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Abstract
Background: The detection of true significant cases under multiple testing is becoming a
fundamental issue when analyzing high-dimensional biological data. Unfortunately, known multitest
adjustments reduce their statistical power as the number of tests increase. We propose a new
multitest adjustment, based on a sequential goodness of fit metatest (SGoF), which increases its
statistical power with the number of tests. The method is compared with Bonferroni and FDR-
based alternatives by simulating a multitest context via two different kinds of tests: 1) one-sample
t-test, and 2) homogeneity G-test.

Results: It is shown that SGoF behaves especially well with small sample sizes when 1) the
alternative hypothesis is weakly to moderately deviated from the null model, 2) there are
widespread effects through the family of tests, and 3) the number of tests is large.

Conclusion: Therefore, SGoF should become an important tool for multitest adjustment when
working with high-dimensional biological data.

Background
Statistical tests are a fundamental scientific tool for con-
trasting alternative hypotheses by rejecting or not the null
one given an a priori fixed significance level. Such a meth-
odology may have two types of associated errors: type I
error, i.e. the rejection of the null hypothesis when it is
true (a false discovery or false positive) and type II error
i.e. the acceptance of the null hypothesis when the alter-
native one is true (a false negative [1]). Most statistical
tests traditionally aim to control type I error. However,
such a strategy was originally developed to test a single
null hypothesis, and an undesirable high rate of false dis-
coveries may be obtained when working with families of

comparisons under simultaneous consideration. Differ-
ent strategies have been considered to deal with this prob-
lem. The control of the familywise error rate (FWER; [2])
is performed by Bonferroni likewise techniques. The aim
of the FWER is to control the probability of making one or
more type I errors in families of simultaneous compari-
sons. Alternatively, false discovery rate (FDR) based meth-
ods aim to control the proportion of false discoveries
among the total ones (i.e. the proportion of the rejected
null hypotheses which are erroneously rejected [3-5]).
Multitest adjustment strategies have gained attention
since the apparition of the so-called high-dimensional
biological data as a consequence of the 'omic' technolo-
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gies. Therefore, in some research areas the number of tests
accomplished has increased dramatically due to the recent
technological improvements [6-9]. For example, in
genomic and microarray studies it is becoming common
to work simultaneously with more than 20,000 tests [6],
and future studies may produce analysis of complete
genomes with many thousands of polymorphisms
between a few species [10].

Thus, there is an obvious interest to know which of the
available multitest adjustments is the most useful. Ben-
jamini and Hochberg [3] demonstrated that the direct
control of FDR increases considerably the statistical power
of multitest adjustment. This is expected because any pro-
cedure that controls the FWER also controls the FDR being
therefore more stringent than the FDR-based methods [3].
Since then, several variants of the FDR and Bonferroni
adjustments have been proposed [11-19], although there
is no clear consensus about which is the best multitest
adjustment in all conditions [11]. In any case, all available
multitest adjustments show the inconvenience of decreas-
ing statistical power when increasing the number of tests
[16]. This occurs because all methods adjust each single
test error rate according to the number of tests used. The
consequence of this adjustment is that the higher the
number of comparisons the lower the chance to detect
even one significant (true discovery) case using any mul-
titest correction. Such a conservative control of type I error
is often not very useful from an experimentalist point of
view [16]. In addition, multitest adjustment needs accu-
rate estimates of the p-values [17,20,21]. For example, we
need 5 decimal digits to use the Bonferroni multitest
adjustment with 1000 tests at a significance level of 5%
(αadjusted = 0.00005). Furthermore, the use of non-para-
metric (ranked) methods at very small sample sizes (for
example using 3 replicates; see [5]) may produce inaccu-
rate probabilities, which makes less effective the multitest
adjustment. In such cases, it may be suggested the use of
their parametric counterparts, but if the parametric
assumptions are not met, this may produce biased proba-
bilities which will be useless under any multitest method
[1]. Due to these and similar problems some authors have
been reluctant to use multiple test adjustments indiscrim-
inately [22], or even recommend that multiple adjust-
ments should not be used [23].

Ideally, any multitest correction should show a large sta-
tistical power and a small FDR under a small number of
comparisons, and its statistical power should increase
when increasing the number of tests, as most statistical
tests do in relation to sample size. As explained above this
is not the situation with any of the available multitest
adjustments. Here, we propose a new multitest adjust-
ment methodology based on a sequential goodness of fit
(SGoF) metatest. This method will help the researcher to

decide which of the tests, previously ranked based on their
p-values, would be true discoveries. As desired, SGoF
increases its statistical power when the number of tests
increases. In the present work we formalize the method,
giving power and type I error expectations. We also per-
form simulations both via multiple one-sample t and
homogeneity tests, to compare SGoF with three alterna-
tive multitest adjustment methods: Bonferroni (B),
Sequential Bonferroni (SB) and the Benjamini and Hoch-
berg [3] (BH) which is the original implementation to
control for FDR.

