var-
iable. The occupancy probability at a particular position is
given simply by the gamma variable of the motif state at

that position: , where  and  are

the gamma values of the motif and background states at
that position, respectively (see Additional file 1). Thus,
the calculation of occupancy probability in a new
sequence requires a simple extension of the scoring proce-
dure in which the gamma variable is computed just like
during the training procedure.

In a biophysical model, based on thermodynamics princi-
ples, occupancy probability can be written as

, where [P] is the concentra-

tion of a free transcription factor at equilibrium, Ej(s) is

the binding energy at position j,  where Kb is the

Boltzmann's constant, and T is the absolute temperature
[11]. A comparison of this equation with the equation of

probability obtained from the HMM gives us Wj = - βEj(s)

and z = [P]. Thus, the weight matrix represents binding
energy [1]. In addition, the transition probability to the
motif z corresponds to the free transcription factor con-
centration. As the transcription factor concentration
increases, the transition probability to the motif increases

and we expect higher occupancy by the transcription fac-
tor on the DNA.

One main focus of this study is to determine a good
threshold for the classification of sequences into binding
sites. Use of an arbitrary threshold while using a purely
statistical quantity as a discriminant function is prone to a
high number of false positives or false negatives. A good
discriminant function has a physical interpretation, it
relates to the biological significance of a sequence and it
offers a natural threshold for classification. Moreover, the
classification method needs to be able define the above
threshold based on training sequences.

We use occupancy probability as a discriminant function
to classify sequences into sites because it has the following
benefits. First, unlike a purely statistical entity, it has a
straightforward physical interpretation. A transcription
factor's occupancy on the promoter determines gene
expression. Second, highly occupied binding sites may be
physiologically more significant. Thus, occupancy proba-
bility not only helps in classifying sequences as binding
sites but also offers insight into their influence on gene
expression. Third, occupancy probability has a "natural"
threshold at 0.5 due to its Fermi-Dirac distribution with
respect to binding energy [11]. Sequences with binding
energy less than the chemical potential have occupancy
probability greater than 0.5 and hence can be classified as
sites. Because of our focus on occupancy, we call this
model OHMM (Occupancy via Hidden Markov Model).

The greatest benefit of the transformation of an HMM to
a biophysical model is that it enables the HMM to learn
the threshold for classification of sequences into sites in a
principled way. We have seen above that the occupancy
probability depends upon the transition probability to
the motif z and the weight matrix, both of which are
trained by an HMM. Thus, when an HMM uses occupancy
probability as a discriminant function, it learns the natu-
ral threshold based on the training sequences. Because of
this accurate estimation of the threshold, an HMM is
expected to identify weak sites much more accurately with
a fewer false positives.

In summary, we describe an HMM, applied to NF-κB, that
identifies overlapping sites, learns the threshold in a prin-
cipled manner by training emission probabilities using
known sites in their native promoters and training transi-
tion probabilities using promoters in an entire genome,
estimates the transcription factor's occupancy probability,
and adjusts parameters reflecting the distance from the
TSS while scoring. The structure of hidden states in
OHMM is indicated in Figure 2. We demonstrate that the
occupancy probability predicted by OHMM correlates
well with the binding affinity in gel shift experiments.

p sj j
m

j
b( ) = = -g g1 g j

m g j
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High evolutionary conservation scores and enrichment in
experimentally regulated genes suggest that the predicted
sites might be functional.

Results
HMM training
Training OHMM consists of estimating two sets of param-
eters: (1) the emission probabilities of each motif state
(motif profile) and the background, and (2) the transition
probabilities that depend upon the transition probability
to the motif (z). While an HMM needs to be trained using
site-rich sequences to learn the motif profile, training on
random sequences is required to learn z reflecting the site
density in the promoters of all genes in the human
genome. We therefore estimated HMM parameters in two
steps. We first trained all HMM parameters using site-rich
sequences and thus learned the emission probabilities.
We then fixed the emission probabilities and trained the
transition probabilities using randomly selected human
promoters to estimate z separately for the TSS-800:TSS
(upstream 800 bp) and TSS:TSS+100 (downstream 100
bp) regions, where TSS is the transcription start site. The
reason for separate z estimation in these two types of
regions is that κB site density is different upstream and
downstream of the TSS.

Training the emission probabilities

In the first training step, we used two types of site-rich
sequences of different lengths and various initial z's to train
all HMM parameters and determine the emission probabil-
ities to be used in further analysis. Trained motif profiles of
"TSS-n HMMs," i.e. HMMs trained on promoters consisting
of n bases upstream of the TSS of human genes known to

contain a κB site, appear similar to the background emis-

sion probabilities regardless of the promoter length and
initial z. On the other hand, trained motif profiles of "sur-
round-50" or "surround-100 HMMs," i.e. HMMs trained

on 50 or 100 bp sequences each consisting of a known κB
site and surrounding region, with a reasonable initial z
(between 0.0001 and 0.01), are distinct from the back-
ground (see Figure 3A, Additional file 2). They are also dis-
tinct from the initial motif profile, as their symmetrical
Kullback-Leibler (KL) divergences (defined as

, where Pi and Qi are

the emission probability distributions of the ith motif posi-
tions of motif profiles P and Q, � is the motif length and
DKL is the log e-based KL divergence) with respect to the ini-

tial motif profile are high (0.49 and 0.5, respectively; in
comparison, the KL divergences between the initial motif
profile and 100 multinomial distributions simulated from
the initial motif profile have a normal distribution with
mean 0.0015 and standard deviation 0.00038). The trained
motif profiles are slightly weaker than the initial motif pro-
file, i.e. more similar to the background. In a surround-50
or surround-100 HMM, any initial z between 0.0001 and
0.01 results in the same trained motif profile, indicating
that perhaps a local optimum is reached. Trained motif
profiles of surround-200 HMMs, however, appear more
and more like the background as the initial z increases
above 0.001. Trained motif profiles of surround-400
HMMs appear similar to the background regardless of the
initial z. We used the trained motif profile of the surround-
50 HMM for further analysis (Figure 3A).

1
2

1i

l

KL i i KL i iD P Q D Q P
=
å +( ( || ) ( || ))

HMM hidden states for κB sitesFigure 2
HMM hidden states for κB sites. OHMM consists of 21 states. The background state is colored red and designated by B. 
Each of the 20 motif states corresponds to each of the ten positions within the κB motif on the two DNA strands. The motif 
states are colored yellow and designated using M, the position within the motif and the strand. The emission probabilities of 
the motif states on the two strands are flipped from 5' to 3' so as to represent identical binding irrespective of the motif strand. 
Non-zero transition probabilities between states are represented by black arrows and their values are shown.
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Trained HMM ParametersFigure 3
Trained HMM Parameters. A. Sequence logo of the motif profile of the HMM trained on 50 bp sequences each consisting 
of a known κB site and surrounding region (surround-50 HMM) with initial transition probability to the motif (z) equal to 0.02. 
B. The estimated transition probability to the motif (z) for upstream 800 bp and downstream 100 bp regions with respect to 
the transcription start site (TSS) as the number of randomly selected training genes increases. The estimated z stabilizes after 
the addition of a few thousand genes. Each training set contains all sequences with known κB sites in the relevant region (20 
and 4 known sites for the upstream 800 bp and downstream 100 bp regions, respectively).
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Estimation of the transition probability to the motif
In the second training step, we estimated z by training the
transition probabilities of the above surround-50 HMM
using random sequences while keeping its emission prob-
abilities constant. We estimated z separately for the
upstream 800 bp and downstream 100 bp regions. In each
case, we determined human promoters with known κB
sites in that region, progressively added randomly selected
human promoters to the list and estimated z. As expected,
the z estimate decreased with the addition of random
sequences until it stabilized after the addition of a few
thousand promoters (see Figure 3B). The estimated z's for
the upstream 800 bp and downstream 100 bp regions of
all genes in the human genome are 0.00017 and 0.00012,
respectively.

Effect of the nature and length of training sequences, 
initial transition probability to the motif (initial z) and 
training of motif profile on trained z
We examined the effect of the nature and the length of
training sequences, the initial z (transition probability to
the motif) and the effect of the motif profile on trained z.
Motif profile was kept fixed in this investigation to isolate
the effect on z. When trained on TSS-n promoters and the
initial motif profile, z is inversely proportional to the
training promoters' length in the range between 500–
3000 bp. Hence, the quantity z is relatively constant at
~0.9 (Figure 4). It drops slightly between 500 to 200 bp
and then substantially after 200 bp due to the lack of κB
sites in the shorter training promoters. When trained on
surround-n promoters and the initial motif profile, the
trained z is again inversely correlated to the training pro-
moters' length, but the above quantity is higher at ~1.8 (z
= 0.0347, 0.0175 and 0.0087 when n = 50, 100 and 200,
respectively). This quantity is even higher at ~1.9 when a
slightly weaker motif profile corresponding to a surround-
n HMM is used (and kept fixed) instead of the initial
motif profile (z = 0.0363 and 0.02 when n = 50 and 100,
respectively). The initial z of TSS-n or surround-n HMMs
in the range between 0.0001 and 0.1 does not affect the
trained z, probably because a global optimum is reached
after a few expectation maximization (EM) iterations dur-
ing training.

Varying z with respect to the distance from the TSS while 
scoring
As mentioned in the background, site density decreases in
locations that are increasingly further upstream of the TSS
[9,10]. Also, site density at a location in a sequence is pro-
portional to the transition probability to the motif (z) at
that location. Therefore, while predicting sites in
upstream 800 bp regions, we modeled z using an expo-
nential functional form such that a sequence close to the
TSS had a higher site density than a sequence further
upstream. The maximum likelihood estimate of the mean
distance of κB sites upstream of the TSS was 170 bases.

Interestingly, the estimate of the mean distance using the
median was about the same (169 bases). By equating the
expressions for the site density per promoter when z had
a uniform or exponential function form, the scale factor in
the exponential form was z0 = 0.137 for the uniform z =
0.00017 obtained in training (see Methods for details). A
different transition probability matrix was generated for
each upstream position based on the value of z at that
position and was used to calculate occupancy probability.
On the other hand, when identifying κB sites in the down-
stream 100 bp regions, we used location-independent
transition probabilities based on the uniform z of
0.00012 obtained in training. This choice was made due
to the paucity of evidence of positional dependence of site
density in these regions.

OHMM performs better than a WM
The ROC analysis shows that OHMM performs better
than a weight matrix (WM) (Figure 5). While both the
HMM and the WM are highly accurate when identifying
strong sites, the HMM is more accurate in identifying
weak sites. The segregation of weak sites from site-like
sequences is quite difficult due to degeneracy and pro-
vides a crucial test. In this respect, our model far outper-
forms the WM. We believe that this superior performance
of OHMM is the result of training the threshold in a prin-
cipled manner to minimize false positives and false nega-
tives. The positive examples consist of the 36 known
human κB sites present in upstream 800 bp regions (in
their native promoters) and the negative examples consist
of all 10-mers in the upstream 800 bp regions in 100 ran-
domly selected human genes as described in the Methods
section. Leave-one-out cross-validation was performed in
this analysis.

Many κB sites predicted by OHMM are evolutionarily 
conserved and regulated after NF-κB over-expression
We predicted κB sites in all gene promoters in the human
genome and calculated their occupancy probabilities.
Two types of data suggest that they may be functional
sites. First, evolutionary conservation scores of κB sites
predicted by OHMM are higher than those of 1000 10-
tuples randomly selected from human promoters, and κB
sites with higher HMM occupancy probability have higher
evolutionary conservation scores (Figure 6). Secondly, the
chicken genes regulated by over-expressed NF-κB proteins
in a microarray experiment [36] and their human
orthologs are enriched with κB sites predicted by OHMM
(see Additional file 3). Notably, genes regulated in a
higher number of comparisons are more enriched with
HMM-predicted sites. Also, OHMM predicted more κB
sites per regulated gene among genes predicted to contain
κB sites probably because true NF-κB targets contain mul-
tiple sites. Interestingly, human orthologs of regulated
chicken genes are more enriched with predicted NF-κB
targets than the chicken genes themselves probably due to
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the availability of higher quality sequences for humans. In
this experiment, seven NF-κB proteins from different spe-
cies were over-expressed in chicken DT40 pre-B cell lines,
and regulated genes were identified by comparing the
expression level for each experimental condition against
the control.

Quantitative measure of biological significance
With the aim of determining the biological significance of
the sets of κB target genes predicted by OHMM at the var-
ious thresholds, we used pathway analysis to discover the
pathways enriched in these κB target genes (Figure 7). The
sum of the negative logarithm of the p-values of the top
25 enriched pathways was used as the measure of biolog-
ical significance. It is useful to note that only about 50–
70% of the genes in each gene set are available for path-
way analysis because the rest of the genes are not ade-
quately annotated. The numbers in Figure 7, however,
correspond to the number of genes in the entire gene sets.
The gene sets predicted by the HMM at various occupancy
probability thresholds are much more biologically signif-
icant than randomly selected genes. Moreover, the biolog-
ical significance reaches a peak at the occupancy
probability threshold of 0.5 (corresponding to ~800
genes). This implies that the gene sets corresponding to
the thresholds greater than 0.5 have many false negatives,

because of which these gene sets do not have enough key
target genes to attain high significance. On the contrary,
the gene sets corresponding to the thresholds less than 0.5
have many more false positives which dilute these sets
and lower their biological significance. Thus, the HMM
appears to identify sites most accurately in a short window
around the threshold of 0.5. This observation ties excel-
lently with our justification for training the HMM thresh-
old and the use of occupancy probability as the
discriminant function.

Correlation with gel shift experiments
A common way to measure affinity of a TF for a particular
DNA sequence is the gel shift assay, some times also called
electrophoretic mobility shift assay or EMSA. In this assay,
oligonucleotides (usually radio-labeled) with the particu-
lar DNA sequence is mixed with the TF at a certain concen-
tration. At equilibrium, a certain fraction of these
oligonulcotides will be bound to the TF. The oligonucle-
otides are then passed through a polymer gel under elec-
tric field. DNA bound to TF moves at a different rate
(usually slower) than the unbound ones, producing a
shift between the two bands. The relative amount of DNA
in each of these two bands could be measured, usually by
scanning for radioactivity, allowing us to calculate the
occupancy probability.

Trained z is inversely proportional to the length of the training promoterFigure 4
Trained z is inversely proportional to the length of the training promoter. HMMs were trained on TSS-n promoters 
keeping the initial motif profile fixed. The transition probability to the motif (z) is inversely proportional to the training pro-
moters' length in the range between 500–3000 bp and hence z* is constant around 0.9. This quantity drops slightly between 
500 to 200 bp and then substantially after 200 bp due to the lack of κBsites in the shorter training promoters.
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We performed gel shift experiments using double-
stranded radio-labeled oligonucleotide probes containing
10-mers derived from several chicken promoters to deter-
mine if OHMM predicted the occupancy probability accu-
rately (Figure 8). We performed the experiments for two
NF-κB family members: RelA and c-Rel. The transition
probability to the motif (z) in a gel shift experiment is
higher than in the cellular context due to higher protein
concentration in the gel (see the discussion below). How-
ever, because it is difficult to know the protein concentra-
tion in the gel, we estimated z for both RelA and c-Rel (see
Methods). The estimated z is 0.001. Occupancy probabil-
ities predicted by the HMM correlate well with the bind-
ing affinities of RelA and c-Rel proteins to these sites at
this z (correlation coefficients of 0.91 and 0.92, respec-
tively).

Effect of z on HMM-predicted occupancy probability
We plotted the HMM-predicted occupancy probability
with respect to z while keeping the same motif profile
(Figure 9). Three characteristics of the dependence

between z and occupancy probability stand out: (1) Occu-
pancy probability increases sigmoidally and then satu-
rates as z increases. (2) Occupancy probability of a
stronger site (e.g. itm2b vs. bcap κB site in Figure 9) satu-
rates at lower z, and therefore occupancy probability of
the stronger site is greater at a particular z. (3) Occupancy
probability is influenced by surrounding sequences due to
the formation of spurious sites (e.g. it is higher when the
3' padding sequence of a κB site in a gel shift construct
starts with a C than with a T).