Our results show that SGoF can be a valuable approach for
multitest adjustments with high-dimensional biological
data. Under the most favorable conditions (large number
of tests, weak to medium deviations from the null model,
and a relatively high proportion of such deviations or
effects) this test can show a statistical power up to two
orders of magnitude higher than the BH and Bonferroni
methods without increasing appreciably the false discov-
ery rate (FDR).

Results
Definition of Sequential Goodness of Fit (SGoF) metatest
Consider testing a set of S independent comparisons at
significance level α, with their respective null hypotheses
H1,H2, ..., HS. Let P1 ≤ P2 ≤...≤ PS be the ranked p-values
associated to each test, and denote by Hi the null hypoth-
esis corresponding to Pi. Let K be the observed number of
rejections after performing the S tests individually at level
α. Provided that the S nulls are true the expected number
of rejections (i.e. false discoveries) is S × α. Hence, the
observed value K can be compared to the expectation in
order to reach a conclusion about its significance; that is,
to check whether the amount of significant tests could be
explained by chance. The SGoF metatest performs a good-
ness-of-fit (again at level α) test of one degree of freedom
comparing the observed (K) and the expected (S × α)
numbers of rejections on the family of tests accomplished.
This goodness-of-fit metatest is defined as an exact bino-
mial test. However, when S ≥ 100 it is approximated by a
chi-squared or a G-test, both of them approximating a chi-
squared distribution with one degree of freedom (see
Methods for a detailed description of the algorithm). Let
kα be the critical value, given S and α, for such metatest;
that is, a rejection at level α occurs when K ≥ kα. Thus, kα
is the 1-α percentile of the binomial distribution (1-α per-
centile of the χ2 distribution with 1 degree of freedom if a
chi-squared or a G-test statistic is used). Here, "rejection"
means that at least one of the null hypotheses is false.
More specifically, in the case of rejection, the SGoF metat-
est concludes that the K-kα+1 hypotheses with the smallest
p-values (these are, H1, H2,..., HK-kα+1) are false. Clearly,
this is a proper subset (typically much smaller) of the ini-
tial set of K rejected hypotheses when performing the indi-
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vidual testing. As we state below, this procedure controls
for FWER.

Consider the following example of application (also see
the Algorithm section in Methods). Imagine that S =
10,000 tests are performed and K = 600 are significant at
α = 0.05. In the case of the exact binomial test, the critical
value corresponding to significance level α = 0.05 and S =
10,000 tests is kα = 536, which corresponds to the 95%
percentile of the Binomial (10000, 0.05) distribution.
Therefore, if we have an observed value of K = 600 this
means that the 600-536+1 = 65 hypotheses with the
smallest p-values will be considered significant.

Note that, unlike the Benjamini and Hochberg FDR con-
trolling procedure [3], the proposed SGoF test does not
decide which hypotheses are false by comparing the
attained p-values to some values of reference. Rather, the
question that is addressed by the SGoF statistic is: are
there too many rejections (when testing individually the S
hypotheses) with respect to the expected amount of them?
How many among these rejections are not attributable to
chance?

Now we describe some basic properties of the SGoF
metatest. Property 1 implies that SGoF controls for the
familywise error rate (FWER) in the weak sense. Property
2 evaluates the per comparison error rate of SGoF. The
error rates in Properties 1 and 2 are analyzed under the
assumption that the S null hypotheses to be tested in a
simultaneous way are true. Finally, we investigate in Prop-
erty 3 the power of SGoF to reject at least one hypothesis
in the case that a portion of nulls is false.

Property 1
SGoF metatest controls for FWER in the weak sense, that
is, under the intersection null hypothesis (all nulls are
true). This is an immediate consequence of its definition.
Note that FWER is the probability of committing one or
more than one type I error. In our case, this is the proba-
bility of K ≥ kα, which, by definition of kα, is smaller than
or equal to α. Recall that FWER and FDR coincide when
the S nulls are true [3], so our method also controls
directly for FDR in this situation.

Property 2
The per comparison error rate (PCER; [3]) of the SGoF test
is

where I(K ≥ kα) is the indicator of the event K ≥ kα, having
value 1 if the assert is true and 0 otherwise, which can be
evaluated from the null distribution of K. Therefore, PCER

reveals (on average) the probability of committing a type
I error for each individual hypothesis (before the p-values
are given). For example, if the number of hypotheses (S)
is 10,000, and the significance level (α) is 5%,
PCER(SGoF) approximately equals 5 × 10-5 (approxima-
tion based on 500 samples of size 1000 from a binomial
random variable). This is about ten times α/S, a fact that
explains the higher power of SGoF when compared with
other FWER tests as the classical Bonferroni one (see
below). By simulating several values of S, we have esti-
mated that PCER(SGoF) ≈ 4α/S for S = 103, ≈ 10α/S for S
= 104, ≈ 29α/S for S = 105, and ≈92α/S for S = 106 (in the
case that α = 0.05). Therefore, it seems that the SGoF per
test error rate is proportional to α/S by a factor that
increases with the number of tests, S, resolving in this way
the trade-off between type I error and statistical power.
This means that the higher S the higher the probability
that the metatest rejects each null hypothesis (relative to
that of Bonferroni).