HMM reveals the importance of selection of padding 
sequences of self-overlapping motifs
The occupancy probabilities calculated using the sites in
their native chicken promoters did not correlate as well
with the experimental binding affinities as those calcu-
lated in the previous section using the sites and their pad-
ding sequences in the gel shift construct. When we
observed that the difference was due to a C in the padding
sequence 3' of the predicted κB sites in the oligonucle-
otides used for gel shift, we performed a systematic com-

ROC analysis shows that OHMM performs better than a weight matrixFigure 5
ROC analysis shows that OHMM performs better than a weight matrix. The performances of the HMM and the 
weight matrix (WM) are represented by the green and the blue curves, respectively. Whereas the HMM and the WM perform 
similarly for strong sites, the HMM is more accurate in identifying weak sites. The positive examples consist of the 36 known 
human κB sites present in upstream 800 bp regions (in their native promoters), and the negative examples consist of all 10-
mers in the upstream 800 bp regions in 100 randomly selected human genes as described in the text. Leave-one-out cross-val-
idation was performed. ROC: Receiver Operating Characteristic curve.
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binatorial analysis using HMM to determine the padding
sequences that did not form spurious overlapping binding
sites and hence affected native binding the least. We
found that the use of the padding sequences in the above
experiment (the 5' padding sequence is GATCTGAAT-
TCGT and the 3' padding sequence is CACCTCTCCTTA)
may misrepresent NF-κB binding. The predicted occu-
pancy probabilities suggest that a gel shift oligonucleotide
containing an A 5' to the 10-mer and a T 3' to the 10-mer
in the padding sequence has the least chance of forming
spurious binding sites (e.g. AGGGAATTCCCT, where the
10-mer is shown in italics). Any other nucleotide forms a
spurious site shifted one position from the 10-mer, and in
some cases may even change the binding occupancy by
more than 50%. Any of the C, G or T in the 5' end creates
a site beginning with CGG..., GGG... or TGG.... An A, C or
G in the 3' end creates a site on the opposite strand begin-
ning with TGG..., GGG... or CGG.... In addition, a C at the
3'end also creates a site on the same strand ending with
...CCC.

Identification of NF-κB targets in the human genome
As mentioned above, we predicted κB sites in the
upstream 800 bp and downstream 100 bp regions (with
respect to the TSS) of all genes in the human genome
using the exponential and uniform z respectively (see
Additional file 4). Genes containing at least one κB site
with predicted occupancy probability greater than or
equal to 0.5 are designated as putative direct targets of NF-
κB. We also identified cellular pathways, biological func-
tions and diseases in which our predicted NF-κB targets
were over-represented. As expected, we found many
known NF-κB target genes with roles in B or T cell receptor
signaling, NF-κB signaling, cytokine and chemokine sign-
aling, antigen presentation, acute phase response, or in
death receptor and apoptosis signaling among others
(Table 1; see Additional file 5). Importantly, OHMM also
pinpointed several novel candidate NF-κB targets in these
and other pathways that have not yet been described to be
regulated by NF-κB [37,38]. This is exemplified by identi-
fication of κB sites for DIABLO, which potentiates some
forms of apoptosis, and for the TRAF family-associated

κB sites with greater HMM occupancy probability are conserved betterFigure 6
κB sites with greater HMM occupancy probability are conserved better. Each curve represents the kernel-smoothing 
density estimate of the evolutionary conservation scores of a set of κB sites. Each set consists of κB sites predicted by OHMM 
to have occupancy probability above a threshold shown in the legend. The "random" set consists of 1000 10-tuples randomly 
selected from the human promoters. Conservation scores of κB sites predicted by OHMM are higher than those of the ran-
dom sequences. Moreover, κB sites with higher HMM occupancy probability have higher conservation scores. Conservation 
scores and kernel-smoothing density estimates were calculated as described in the Methods section.
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NF-κB activator TANK that inhibits NF-κB activation and
enhances apoptosis by activating cell death signals and
inhibiting survival signals. Although it remains to be
determined if these and other genes identified using
OHMM are genuine NF-κB transcriptional targets, if con-
firmed, these could yield important new insights into the
less well-characterized but nonetheless important pro-
apoptotic activity of NF-κB that has been observed in
response to certain stimuli and in certain cells [39,40].

Similarly, OHMM pinpointed κB sites for IKBKB (com-
monly known as IKKBeta or IKK2), which is the key NF-
κB activating kinase in the canonical NF-κB signaling
pathway (see the discussion below), as well as for Toll-like
receptor 7 (TLR7) that serves as a coreceptor for RNA-asso-
ciated autoantigens and participates in the innate
immune response to microbial agents, potentially extend-
ing the list of NF-κB-regulated TLRs (TLR2, TLR9). If vali-
dated as genuine NF-κB targets, identification of IKKBeta
and TLR7 by OHMM may have uncovered novel positive
feedback loops for amplification of NF-κB signaling.

Our analysis suggests that NF-κB could play new roles in
some of the pathways in which it is already known to par-
ticipate, as seen in the protein ubiquitination pathway
that can either regulate protein activation/function or tar-
get proteins for proteolytic degradation via the proteas-
ome. For instance, while it is known that NF-κB activates
the expression of deubiquitinating enzymes CYLD and
A20 (TNFAIP3) that negatively regulate NF-κB signaling
[41-44] as well as expression of the proteasome subunit
LMP2 (PSMB9) and proteasome activators PA28-alpha
and PA28-beta [45-47], OHMM identified the E2 ubiqui-
tin-conjugating enzymes UBE2H, UBE2D3 and UBE2M
that promote protein ubiquitination, as putative NF-κB
targets. Incidentally, UBE2M was previously observed in
microarray studies to be induced by Epstein-Barr virus
that leads to increased NF-κB activity, although it remains
to be determined if UBE2M is directly controlled by NF-
κB [48].

Interestingly, our analysis also pinpointed κB sites in
BTRC (better known as beta-TrCP). BTRC is the substrate

Biological significance of predicted target gene sets using pathway analysisFigure 7
Biological significance of predicted target gene sets using pathway analysis. Biological significance is shown with the 
help of the pathways enriched in the κB target gene sets predicted by the HMM at various thresholds. The y-axis shows the 
sum of the negative logarithm of the p-values of the top 25 enriched pathways. Gene sets predicted by the HMM are biologi-
cally significant as compared to randomly selected genes. They show a peak at the threshold occupancy probability of 0.5 (~800 
genes). The thresholds used for obtaining the gene sets for the pathway analysis (occupancy probability threshold between 0.05 
and 0.7) are indicated. HMM-predicted gene sets and randomly selected gene sets are indicated by blue and green curves, 
respectively. Only about 50–70% of the genes in each gene set are available for pathway analysis because the rest of the genes 
are not adequately annotated. The numbers in the figure, however, correspond to the number of genes in the entire gene sets.
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recognition component of a SKP1-CUL1-F- box protein
(SCF) E3 ubiquitin ligase complex that mediates ubiquiti-
nation and subsequent proteasomal degradation of target
proteins including the NF-κB inhibitor proteins IkappaB
alpha (NFKBIA), IkappaB beta (NFKBIB) and IkappaB
epsilon (NFKBIE), allowing free NF-κB dimers to translo-
cate to the nucleus and activate transcription. BTRC also
mediates ubiquitination and subsequent proteasomal
processing of the phosphorylated NFKB1/p105 and
NFKB2/p100 precursor proteins that respectively partici-
pate in the canonical and non-canonical NF-κB signaling
pathways [49,50]. If BTRC is a true target of NF-κB, this
would suggest that upregulation of BTRC by NF-κB could
set up a positive feedback loop to amplify degradation of
IkappaB alpha, thereby providing a novel means for mag-
nifying NF-κB signaling. Overall, these results highlight a

potential new role for NF-κB in promoting protein ubiq-
uitination by modulating expression of E2 ubiquitin-con-
jugating enzymes and E3 ubiquitin ligases, thus
expanding on its previously documented role in inducing
expression of deubiquitinases, proteasome activators and
proteasome subunits.

OHMM also revealed new insights into the cross-talk
between NF-κB and other signaling pathways. For exam-
ple, we identified κB sites in several key mediators in the
Notch signaling pathway that is involved in cell-cell com-
munications to regulate a broad spectrum of cell-fate
determinations. These include the delta-like 1 ligand for
Notch receptors DLL1, the Notch2 receptor, transcrip-
tional regulator RBP that acts as a transcriptional repressor
in absence of Notch but is a transcriptional activator when

In vitro binding affinity of NF-κB's RelA and c-Rel proteins to κB sites correlates well with HMM-predicted binding occupancy probabilityFigure 8
In vitro binding affinity of NF-κB's RelA and c-Rel proteins to κB sites correlates well with HMM-predicted bind-
ing occupancy probability. Gel shift assays with extracts from 293T cells transiently transfected with either CMV-hRelA 
(A), CMV-hc-Rel (B) or empty CMV vector as control (vector) and radiolabeled double-stranded oligonucleotide probes con-
taining the predicted NF-κB sites derived from chicken blnk site 1 or site 2, pdcd4, itm2b, pp1e, bcap, igλ, or mip-1β, or a palin-
dromic NF-κB DNA site as control (κB-PD). Reactions containing the κB-PD probe alone, in absence of cell extract, were 
loaded as control (probe). DNA/protein complexes were resolved from unbound DNA probes in native 5% polyacrylamide 
gels. (C) shows the sum of Kullback-Leibler (KL) divergences of the HMM-predicted occupancy probabilities of the above 
sequences (in the gel shift constructs) with their binding affinities in the gel shift experiments, as a function of the transition 
probability to the motif z. The sum of the KL divergences is minimum at z equal to 0.001 for both NF-κB proteins. (D) shows 
the correlation between the gel shift binding affinities of the above sequences and their occupancy probabilities predicted by 
the HMM at z equal to 0.001. The correlation coefficients are 0.91 and 0.92 in case of RelA and c-Rel, respectively. The dashed 
lines in (D) are linear least square fits.
Page 13 of 26
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:208 http://www.biomedcentral.com/1471-2105/10/208
associated with activated Notch, and mastermind-like 2
(MAML2) that serves as a transcriptional coactivator for
Notch. Prior studies have suggested multiple cross-talk
mechanisms between the Notch and NF-κB signaling
pathways, most of them suggesting activation of NF-κB
downstream of Notch, as well as protein-protein interac-
tions between components of these two pathways
(reviewed in [51]). Our finding that key mediators of
Notch signaling harbor κB sites supports the notion that
NF-κB might in turn modulate Notch signaling to influ-
ence cell fate determination during development, immu-
nity and cancer. This would be consistent with recent
work showing that NF-κB stimulates the expression of
Notch targets HES-5 and Deltex-1 to stimulate marginal
zone (MZ) B-cell development [52] and with prior obser-
vations from our group that NF-κB can trigger Notch sig-
naling by inducing expression of the Notch ligand
Jagged1, although it remains to be determined if its effect
on Jagged1 expression is direct [53].

Other genes uncovered by OHMM could be intimately
associated with NF-κB's role in transcriptional regulation,

and in particular, with its recently uncovered role in gene-
specific transcriptional repression [36,54,55]. For exam-
ple OHMM predicts κB sites for deacetylases HDAC8 and
SIRT1, as well as for transcriptional corepressor SIN3A.
While NF-κB is known to engage in protein-protein inter-
actions with histone deacetylases and corepressors to
modulate gene transcription, OHMM raises the possibil-
ity of a new mode of action for NF-κB in this context.

Also highlighted were candidate targets in xenobiotic
metabolism, including κB sites in sulfotransferase
SULT1C2, aldehyde dehydrogenase 3 family gene
ALDH3B2, and transcription factor nuclear factor eryth-
roid derived 2-like 2 (NFE2L2) that regulates the oxidative
stress response, in addition to the previously documented
NF-κB target glutathione S-transferase (GSTP1; [56]). This
points to a possible role for NF-κB in drug metabolism,
multidrug resistance and detoxification of poisonous
compounds, with possible impact for treatment of infec-
tious diseases, anti-cancer therapy and/or environmental
science.

Occupancy probability increases sigmoidally with respect to z, is greater for stronger κB sites and depends upon the padding sequences in the case of self-overlapping binding motifsFigure 9
Occupancy probability increases sigmoidally with respect to z, is greater for stronger κB sites and depends 
upon the padding sequences in the case of self-overlapping binding motifs. Occupancy probability of the bcap and 
itm2b oligonucleotides used in the gel shift experiment, with either a C or a T at the beginning of the 3' padding sequence, was 
predicted using an HMM with different z's. The HMM's motif profile was the same in all instances. The predicted occupancy 
probability rises as a sigmoidal function of z. The occupancy probability of the stronger κB site (itm2b vs. bcap) saturates at 
lower z, and therefore the occupancy probability of the stronger site is greater at a particular z. Moreover, the occupancy 
probability of oligonucleotides is greater when the 3' padding sequence begins with a C (resulting in a stronger spurious site) 
than a T.
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Table 1: Enriched pathways, functions and diseases

Pathway/Function/Disease Gene Symbols

NF-κB Signaling NFKB2*, CD40*, IL1F9, IKBKB, RRAS, TNFAIP3*, BCL3*, TLR7, TRAF5, NFKBIB, NFKB1*, 
LTA*, PIK3C3, NFKBIA*, RELB*, BTRC, PIK3R2, ZAP70, TRAF3, IL1RN*, PLCG2, MAP3K8

Glucocorticoid Receptor Signaling VCAM1*, ICAM1*, MED1, SMAD3, IKBKB, RRAS, MAPK12, BCL3*, IL13*, CCL5*, NFKBIB, 
NFKB1*, IL8*, PIK3C3, NFKBIA*, NR3C1*, STAT1, CXCL3*, CREB1, PIK3R2, JAK3, SELE*, 
IL1RN*, IL6*

Antigen Presentation Pathway B2M*, PSMB9*, HLA-A, CD74, HLA-B*, HLA-DQA1, TAPBP*

Acute Phase Response Signaling SAA1*, IL1F9, RBP1, IKBKB, RRAS, MAPK12, BCL3*, SERPINA3*, NFKBIB, CFB*, NFKBIA*, 
NR3C1*, PIK3R2, NOLC1, SAA2*, SOCS2, IL1RN*, IL6*

B Cell Receptor Signaling IKBKB, RRAS, MAPK12, BCL3*, NFKBIB, CALML5, NFATC1, PTPN6, NFKBIA*, PIK3C3, 
CREB1, MAP3K11, PIK3R2, PLCG2, MAP3K8

Death Receptor Signaling NFKBIA*, BIRC3, DIABLO, IKBKB, BCL3*, TANK, NFKBIB, TNFSF15*

Apoptosis Signaling NFKBIA*, BIRC3, DIABLO, IKBKB, RRAS, BCL3*, MAPK6, TP53*, NFKBIB, RPS6KA1, PLCG2, 
MAP3K8

Cell Cycle: G1/S Checkpoint Regulation BTRC, SMAD3, SIN3A, TP53*, HDAC8, E2F6

Chemokine Signaling CCL4*, RRAS, CCR3, MAPK12, CCL5*, PLCG2, CALML5

T Cell Receptor Signaling NFATC1, PIK3C3, NFKBIA*, IKBKB, RRAS, PIK3R2, ZAP70, CALML5

Notch Signaling DLL1, NOTCH2, RBPJ, MAML2

P53 Signaling BBC3, PIK3C3, SIRT1, PPP1R13B, MED1, PIK3R2, TP53*

Xenobiotic Metabolism Signaling IL4I1, SULT1C2, MED1, RRAS, MAPK12, NFKB1*, NFKB2*, GSTP1*, PIK3C3, PPP2CB, 
ALDH3B2, EIF2AK3, PIK3R2, NFE2L2, IL6*, IL1RN*, GSTA5

Neurotrophin/TRK Signaling PIK3C3, CREB1, RRAS, PIK3R2, RPS6KA1

Protein Ubiquitination Pathway UBE2H, UBE2D3, B2M*, UBE2M*, BIRC3, BTRC, PSMB9*, HLA-A, HLA-B*

Skeletal and Muscle Development and Function CD40*, CSF1*, CXCL11*, DLL1, IKBKB, IL6*, IL13*, IL1RN*, MED1, NFATC1, NFKB1*, 
NFKB2*, NFKBIA*, RBPJ, SMAD3, STAT1, VCAM1*, WNT10B*

Infection of Virus CCL4*, CCL5*, CLEC4M, DEFA1, ICAM1*, IL13*, IRF8, XPO1

Cancer ACACA, AIM2, B2M*, BBC3, BCL2L10, BIRC3, BTRC, C6ORF66, CARD8, CD40*, CREB1, 
CTGF, CYLD, DBC1, DIABLO, DLL1, DPP4, DUT, EGR2, EIF2AK3, GNB1, GNB2L1*, HINT1, 
HUWE1, IER3*, IFNB1*, IGFBP6, IL6*, IL8*, IL13*, IL1RN*, IRF1*, IRF8, ITGA5, LCN2*, LTA*, 
LTB*, MAML2, MAP3K11, MAPK12, MEN1, MIA, MSX1, MYB*, NFKB1*, NFKB2*, NFKBIA*, 
NFKBIZ, NR3C1*, OAS3, PLCG2, PPP1R13B, PPP5C*, PTPN6, RBM17, REL*, RHOC, RPS6KA1, 
RUNX1T1, SMPD2, STAT1, THOC1, TNFAIP3*, TNFSF13, TP53*, TRAF3, TWIST1*