Property 3
The probability that SGoF rejects at least one null hypoth-
esis steadily increases up to one as S increases, provided
that a given portion of the null hypotheses remains false.
To illustrate this property, assume that there is a propor-
tion λ = S0/S (λ < 1) of true null hypotheses among the S
being tested, and that the individual probability of rejec-
tion at level α of the 1-λ false hypotheses is α1 rather than
α (with α1 > α). Then, the probability that SGoF rejects
one or more than one hypotheses is approximately given
by the probability that a standard normal is less than the
critical value

where zα is the (1-α)th percentile of the standard normal.
Note that zβ is the (1-β) percentile and 1-β is the power of
the test which in the case of SGoF, means the power to
reject that all nulls are true (intersection null hypothesis)
i.e. to detect that at least one null is false. This critical
value zβ approaches to infinity as S increases. Therefore,
the power to detect that at least one null is false increases
with S. Note that the factor α1-α controls the closeness of
the alternative hypothesis to the null, so (as one can
expect) the power of SGoF decreases for close alternatives
(weak effects). As it is known to occur with other adjust-
ment methods [3].

Simulations
Simulations were run under two different scenarios: 1) the
null model is always true (intersection null hypothesis),
and 2) the alternative model is true in some of the S tests
(see Methods section).
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Null model is always true
Expected and detected numbers of false positives were
compared under the simulation design (Table 1). The
results were similar for both one-sample t and G homoge-
neity tests (see Methods section). The mean percentage of
false positives (Sα) obtained in the simulation was close to
the theoretical expectation (α = 5%) in all cases. Only the
results for SB, BH and SGoF are shown because the B
method produced exactly the same values as SB. The mean
and standard deviations of the detected significant cases
are presented (in %) for 1000 replicates. Clearly, the three
methods showed rather similar type I errors. SGoF had
slightly higher variability through replicates but smaller
across the set of cases simulated (Table 1). In any case, all
multitest methods maintained low levels of false rejection
rates when the null hypothesis was true.

Alternative models
We studied the ability of different multitest adjustments
to detect significant cases when there is an increasing pro-
portion of tests undergoing a true effect (% effect, see
Methods). Different sample sizes were studied ranging
from 5 to 20 for the one-sample t tests or from 20 to 40
for the homogeneity tests (see Methods). The results were
similar for both kinds of tests. Again, the B method is not
presented as it was nearly identical to the SB one. When
the effect was weak (Tables 2 and 3) BH always shows an
equal or higher mean statistical power than SB, although
in both cases the detection of true discoveries is extremely
poor. When the effect was strong (Tables 4 and 5), BH has

high power only with the largest sample sizes. A quite
important pattern can be followed from these tables.
When the number S of tests increases then the power
decreases for SB and BH but increases for SGoF. The latter
occurs as predicted from property 3 above.

To further study the effect of the number of tests onto the
power we performed different sets of one-sample t tests,
from 10 to 100,000 tests (Figure 1), with 20% of them
coming from the weak alternative. As it can be appreciated
in the figure the power of SGoF (defined as the ratiobe-
tween the number of true positives and the number of
false null hypotheses -or effects) increases with the
number of tests while the power of SB and BH diminishes.
This same pattern can be observed for any case in the
tables (see Tables 2 to 5 and compare the three S rows of
each case) for 100, 1000 and 10,000 tests.

Concerning the magnitude of the deviation from the null
hypothesis, the closer the alternative is to the null, i.e. the
weaker the effects (Tables 2 and 3), the higher is the FDR,
and vice versa (Tables 4 and 5). Sample size is also critical
for controlling FDR. When sample size is small (N = 5 for
t-tests and N = 20 for G-tests) FDR is not being controlled
whatever the adjustment used. In the case of SB and BH it
seems that the FDR decreases faster than with SGoF but
this is simply because under SB or BH there are almost no
discoveries so that the margin for false ones is reduced. We
further studied how sample size impacts onto FDR con-
trol. Therefore, we performed simulations through a wide

Table 1: Mean percentage of significant cases detected when the null hypothesis was always true.