Rheumatoid Arthritis ACAN, ACTA1, ADAMTS7, B2M*, BLR1*, CARD8, CCL1*, CCL4*, CCL5*, CCL19*, CD40*, 
CD69*, CD70, CD74, CD83*, CD86*, CD274*, CFB*, CXCL1*, CXCL2*, CXCL3*, CXCL5*, 
CXCL6*, CXCL10*, DEFA1, DPP4, GP1BA, HLA-A, HLA-DQA1, HPRT1, ICAM1*, IFNB1*, IL6*, 
IL8*, IL13*, LTA*, LTB*, MAPK12, NFKB1*, NFKBIA*, NR3C1*, PSMB9*, SAA1*, SAA2*, 
TNFAIP3*, TNFRSF13B, TNFSF15*, TP53*, TPM2, VIM*, WNT10B*

Experimental Autoimmune Encephalomyelitis B2M*, CD40*, CD86*, CXCL10*, DPP4, HLA-DQA1, IFNB1*, IKBKB, IL6*, LTA*, LTB*, 
NR3C1*, REL*, STAT1

Selected cellular pathways, biological functions and diseases in which our predicted NF-κB targets were over-represented are shown. The 
associated predicted NF-κB targets are represented by official human gene symbols. Genes containing κB sites with predicted occupancy probability 
greater than 0.5 were used in this analysis. Please see Additional file 5 for the complete list. Genes known in the literature to be regulated by NF-
κB (although not necessarily directly) [38] are denoted with *.
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Finally, OHMM pinpointed possible involvement of NF-
κB in new pathways, such as the neurotrophin/Trk signal-
ing cascade, in which its role is emerging. In addition to
the recently recognized NF-κB target phosphatidylinositol
3-kinase catalytic subunit PIK3C3 [57], OHMM identified
κB sites for its regulatory subunit PIK3R2, as well as for the
ras-related G-protein RRAS, ribosomal protein S6 kinase 1
RPS6KA1 and transcription factor cyclic AMP-responsive
element-binding protein 1 (CREB1). In this regard,
CREB3 (better known as LZIP-alpha) was recently
described to be controlled by NF-κB [58] as is the critical
neurotrophin nerve growth factor NGF that controls neu-
ronal cell fate [59]. These results may warrant further
investigation in view of the emerging role of NF-κB in the
regulation of neuronal survival and function in the nerv-
ous system, its effect on cognition and behavior and its
suggested roles in epilepsy, stroke, Alzheimer's, Parkin-
son's diseases and other neurological disorders (reviewed
in [60,61]).

Verification of some of the predicted NF-κB sites in the 
human genome
Gel shift experiments were performed on several of the
predicted NF-kB sites using two of the NF-κB family mem-
bers: RelA and c-Rel. Three low occupancy sequences were
chosen as negative control and the known NFKB1A site
was taken as the positive control. We chose the predicted
target sites to be tested from some of the top categories
that were extracted by pathway analysis. The sites to be
tested were from the promoters of following genes: IKBKB
and TLR7, involved in the NF-kB signaling pathway; DIA-
BLO, TANK, BCL2L10 and BNIP3, involved in the death
receptor signaling and apoptosis categories; HDAC8,
SIRT1 and SIN3A, involved in cell cycle G1/S and tran-
scriptional regulation; and BTRC, UBE2D3 and UBE2M,
involved in ubiquitination pathway.

All of these sites show stronger gel shift compared to the
negative controls. To understand which whether predicted
occupancy is a good indicator of binding compared to,
say, evolutionary sequence conservation, we decided to
classify these sites as the following as shown in Figure 10.
The conservation score greater than 90% is considered
high, between 90% and 80% is considered to be medium
and less 80% is considered to be low. Similarly, sites with
occupancy greater than 0.75 is considered to be high occu-
pancy and the rest are considered to be low occupancy.

The tested sites, organized according to this classification,
are listed below.

High conservation and high occupancy: IFBKB, UBE2D3
and SIN3A

High conservation and low occupancy: TANK-1, TANK-2,
BCL2L1 and UBE2M

Medium conservation and high occupancy: SIRT1

Medium conservation and low occupancy: TLR7, HDAC8
and BTRC

Low conservation and high occupancy: BIVIP1 and DIA-
BLO

In general, the high occupancy sites are better binders, the
exceptions being SIN3A (weak), HDAC8 (strong) and
TLR7 (strong). For HDAC8, the occupancy is only slightly
lower than the cut-off threshold. In comparison, most
highly conserved low occupancy sites have weak gel shifts,
suggesting OHMM occupancy measure is a better predic-
tor of binding affinity than the sequence conservation
score.

Discussion
While the use of an HMM is thus advantageous in identi-
fying sites, we have discovered that an HMM offers tre-
mendous benefits for the special case of identifying self-
overlapping motifs. When putative sites overlap, the over-
all occupancy probability in a position in the DNA
sequence depends upon the strength of all sites contain-
ing that position. Calculation of the overall occupancy
probability over the entire sequence using the gamma var-
iables in the HMM method enables us to compute the
occupation probability in presence of overlapping sites. In
this regard, our approach has a distinct advantage over the
two HMM scoring methods in vogue at the present time,
viz. the likelihood method and the Viterbi method. The
likelihood of a sequence scored over a long stretch of
sequence is greater when more sites are present in that
sequence. It is perfect for discovering clusters of sites, as
evident from the work on fly regulatory modules. The like-
lihood score by itself does not indicate the location of
sites in a promoter. In contrast, the Viterbi method pro-
claims the presence of sites at positions where the state
path with the highest probability contains the motif state.
It, however, fails to consider overlapping sites because
only the best site would be present in the optimal state
path.

Training OHMM is a non-trivial two-step process. In the
first step, we trained both the emission and transition
probabilities using short sequences rich in known sites
with the aim of accurately estimating the motif profile. In
the second step, we kept the emission probabilities con-
stant, and trained the transition probabilities on promot-
ers containing known sites as well as random promoters
to accurately estimate the transition probability to the
motif z reflecting the site density in the promoters of all
genes in the human genome. Unlike most HMMs in the
literature, we successfully trained the HMM emission
probabilities without requiring pre-alignment of training
sites.
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One interesting feature is that trained z is inversely related
to the strength of the motif profile. In other words, when
the motif profile is kept constant and only z is trained, the
weaker the motif profile used (i.e. closer to the back-
ground), the higher the trained z. This is probably the
result of the compensating mechanism between the motif
profile and z discussed above. Interestingly, this competi-
tion between z and the motif profile also determines the
occupancy probability as we saw before.

The goal of the second training step was to estimate the
transition probability to the motif z reflecting the site den-
sity in the promoters of all genes in the human genome.
This z corresponds to the appropriate threshold when
identifying sites in all human promoters. Obviously, z
trained in the first step was not appropriate due to the
high site density in the site-rich training sequences.
Instead of training z on all human promoters, which is
computationally expensive, we train it on a sufficient
number of promoters to get a reasonable estimate of z.
Our procedure of beginning with the human promoters
containing known sites as the training set and progres-
sively adding promoters of randomly selected human
genes to the training set leads to decreasing z, until the
training set reached a few thousand promoters and z sta-
bilized (Figure 3B). We expect that, for a particular tran-
scription factor, the speed of convergence of this
procedure depends upon overall number of target genes
of the factor: larger the number of targets/sites, quicker the
convergence.

One shortcoming of most site identification methods is
that they assume equal probability of the site in a window
of arbitrary length around the TSS. The majority of known
κB sites are located just upstream of the TSS in gene pro-
moters and the number of known κB sites decreases fur-
ther upstream. Specifically, of the 36 known κB sites
upstream of the TSS, 16 are located within 100 bp and 28
are located within 200 bp of the TSS. Liu et al. have also
made a similar observation in the promoters of NF-κB-
regulated immune genes [10]. To counter the claim that
such an observation for binding sites may be due experi-
mental bias, we cite Tabach et al. who showed in a wide-
scale bioinformatic study that functional binding sites are
more likely to be present in the 200 bp region upstream of
the TSS than any other upstream region for most human
transcription factors and specifically for NF-κB [9]. They
defined functional binding sites as those over-represented
in functionally related genes (in the same Gene Ontology
categories) and conserved in related species. To bolster
their conclusion, they showed location dependence of
binding sites for the transcription factor Myocardin in a
controlled experiment. Xie et al. also arrived at a similar
conclusion based on binding site conservation [62]. Even
though the exact reasons for the occurrence of such a phe-

nomenon are not known at the present time, a better
interaction of the transcription factor with the transcrip-
tion machinery if it is bound close to the TSS and the low
density of nucleosomes near the TSS [5] heuristically
explain why this phenomenon may occur.

While we agree that a great number experiments need to
be conducted to definitively prove the location depend-
ence of functional κB sites, we feel that a site identification
method must be able to take it into account. Noticing that
site density decreases sharply with the upstream disease
from the TSS and that transition probability to the motif z
is proportional to site density, we modelled z using an
exponential functional form such that the probability of
identifying a site decreases further upstream but never
reaches zero (and the transition probability matrix varies
accordingly). Even though this approach may fail to iden-
tify sites in distal promoters and enhancers, we believe
that it allows site search in large upstream regions without
identifying too many false positives.

A κB site exerts influence on the occupancy probabilities
at the positions surrounding the site in either direction.
Because overlapping binding sites are usually present
when the scoring window is moved by one position, occu-
pancy probability stays high at all positions in that win-
dow. When the window is moved by more positions, the
occupancy probability at the new positions dips slightly
below the average due to the high motif probability at the
site. The occupancy probability returns to the average
background value when the scoring window moves by ten
positions.

The relationship between the occupancy probabilities of
sites located close to each other is quite instructive. When
two sites are in tandem without any space between them,
occupancy probabilities of both of them are lower due to
the small motif-to-motif transition probability. Occu-
pancy probabilities are not very high even when the sites
are one position apart because a window shift by one
position from a κB site usually contains an overlapping κB
site. The sites need to be at least two positions apart so
that they do not exert significant influence on each other's
occupancy probabilities. Please note that in any case, the
overall occupancy in a region containing two nearby sites
is quite high.

A strong correlation exists between the occupancy proba-
bilities predicted by OHMM and the in vitro binding affin-
ity of the NF-κB family members c-Rel and RelA for
oligonucleotides in a gel shift experiment (Figure 8). This
validates our physical binding model because the HMM-
predicted occupancy probabilities appear to correspond
to observed binding affinities. In the process of the study,
we found how the padding sequence affects the results.
Page 17 of 26
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:208 http://www.biomedcentral.com/1471-2105/10/208

Page 18 of 26
(page number not for citation purposes)

Gel-shift assays for selected human sites from OHMM predictionsFigure 10
Gel-shift assays for selected human sites from OHMM predictions. We show the gel-shift results for representative 
sites out of the OHMM-predicted locations of high NFκB occupancy in human promoters. NFκBIA site is the positive control. 
Negative control to the bottom right corresponds to the sequence called site 1 in the result section (AACCACAACCT-
GCAGCTATTA). Note that lane 3 and lane 4, corresponding to gel shifts with extracts from cells over expressing hc-Rel and 
hRelaA, respectively, strong shift. Control lane 1 with only the probe (no TF) shows no shift. Lane 2, the other control, repre-
sents gel shift with extracts from cells with only the vector. These extract may have some indigenous NFκB from the cell, but 
the results show very weak shifts compared to the results from lane 3 and 4 coming from the over expression of particular 
NFκB proteins. The negative control shows that these are results of sequence specific binding.
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The current practice for performing gel shift experiments
in the NF-κB community consists of using particular pad-
ding sequences around the 10-mer corresponding to a
potential κB site (for example see [63-66]). The com-
monly used padding sequences, however, can form spuri-
ous κB sites due to the self-overlapping nature of κB motif,
and hence the experiment may not represent binding of
the 10-mer in the native promoter. OHMM offers guid-
ance on the selection of correct padding sequences when
designing experiments. A gel shift oligonucleotide should
have an A 5' to the κB site and a T 3' to the κB site for min-
imum interference, and that a 3' C should be avoided at
all cost. Ideally, oligonucleotides containing a few bases
corresponding to those surrounding the κB site in the pro-
moter of the gene should be used to pad the site. This will
capture the effects of all the overlapping putative binding
sites in the native promoter and will avoid creation of
artefacts based on the nucleotides present in the padding
sequence.

The NF-κB family of transcription factors consists of some
of the most important proteins for an organism's develop-
ment and survival. In resting cells, inactive NF-κB dimers
reside in the cytoplasm, bound to inhibitors in the IκB
family [67]. Many different stimuli can activate latent NF-
κB/IκB complexes, including pro-inflammatory cytokines
that trigger rapid activation of the classical (canonical)
NF-κB signaling cascade via the IKK kinase complex [68].
Consequent phosphorylation and degradation of IκB via
the proteasome culminates in nuclear translocation of
active NF-κB dimers and their binding to κB sites. This
commonly results in transcriptional activation, or occa-
sionally in repression, of genes important for the immune
and inflammatory response, cell proliferation, adhesion,
angiogenesis and inhibition of apoptosis
[36,40,54,55,69-71]. The non-canonical (alternative) NF-
κB signaling cascade is activated via the lymphotoxin and
BAFF receptors, leading to activation of IKKα, nuclear
translocation of p52/RelB complexes and plays a role in
lymphoid organogenesis and B-cell function.

Hundreds of NF-κB-regulated genes have been identified
(reviewed in [37]). Among them, binding of activated NF-
κB to the IκBα promoter can trigger its resynthesis, giving
rise to an autoregulatory loop that terminates the activa-
tion process [72-74]. Consequently, under normal condi-
tions, Rel/NF-κB activation is tightly regulated and
transient. However sustained activation of Rel/NF-κB can
promote cell survival, proliferation and/or cell death
depending upon the nature and the extent of the stimulus,
and is implicated in many pathological conditions includ-
ing immune system disorders, chronic inflammation and
cancer [39,75]. Although several NF-κB target genes have
been identified, whether other NF-κB-regulated genes are
its direct or indirect targets is not known.

In addition to identifying many of these known NF-κB tar-
get genes, OHMM pinpointed several novel candidate NF-
κB targets that are yet to be shown as controlled by NF-κB.
While further studies will be needed to determine which
of the candidate genes identified by OHMM are genuine
transcriptional targets of NF-κB, these are likely to yield
important new insights into the less well-characterized
roles of NF-κB in the induction of apoptotic cell death, its
recently uncovered role in transcriptional repression, the
regulation of protein ubiquitination and its role in other
signaling pathways, to name a few. In addition to identi-
fying multiple genes with key roles in haematological and
immune cell development and function, OHMM pin-
pointed κB sites in genes with roles in drug metabolism,
skeletal and muscle system development and function, as
well as in disease conditions ranging from immune and
inflammatory disorders to infectious diseases, cancer,
skeletal muscular disorders and neurological diseases
(Table 1; see Additional file 5). These findings are consist-
ent with experimental evidence suggesting a role for NF-
κB in immunological and inflammatory diseases, cancer
and therapy-resistance, in skeletal myogenesis and
cachexia, as well as in cognition, behavior and neurologi-
cal disorders like epilepsy, stroke, Alzheimer's, Parkin-
son's diseases, and amyotrophic lateral sclerosis (ALS)
(reviewed in [76-79]). OHMM is thus a unique tool to
shed new light on the multifaceted biological functions of
NF-κB and the mechanisms involved, and to identify crit-
ical mediators of dysregulated NF-κB activity in human
disorders that may ultimately help to develop new
approaches for treatment.

Let us finish the discussion by mentioning possible short-
comings of the method. OHMM requires a complicated
two-step training procedure, which might only work prac-
tically for factors with many targets. We have not consid-
ered insertions or deletions inside the motif, making
OHMM well suited for the simultaneous training of emis-
sion and transition probabilities. In addition, we have
considered the transition probability to the motif z in the
upstream region to decrease exponentially during the
scoring procedure. This density function may not be accu-
rate, especially for enhancers. We will need many more
sites to establish a more accurate density function.