N S Sα SB BH SGoF

t-test 5 100 4.95 ± 0.421 0.042 ± 0.0139 0.046 ± 0.0171 0.047 ± 0.0306
5 1000 5.02 ± 0.237 0.006 ± 0.0016 0.007 ± 0.0020 0.008 ± 0.0265
5 10000 5.00 ± 0.129 0.001 ± 0.0002 0.001 ± 0.0002 0.002 ± 0.0116
10 100 4.97 ± 0.412 0.063 ± 0.0184 0.068 ± 0.0209 0.042 ± 0.0485
10 1000 4.97 ± 0.236 0.005 ± 0.0015 0.005 ± 0.0016 0.007 ± 0.0275
10 10000 5.00 ± 0.130 0.000 ± 0.0001 0.000 ± 0.0002 0.002 ± 0.0079
20 100 5.03 ± 0.419 0.045 ± 0.0157 0.052 ± 0.0194 0.045 ± 0.0294
20 1000 4.99 ± 0.233 0.006 ± 0.0021 0.006 ± 0.0025 0.004 ± 0.0076
20 10000 5.02 ± 0.130 0.001 ± 0.0001 0.001 ± 0.0002 0.002 ± 0.0087

Mean 0.019 ± 0.0242 0.021 ± 0.0267 0.018 ± 0.0204

20 100 5.16 ± 0.421 0.049 ± 0.0149 0.052 ± 0.0166 0.046 ± 0.0356
20 1000 5.21 ± 0.239 0.004 ± 0.0014 0.004 ± 0.0017 0.014 ± 0.0157

G-test 20 10000 5.22 ± 0.133 0.001 ± 0.0001 0.001 ± 0.0003 0.019 ± 0.0558
40 100 5.05 ± 0.427 0.084 ± 0.0217 0.092 ± 0.0282 0.066 ± 0.0546
40 1000 5.12 ± 0.239 0.003 ± 0.0014 0.004 ± 0.0021 0.008 ± 0.0108
40 10000 5.09 ± 0.132 0.001 ± 0.0002 0.001 ± 0.0002 0.005 ± 0.0215

Mean 0.024 ± 0.0350 0.026 ± 0.0381 0.026 ± 0.0243

Values are averages through 1,000 replicates and their ± standard deviations. The simulated null models were tested under t or homogeneity G 
tests (see text). N: sample size. S: number of tests. Sα: Percentage of significant tests. SB: Sequential Bonferroni. BH: Benjamini and Hochberg. SGoF: 
Sequential Goodness of Fit.
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range of sample sizes, with a family of 10,000 one-sample
t-tests with 5% of them coming from the weak alternative
and computed the % of false discoveries for the different
adjustment methods (Figure 2). It can be appreciated that
the effect of sample size is important, indeed with a sam-
ple size of 40 the FDR is almost one order of magnitude
away from its nominal value under the BH method (5%).
Under asymptotic conditions SB and SGoF methods reach
null rates and BH reaches the nominal value q (0.05). For
sample sizes comprised between 20 and 40, SGoF shows

higher FDR simply because it is the only one that detects
some true discoveries (SB and BH detect an average value
lower than 1 through the 1000 replicates, not shown).

In summary, SGoF appears to outperform SB and BH
when the effects were weak (Tables 2 and 3) and affected
a high proportion of tests (10% or 20%). In fact, BH only
behaves slightly better than SGof under the stronger effect
and large sample size in the one-sample t tests (N = 20 in
Table 4). In the case of the G test with the stronger effect

Table 2: Percentages of significant cases detected (Detected) and false discovery rate (FDR) after multitest adjustment when the 
p-values come from families of one-sample t tests where some (% effect) of the alternative hypotheses were true.

Weak SB BH SGoF

N % effect S Significant Detected FDR Detected FDR Detected FDR

5 5% 100 5.2 0.04 98 0.04 98 0.07 85
5 5% 1000 5.2 0.01 78 0.01 80 0.01 91
5 5% 10000 5.2 0.00 91 0.00 88 0.02 89
5 10% 100 5.4 0.06 86 0.06 87 0.09 83
5 10% 1000 5.5 0.01 83 0.01 84 0.04 78
5 10% 10000 5.5 0.00 80 0.00 83 0.11 80
5 20% 100 5.9 0.08 57 0.08 60 0.12 64
5 20% 1000 6.0 0.01 57 0.01 58 0.13 63
5 20% 10000 6.0 0.00 70 0.00 69 0.54 63

Mean 0.02 77.8 0.02 78.6 0.12 77.3
SD 0.030 14.18 0.030 13.45 0.161 11.24

10 5% 100 5.7 0.05 72 0.06 70 0.09 80
10 5% 1000 5.6 0.01 69 0.01 67 0.06 77
10 5% 10000 5.6 0.00 71 0.00 71 0.22 74
10 10% 100 6.2 0.06 56 0.08 57 0.19 67
10 10% 1000 6.2 0.01 44 0.01 47 0.24 59
10 10% 10000 6.3 0.00 44 0.00 45 0.84 61
10 20% 100 7.6 0.12 35 0.15 35 0.52 42
10 20% 1000 7.5 0.01 30 0.02 30 1.14 42
10 20% 10000 7.5 0.00 27 0.00 30 2.11 44

Mean 0.03 49.8 0.04 50.2 0.60 60.7
SD 0.041 17.85 0.051 16.72 0.674 15.15

20 5% 100 6.4 0.14 33 0.17 35 0.20 60
20 5% 1000 6.5 0.02 31 0.03 30 0.33 51
20 5% 10000 6.4 0.00 18 0.00 19 1.01 53
20 10% 100 7.8 0.24 17 0.32 18 0.61 38
20 10% 1000 7.9 0.03 13 0.06 16 1.53 36
20 10% 10000 7.9 0.01 7 0.01 10 2.46 40
20 20% 100 10.7 0.36 8 0.57 10 2.24 24
20 20% 1000 10.8 0.06 6 0.15 9 4.38 25
20 20% 10000 10.8 0.01 4 0.04 6 5.35 27

Mean 0.10 15.22 0.15 17 2.01 39.3
SD 0.126 10.67 0.188 9.89 1.81 13.02

Weak: The alternative hypothesis is weak implying that data come from a Normal(0.36, 1). N: sample size. % effect: % of real true alternatives. S: 
number of tests. Significant: % of significants before adjustment. Detected: % of significant tests after adjustment. FDR: false discovery rate. SB: 
Sequential Bonferroni. BH: Benjamini and Hochberg. SGoF: Sequential Goodness of Fit.
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and larger sample size, both methods behave similarly
with slight advantage for SGoF (see N = 40 in Table 5).
Therefore, in Tables 2 and 3, mean percentages of discov-
eries are one order of magnitude larger in SGoF but false
discoveries are in the worst cases only twice or three times
higher. The standard deviation through replicates [see
Additional file 1] is, in general, slightly higher for SGoF.
Under the most favorable conditions, SGoF shows statis-
tical power 2 orders of magnitude higher than the others.
For example, under the G tests with S = 10000, N = 40 and
20% of the comparisons,i.e. 2000 tests having a true but
weak effect, BH identifies 4 ± 1 discoveries while SGoF
detects 344 ± 41 (Table 3). Notably both methods give
almost the same percentage of false discovery rate (7 and
6%, respectively).

To further study how the efficiency of the different meth-
ods depends on the percentage of tests in which the alter-
native is true (% effect) we simulated, for both kinds of
tests, a case with high number of tests, S = 10,000, through
a wide range of % of effects (Figures 3 and 4). The left
panel of both figures shows the absolute number of true
discoveries, that is, rejections of the null when is false, for

the three multitest adjustments studied. The right panel
shows the false discoveries, i.e. rejections of the null when
it is true. Noticeably, for the weak alternatives case, only
SGoF has power to identify true discoveries. Concerning
the SGoF false discoveries, the FDR is higher under the
one-sample t test (right panel in Figure 3) than under the
G test (right panel in Figure 4), maybe due to the smaller
sample size of the first (10 versus 20). As expected from
the term (1-λ) in equation (2) the power increases with
the percentage of tests having a true effect (Figures 3 and
4, left panel). For the strong alternatives, BH performed
only slightly worse than SGoF in the case of one-sample t
tests, although SGoF performed still better in the case of G
tests.

Example of application
Martínez-Fernández et al. [24] accomplished a proteomic
study in which they performed 1498 tests. Of these, 21
were statistically significant (using a significance level of
0.2%). After correction with the BH method they did not
get any significant case. However, using a G-test they
rejected at a 0.2% significance level that the 21 significant
tests could be explained by chance. If we apply the SGoF

Table 3: Percentages of significant cases detected (Detected) and false discovery rate (FDR) after multitest adjustment when the 
p-values come from families of homogeneity tests where some (% effect) of the alternative hypotheses were true.

Weak SB BH SGoF

N % effect S Significant Detected FDR Detected FDR Detected FDR

20 5% 100 5.7 0.10 73 0.10 72 0.10 77
20 5% 1000 5.7 0.01 53 0.01 57 0.07 78
20 5% 10000 5.7 0.00 65 0.00 61 0.25 55
20 10% 100 6.2 0.07 51 0.08 51 0.18 68
20 10% 1000 6.1 0.01 41 0.01 40 0.19 56
20 10% 10000 6.1 0.00 40 0.00 33 0.68 33
20 20% 100 6.8 0.14 39 0.16 38 0.30 52
20 20% 1000 7.0 0.01 24 0.01 25 0.70 35
20 20% 10000 7.0 0.00 16 0.00 16 1.58 19

Mean 0.04 44.7 0.04 43.7 0.45 52.6
SD 0.052 18.17 0.058 18.06 0.482 20.37

40 5% 100 6.0 0.14 45 0.15 46 0.13 69
40 5% 1000 6.0 0.02 31 0.02 33 0.15 57
40 5% 10000 6.0 0.00 22 0.01 23 0.61 37
40 10% 100 7.0 0.21 26 0.25 28 0.33 51
40 10% 1000 7.0 0.03 18 0.04 20 0.71 38
40 10% 10000 7.0 0.01 12 0.01 14 1.56 17
40 20% 100 8.9 0.34 20 0.45 21 1.02 32
40 20% 1000 8.9 0.05 8 0.10 9 2.50 21
40 20% 10000 8.9 0.01 5 0.04 7 3.44 6