Conclusion
Our method is the first attempt to deal specifically with
self-overlapping binding motifs, providing guidance in
the selection of padding sequences in gel shift experi-
ments. When the HMM is considered as a biophysical
model, it interprets the weight matrix as binding energy,
the transition probability to the motif as transcription fac-
tor concentration and the gamma variable as occupancy
probability. Because it uses occupancy probability as the
discriminant function, it learns the associated natural
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threshold in a principled manner during the training pro-
cedure. Another unique feature of OHMM is that transi-
tion probabilities change with sequence location to reflect
site density. Transcription factor's occupancy probability
on a site can be accurately estimated using our method, as
seen by the high correlation with experimental binding
affinities. High evolutionary conservation scores and
enrichment in experimentally regulated genes suggest that
κB sites predicted by our method might be functional.
Our results may provide important new insights into the
function and regulation of NF-κB and uncover possible
new biological roles for this important transcription fac-
tor family.

Methods
Calculation of occupancy probability with overlapping 
sites using an HMM
The probability that a position in a sequence is occupied
by a transcription factor or the occupancy probability at
that position can be calculated using either first principles
or the standard HMM techniques. We first review these
two methods for the case of non-overlapping sites [80].
We then apply these methods to the case of overlapping
sites, which is a novel feature of this publication, and
show how an HMM provides a simpler solution.

For the purpose of demonstration, let us consider a non-
overlapping site and assume that binding is allowed only
on one orientation. (A more general case is discussed in
Additional file 1.) In calculating occupancy probability
using first principles, let's denote the motif state, repre-
senting the entire site, as m and the background state as b.
The emission probability of the motif state corresponds to
its weight matrix, whereas the transition probability to the
motif state from either state is the prior probability of the
motif z. Let p(b) be the probability that a long sequence s
does not contain any motifs (i.e. it is all background), and
Pj(m) be the probability that the sequence has one motif

m starting at the jth position. This latter probability can be
written as

,

where the transition probability to the motif state at any

particular position in a sequence is small (z ≈ 0), � is the

length of the motif,  is the probability that the nucle-

otide α at the (j + i - 1)th position of the sequence is emit-

ted by the ith position of the motif state, and  is

the probability that the nucleotide α at the (j - 1)th posi-
tion of the sequence is emitted by the background state.
Note that this formulation fits into the general Bayesian

probabilistic framework such that the product of the w
terms is the likelihood and the product of the z terms is
the prior. We can write

, where (l - z)� ≈ 1

and  is the probability that the nucleotide α at the (j

+ i - 1)th position of the sequence is emitted by the back-

ground state. Also,  such that 

is the weight matrix score of the motif starting at the jth
position of the sequence. Then, the occupancy probability
at the jth position of the sequence is

. Thus, both the

motif's weight matrix and prior probability are required to
determine occupancy probability.

As described in the Discussion section, the probability of
a motif at a particular position in a sequence can be
thought of as the occupancy probability of the site at that

position. The value of the gamma (γ) variable of a state at
a particular position in the sequence is the probability of

that state at that position. Therefore, ,

where  and  are the γ of the motif and background

states at that position, respectively. The gamma variable is
an intermediate variable computed during Baum-Welch
training. For each state at each position, the gamma varia-
ble is the normalized product of the forward and back-
ward variables for that state at that position. When
calculating occupancy probability, the gamma variable is
also calculated during scoring.

When sites overlap, the occupancy probability at a posi-
tion needs to combine the effect of binding in all
sequence windows containing that position. Moreover, an
extra motif type, where emission probabilities are flipped
from 5' to 3', takes into account the binding strength of
the reverse strand sequence. As described in more detail in
Additional file 1, occupancy probability at the jth position
based on first principles is given by

, where k corresponds to

the first position of each sequence window containing
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position j, m is the motif type (including the one corre-
sponding to the site on the other strand), �m is the length

the mth motif type, and zm is the transition probability to

the m th motif type.

To determine the occupancy probability in the case of
overlapping sites using an HMM, we divide up each motif
type into � states each corresponding to one position in
the motif. The emission probabilities of each state are the
weights corresponding to that position of the weight
matrix. Occupancy probability at a position is then simply

, which is similar as in the case of non-over-

lapping sites. We use this simple formula to calculate
occupancy probability.

OHMM consists of 21 states: one background state and a
state corresponding to each of the ten positions within the
κB motif on the two DNA strands. Because the κB motif is
not known to contain insertions or deletions, the transi-
tion probabilities between the states corresponding to
successive positions within the motif on a strand are fixed
to one. The nine transition probabilities available for
training are the transition probabilities from (i) the motif
states corresponding to the last position in the motif on
both strands and (ii) the background state to (i) the motif
states corresponding to the first position in the motif on
both strands and (ii) the background state. The rest of the
transition probabilities are fixed to zero. The emission
probabilities of the motif states on the two strands are
flipped from 5' to 3' so as to represent identical binding
irrespective of the motif strand. Because initial probabili-
ties are a special case of the transition probabilities at one
edge of the sequences, we do not mention them sepa-
rately.

HMM training and scoring
The transition probabilities were initiated using the tran-
sition probability to the motif z chosen by us. The motif
emission probabilities (motif profile) were initiated using
the 97 κB sites generated in unbiased experiments and
obtained from TRANSFAC 9.3 [4,81-84]. We will refer to
this motif profile as the initial motif profile. The promot-
ers were defined as the regions starting at 800 bp upstream
of the TSS (transcription start site) and ending at 100 bp
downstream of the TSS. The background state's emission
probabilities were assigned from the nucleotide distribu-
tion of the promoters corresponding to the reference
sequences of all human genes in RefSeq Release 19 [85]
associated with human assembly hg18, NCBI Build 36.1
available at the UCSC genome bioinformatics site http://
genome.ucsc.edu/[86,87]. The background probabilities
were also used as pseudocounts when generating the
motif profile initially and during subsequent training.

The HMM was trained using the Baum-Welch expectation-
maximization algorithm [88] in two steps. In the first step,
we used two types of site-rich sequences of different
lengths as well as various initial z's to train all HMM
parameters and determine the emission probabilities to
be used in the second step. The following two types of site-
rich sequences were used. (1) The "TSS-n promoters" con-
sist of n nucleotides upstream of the TSS of the 42 human
genes known to contain a κB site [4,89,90]. (2) The "Sur-
round-n promoters" consist of 34 promoters containing
the 36 known κB sites whose exact genomic locations
were identified (two promoters each contained two
closely located known κB sites) and the surrounding
regions. Each surround-n promoter is n nucleotides long.
The HMMs trained on these promoters were called "TSS-n
HMMs" and "surround-n HMMs," respectively. After each
training iteration, the emission probabilities of the motif
states of the corresponding motif positions on both
strands were averaged to ensure that the learned motif
profiles on both strands were exactly flipped 5' to 3'. After
training, the sum of the transition probabilities from the
background state to the motif states corresponding to the
first motif position on both strands was estimated as z
(the transition probabilities to the motif states on the two
strands are nearly identical).

In the second training step, only the transition probabili-
ties were trained. The various training sets consisted of
human promoters containing the known κB sites and a
different number of randomly selected human promoters
added to them. Training in the upstream 800 bp and
downstream 100 bp regions with respect to the TSS was
done separately.

To identify binding sites, promoter regions 800 bp

upstream of the TSS were scored using the HMM γ variable
and location-dependent transition probabilities. For this,
transition probability to the motif z was modeled using an
exponential functional form such that a region close to
the TSS had a higher site density than a region further
upstream. The mean of this exponential functional form

was estimated as follows. z can be written as 

at x positions upstream of the TSS, where θ is the mean

distance of κB sites upstream of the TSS (in number of
nucleotide positions) and z0 is the scale factor. Based on

the position of known upstream κB sites, the maximum
likelihood estimate of the mean for the exponential form
was 170, and the estimate of the mean using the median

was quite close at . The maximum likeli-

hood estimate was used in further analysis. To determine
the scale factor z0, we noted that the site density per pro-
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moter is 800* z if z has a uniform functional form and

 if z has an exponential functional form.

Equating these two expressions for uniform z = 0.00017

obtained from training and θ = 170 results in z0 = 0.137.