Mean 0.09 20.8 0.12 22.3 1.16 36.4
SD 0.117 12.34 0.148 12.23 1.143 20.19

Weak: The alternative hypothesis is weak. N: sample size. % effect: % of real true alternatives. S: number of tests. Significant: % of significants before 
adjustment. Detected: % of significant tests after adjustment. FDR: false discovery rate. SB: Sequential Bonferroni. BH: Benjamini and Hochberg. 
SGoF: Sequential Goodness of Fit.
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test on this data set (with α = 0.002), we find 12 signifi-
cants. Notice that the same significance level was used in
the family of tests and in the two multitest methods dis-
cussed above. Thus, all the 12 extra significant cases could
be hardly considered as type I errors, suggesting that they
could be considered candidate genes for future detailed
biochemical studies.

Implementation of the method
We provide a computer program which allows to obtain
the multitest adjustment probability methods used in this
work (B, SB, BH and SGoF;[25]). SGoF is calculated by an

exact binomial test when the number of tests is lower than
100 and by a G test with the Williams' correction in any
other case. In addition, a more conservative SGoF adjust-
ment using the Yate's correction is also given.

Discussion
The use of controlling FDR based methods for multitest
adjustment has implied an obvious improvement by
increasing the statistical power in families of comparisons
[26]. However, such an improvement is far from being
useful for experimentalists under all the circumstances, in
particular when a relatively small sample size and a high

Table 4: Percentages of significant cases detected (Detected) and false discovery rate (FDR) after multitest adjustment when the 
p-values come from families of one-sample t tests where some (% effect) of the alternative hypotheses were true.

Strong SB BH SGoF

N % effect S Significant Detected FDR Detected FDR Detected FDR

5 5% 100 6.6 0.09 62 0.11 62 0.23 59
5 5% 1000 6.7 0.01 53 0.01 54 0.47 60
5 5% 10000 6.7 0.00 42 0.00 47 1.24 60
5 10% 100 8.5 0.14 31 0.17 30 0.85 46
5 10% 1000 8.4 0.01 36 0.02 35 1.97 43
5 10% 10000 8.3 0.00 31 0.00 30 2.88 45
5 20% 100 11.7 0.17 18 0.28 18 3.03 26
5 20% 1000 11.7 0.02 17 0.03 18 5.28 28
5 20% 10000 11.7 0.00 22 0.00 21 6.23 29

Mean 0.05 34.7 0.07 35 2.46 44
SD 0.067 15.48 0.099 16.04 2.118 13.91

10 5% 100 8.7 0.49 8 0.75 11 0.95 24
10 5% 1000 8.6 0.09 6 0.27 8 2.25 23
10 5% 10000 8.6 0.01 4 0.11 6 3.21 28
10 10% 100 12.3 1.00 5 2.08 8 3.56 14
10 10% 1000 12.3 0.18 2 1.18 6 5.92 17
10 10% 10000 12.3 0.03 2 0.93 5 6.86 20
10 20% 100 19.5 1.91 3 6.37 5 10.53 9
10 20% 1000 19.6 0.33 1 5.38 4 13.23 11
10 20% 10000 19.6 0.05 1 5.30 4 14.17 12

Mean 0.45 3.6 2.49 6.3 6.74 17.6
SD 0.631 2.40 2.481 2.29 4.856 6.58

20 5% 100 9.8 2.92 2 4.18 7 1.59 6
20 5% 1000 9.7 1.38 0 4.04 5 3.35 4
20 5% 10000 9.7 0.47 0 3.97 5 4.24 6
20 10% 100 14.4 5.86 1 9.06 5 5.49 2
20 10% 1000 14.3 2.75 0 8.90 5 7.93 3
20 10% 10000 14.3 0.95 0 8.85 4 8.90 5
20 20% 100 23.6 11.78 0 19.04 4 14.64 2
20 20% 1000 23.6 5.50 0 18.88 4 17.23 2
20 20% 10000 23.7 1.91 0 19.01 4 18.27 3

Mean 3.72 0.3 10.66 4.7 9.07 3.7
SD 3.558 0.71 6.586 0.97 6.209 1.66

Strong: The alternative hypothesis is strong implying that data come from a Normal(0.97, 1). N: sample size. % effect: % of real true alternatives. S: 
number of tests. Significant: % of significants before adjustment. Detected: % of significant tests after adjustment. FDR: false discovery rate. SB: 
Sequential Bonferroni. BH: Benjamini and Hochberg. SGoF: Sequential Goodness of Fit.
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number of comparisons are involved. In such conditions,
classical multitest adjustments are known to have low sta-
tistical power [16]. In fact, a great number of controlling
FDR based methods have been proposed trying to further
improve its applicability although with moderate results
[11,14-17]. Here we suggest a completely different
approach, by using a sequential goodness of fit on the set
of comparisons, which may help in some of the circum-
stances where the FDR-based approaches fail to find true
discoveries. Similar to Bonferroni techniques, the SGoF
metatest controls for FWER (FamilyWise Error Rate).
Given a number S of tests, in Bonferroni technique the
error rate per comparison is fixed to α/S. Therefore, this
value diminishes as the number S of tests is higher. The
problem is that the power to detect true discoveries also
depends on this error rate. With a very stringent signifi-
cance level we will have very low power. Importantly, in
the case of SGoF, the per test error rate is proportional to
α/S by a factor that increases with the number of tests
resolving in this way the trade-off between type I error and
statistical power. Therefore, the power increases with the
number of tests though the family wise error rate is being
controlled to avoid a high false discovery rate. As far as we

know, there are not other multitest adjustment methods
with this desirable property of increasing power with the
number of tests. However, as can be expected from equa-
tion (2) and can be seen in Figure 1 such increase is not
lineal. Therefore, it could be suggested that increasing the
number of tests up to 1000 or 10,000 will increase consid-
erably the statistical power of the SGoF adjustment, but
above 10,000 the increase will become slighter (Figure 1).
This suggests that using more than 10,000 comparisons
could not offer a clear advantage.

Another issue concerning the statistical power of SGoF
seems to be the percentage of tests in which the alternative
is true (% effect) which has a clear impact onto the discov-
eries rates. In the case of SB and BH this impact is more
difficult to follow from the tables because there is a trade-
off with the increasing number of tests (which reduces the
power). However with SGoF the effect is very clear
because, as is expected from equation (2), both the % of
effects (1-λ) and the number S of tests increase the power.

Obviously, because SGoF does not perform so stringent
control neither on the per test error rate nor in the FDR,

Table 5: Percentages of significant cases detected (Detected) and false discovery rate (FDR) after multitest adjustment when the 
p-values come from families of homogeneity tests where some (% effect) of the alternative hypotheses were true.

Strong SB BH SGoF

N % effect S Significant Detected FDR Detected FDR Detected FDR

20 5% 100 7.2 0.26 21 0.29 23 0.38 55
20 5% 1000 7.1 0.04 8 0.05 10 0.77 34
20 5% 10000 7.1 0.00 5 0.02 5 1.67 21
20 10% 100 9.0 0.42 13 0.54 17 1.04 32
20 10% 1000 9.0 0.07 3 0.15 7 2.58 20
20 10% 10000 9.0 0.01 2 0.07 2 3.55 12
20 20% 100 12.5 0.77 7 1.27 8 3.62 17
20 20% 1000 12.7 0.13 2 0.65 3 6.29 10
20 20% 10000 12.8 0.02 1 0.47 2 7.33 7

Mean 0.19 6.9 0.39 8.6 3.03 23.1
SD 0.258 6.51 0.402 7.20 2.45 15.09

40 5% 100 8.4 1.05 7 1.36 12 0.67 26
40 5% 1000 8.5 0.29 2 0.95 6 2.08 14
40 5% 10000 8.5 0.11 1 0.92 2 3.03 6
40 10% 100 11.8 1.98 3 3.12 7 2.90 12
40 10% 1000 11.9 0.58 1 2.76 4 5.50 9
40 10% 10000 11.8 0.21 0 2.83 1 6.42 2
40 20% 100 18.7 3.76 1 8.13 5 9.67 7
40 20% 1000 18.6 1.17 0 7.72 2 12.23 4
40 20% 10000 18.6 0.42 0 7.62 0 13.18 1

Mean 1.06 1.7 3.93 4.3 6.19 9
SD 1.173 2.24 3.029 3.71 4.557 7.70

Strong: The alternative hypothesis is strong.N: sample size. % effect: % of real true alternatives. S: number of tests. Significant: % of significants before 
adjustment. Detected: % of significant tests after adjustment. FDR: false discovery rate. SB: Sequential Bonferroni. BH: Benjamini and Hochberg. 
SGoF: Sequential Goodness of Fit.
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this implies that FDR is being allowed to be higher than
with SB and BH methods. However, given a number K of
observed significants, as power increases, FDR is expected
to diminish because in such a case the proportion of true
discoveries approaches 1. Therefore, SGoF will attain an
indirect control of FDR with large numbers of tests and/or
effects involved. That is, SGoF will behave especially well
compared to the classical methods when the alternative is
weak and both the number of effects through the family
of tests and the number of tests involved are high. In this
case, SGoF can be up to two orders of magnitude more

powerful than the other methods, maintaining at the
same time acceptable FDR values.