Location-dependent transition probabilities based on the
above calculations were used to compute occupancy prob-

ability (γ variable) and identify sites in the upstream pro-
moter regions. The value of z was calculated at each
upstream position. Accordingly, a different transition
probability matrix was generated at each upstream posi-
tion as follows. We assigned the transition probability
from (i) the background and (ii) the motif states corre-
sponding to the last motif position on either strand to the
background state as 1 - z, and the transition probability
from (i) the background and (ii) the motif states corre-
sponding to the last motif position on either strand to the
motif states corresponding to the motif first position on

either strand as z/2. The forward (α) and backward (β)
variables were calculated using the standard HMM recur-
sion relations incorporating the position-specific transi-
tion probabilities (for example, the probability of
observing the partial sequence O1...Ot until position t and

being in state j at position t is given by the recursion rela-

tion , where the transi-

tion probability αij from state i to state j varies with

position t, bj(Ot), is the emission probability of state j that

generates the nucleotide at position t and n is the number
of states). The probability of state i at position t is the

gamma variable . The 100 bp

regions downstream of the TSS were scored using the

HMM γ variable and location-independent transition
probabilities with z of 0.00012 (as obtained from training
for these regions).

We compared the performance of OHMM to that of a
weight matrix (WM) as follows. WM scoring was per-
formed using the initial motif profile. All overlapping
windows on both strands were considered and the highest
WM score was recorded. Positive examples consist of the
36 known human κB sites present in upstream 800 bp
regions (in their native promoters). Negative examples
consist of all 10-mers in the upstream 800 bp regions in
100 randomly selected human genes that have no associ-
ation with inflammation or cancer. Leave-one-out cross-

validation was performed, where each site was scored
using an HMM trained on the surround-50 promoters of
the other 35 known κB sites. The lists of HMM and WM
scores of the negative examples were compressed by tak-
ing the maxima of the consecutive scores above a thresh-
old (0.03 for HMM, 4 for WM) to ensure that overlapping
binding sites were represented by the score of the strong-
est site.

Conservation, expression and functional annotation
To calculate the conservation score of a site, its multiple
alignment was retrieved from UCSC. Only mammalian
sequences with at least five nucleotides present in the
alignment were included. Consensus nucleotides were
determined at all positions in the alignment where the
human sequence did not contain a gap, and the number
of sequences containing the consensus nucleotide was
counted for each position. The conservation score was cal-
culated as the ratio of the sum of these counts at all posi-
tions to the product of the number of sequences in the
alignment and the number of nucleotides in the site (gen-
erally 11 or 12 for overlapping κB sites, 10 for non-over-
lapping κB sites), multiplied by 100. The perfect score,
when all aligned sequences are identical, is 100. Kernel-
smoothing density estimates of the conservation scores of
sets of κB sites were calculated using default MATLAB
parameters.

We used the chicken microarray experiment described in
[36] to determine if chicken genes regulated by over-
expressed NF-κB proteins were enriched with κB sites pre-
dicted by OHMM. Human orthologs of the regulated
chicken genes were obtained using Ensembl [91].

For comparison with gel shift binding affinities, occu-
pancy probabilities need to be calculated based on an
accurate transition probability to the motif (z), which cor-
responds to the protein concentration as described in the
Discussion section. However, protein concentration in a
gel is higher than in the cellular context, and is difficult to
determine. We therefore estimated z as follows: (1) calcu-
late the occupancy probabilities of all the sequences in the
gel shift experiment using various z's, (2) compute the
sum of KL divergences of the occupancy probabilities of
all the sequences with their binding affinities in the gel
shift experiment, and (3) estimate z as the one corre-
sponding to the minimum sum. The rationale behind this
procedure is that the occupancy probabilities resulting
from the correct z should be in the same ballpark range as
gel shift binding affinities. KL divergence can be used as a
measure to determine if they are indeed in the same ball-
park range. The estimated z is 0.001 for both RelA and c-
Rel.

To determine the cellular pathways, biological functions and
diseases in which the predicted NF-κB targets were over-rep-
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resented, genes containing κB sites with predicted occupancy
probability greater than 0.5 were analyzed through the use of
Ingenuity Pathways Analysis (Ingenuity® Systems, http://
www.ingenuity.com) and DAVID [92-94].

The computational analysis was performed using Perl and
MATLAB (version R2006b, The MathWorks, Inc.). The κB
motif logos were generated using MATLAB [95].

Gel shift experiments for chicken sequences
Gel shift assays were performed as described [96] with
protein lysates (15 μg) from human 293T cells transfected
with either c-Rel or RelA. Radiolabeled double-stranded
oligonucleotide probes contained either a palindromic κB
DNA site [63], or the predicted NF-κB sites from chicken
blnk site 1 (GTGGCTTCCC), or blnk site 2 (CGGGATC-
CCC); pdcd4 (CGGGCGTCCC); itm2b (GGGAGATTCC),
pp1e (GGGGATGTCC), bcap (TGGGATCCCC), igλ
(GGGGCATCCC), or mip-1β (GGGGTTTCCC) with the 5'
padding sequence GATCTGAATTCGT and the 3' padding
sequence CACCTCTCCTTA.

Gel shift assays for human sequences
Gel shift assays were performed as in [96] with the follow-
ing modifications. Protein lysates used were the same as
described for the chicken sites except 4 μg of protein was
used. Radiolabeled double-stranded oligonucleotide
probes were prepared by annealing a shorter 9 bp oligo,
which is complimentary to 3'end of the 21 bp longer oligo
and by incorporating α32P dCTP and α32P dATP and cold
isotopes during a fill in reaction using Klenow Polymer-
ase. The probes were purified using Amersham Microspin
G-25 Columns (Cat# 27-5325-01) according to the man-
ufacturer's protocols. The radio-labeled double stranded
oligonucleotide probes, with the native padding
sequences on either side (taken from the human
genome), consist of the NFKB1A site as the positive con-
trol (TGGCTTGGAAATTCCCCGAGC); the predicted NF-kB
sites from human IFBKB (GGCGCGGGAAATTCCACCGAG);
UBE2D3 (AGTCTGGGGAATTCCATTTCC);SIN3A
(TGGGCGGGATTTCCCGGGTA); TANK-1 (CTCAGT
GGAAGTTCCCACTTC); TANK-2 (AAGTTGGGGGATTTCT
CAGTGG); BCL2L10 (GCAGGTGGGATTCCCATCAAA);
UBE2M (TGAACGGAAATGCCCGAGTC); BNIP1 (GTCAG
GGAAAGTCCCAACTC); DIABLO (CACCAGGAAATTCCCT
TCAA); SIRT1 (AGACGTGGAAATTCCCAGGGC); TLR7
(TAGTTGGAAACTCCAGGGCT); HDAC8 (GGTCTGGGAAG
TCCCATCCA); BTRC (CCTGGGGGAAGTTCCAGAAC) and 3
negative control sites, site 1 (AACCACAACCT
GCAGCTATTA); site 2 (AAAATGTGGTAGATAATGGTG);
and site 3 (TAAGTAAACATGATATTAGGA).

The binding reaction was performed exactly as described
for chicken sites and the Products were resolved on an 8%
gel. The gels were run in 0.25× TBE buffer for 3 hrs at 150
volts. The gels were wrapped in thin plastic sheet protec-

tors and exposed to a Molecular Dynamics Phosphoim-
ager.
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Additional file 1
Derivation of occupancy probability of overlapping sites. The file con-
tains a derivation of occupancy probability in the case of overlapping sites 
using first principles. It also shows that even though a conventional weight 
matrix and an HMM are closely related, an HMM is more appropriate to 
determine occupancy probability when overlapping sites exist.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-208-S1.doc]

Additional file 2
HMM emission probabilities. The file contains the emission probabilities 
of an untrained HMM as well as of the trained surround-n HMMs. 
Unused emission probabilities based upon known kB sites present in the 
surround-n promoters are also provided for reference.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-208-S2.xls]

Additional file 3
Enrichment of regulated genes with predicted sites. The file contains 
the number and percentage of chicken genes and their human orthologs 
with at least one predicted site above various thresholds. Data is shown for 
all genes as well as for genes regulated in at least 2 or 4 comparisons in 
the microarray experiment. For genes regulated in at least 4 comparisons, 
the number of predicted sites as well as the number of sites expected based 
upon all genes in the genome at various thresholds are also shown.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-208-S3.xls]

Additional file 4
Predicted sites in human genes. The file contains sites in all human 
genes that are predicted by OHMM to have occupancy probability greater 
than 0.5. The file also contains relevant annotation.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-208-S4.xls]

Additional file 5
Enriched biological categories. The file contains cellular pathways, bio-
logical functions, diseases and toxicology-related lists enriched with 
HMM-predicted NF-κB targets.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-208-S5.xls]
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