We have also observed that if the p-values are not correctly
calculated the FDR will be uncontrolled as occurs with any
other multitest adjustment method. This is noteworthy
because empirical studies do not usually involve large
sample sizes within each test. Known multitest adjust-
ment methods can have very good asymptotic statistical
properties. In fact, both SB and BH have very good power
with the kind of tests assayed when the sample size is as
large as 500 (not shown). The problem is that empirical
science does not work on the asymptotic arena but on
finite sample size. As we have seen, the assumption of
controlled FDR fails when sample size is small, at least
under one-sample t and homogeneity G-tests. Addition-
ally, the classical adjustment methods (B, SB and BH)
have low power when the number of tests is high and/or
the effects are weak. Indeed in these conditions, SGoF
should be considered as an interesting method to detect
that some kind of true effect exists though we are not con-
fident in that all detected positives are true discoveries. In
addition, some uncertainty exists when significant proba-
bilities have exactly the same values. For example, if 9 out
of 10 comparisons have a p-value below 0.05, say 0.049,
SGoF will show that 8 can not be explained by chance, but
the researcher has no way to choose among the 9. On the
other side alternative multitest adjustment methods (BH
or others) cannot find any significant case. Nevertheless,
from an experimentalist point of view, it will be more use-
ful to know that at least 8 hypotheses deserve more
detailed studies than to just ignore all of them. In cases
like this, under the SGoF method, the 8 significant tests
will be chosen randomly from the 9 available.

Concerning statistical properties as conservativeness, sen-
sitivity and specificity we have computed the degree of
conservativeness [27] and performed ROC analysis [28]
for the same cases as in Figure 3 [see Additional file 2]. The
results just confirm the good properties of SGoF as already
expected from the higher per comparison error rates (see
property 2) and the true and false discoveries numbers
(see Figure 3).

Another important topic concerning multiple hypothesis
testing efforts applied to high-throughput experiments is
the intrinsic inter-dependency in gene effects. We would
like to note that correlation can have important effect
onto FDR-based adjustment methods [29]. However, it is
usually considered a kind of dependence in gene effects
called weak-dependence which corresponds to local
effects between a small number of genes [30]. It has been
shown that under the assumption of the so-called weak-
dependence, the FDR-based methods are still useful pro-
vided that the number of tests is large enough [20,30].

Power with different number of testsFigure 1
Power with different number of tests. Percentage (%) of 
power for different number of tests. The family of tests was 
the one-sample t tests with 20% of them coming from a 
N(0.36, 1) and sample size 20. Values are averages through 
1,000 replicates. Error bars represent standard deviations 
between replicates. The power is defined as the number of 
true discoveries divided by the total of existing effects (false 
null hypotheses).
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SGoF does not consider the p-values individually but the
proportion of significant ones and this should make it
more robust to dependence issues. Therefore, we expect at
least the same or better performance for SGoF than for
FDR-based methods when considering gene dependen-
cies. Our preliminary results (not shown) indicate that
dependence has no effect onto SGoF power provided that
the blocks with correlated genes are small. Indeed with
blocks as large as 100 genes and correlation as high as 0.9
the loss in power is small. Furthermore, short blocks of
correlated genes is what is expected in genome and pro-
teome wide studies [20,29]. Additionally, we have
observed that if the blocks are short the magnitude of the

correlation has a minor effect. Nevertheless, we think that
such topic deserves further study.

Finally, we note that we have obtained p-values via simu-
lation from two kind of tests, one-sample t-test which is
widely used, and also via homogeneity tests, that are also
frequently involved in multiple comparisons [31]. In
addition, SGoF should be of general utility under other
families of multiple comparisons, although this should
deserve further investigation. The failure of classical mul-
titest adjustments to deal with a huge number of tests
(>1000) has been considered as a key problem in many
omic technologies [16], and so SGoF comes to contribute
to a well-known need.

Comparison of the multitest adjustments for one-sample t testsFigure 3
Comparison of the multitest adjustments for one-sample t tests. Number of true and false discoveries obtained 
under the different multitest adjustment methods over a varying proportion (% Effect) of the alternative hypothesis contribut-
ing to the family of comparisons. The sample size of each one-sample t test was intermediate (N = 10). The alternative hypoth-
esis represents Weak or Strong deviations from the null one. The absolute number of detected true discoveries among 10,000 
is shown on the left side, while the absolute number of false discoveries is presented on the right side. Values are averages 
through 1,000 replicates.
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Conclusion
We propose a new multitest adjustment, based on a
sequential goodness of fit metatest (SGoF) which, con-
trary to other methods, increases its statistical power with
the number of tests. Therefore, SGoF should become an
interesting strategy for multitest adjustment when work-
ing with high-dimensional biological data. The SGoF
metatest, jointly with B, SB and BH multitest adjustments,
can be easily computed with the software provided.

Methods
Algorithm for the Sequential Goodness of Fit (SGoF) 
metatest
Given a set of S independent tests, performed each at a
given significance level α, we expect a number (F = S × α)
of false discoveries. Let K be the observed number of cases
with p-value below the threshold α. The SGoF algorithm
works as follows:

1) Input: A list of S sorted p-values, from minor to
major, (note that in the program that we provide this
is not necessary because the program itself performs
the sorting).

2) Set R = K, the number of p-values below the thresh-
old (α).

3) Repeat: Test (binomial or chi-square) if the R
observed discoveries deviate significantly from the
expected F ones.

a. If the test is significant: count a new significant
(corresponding to the smallest p-value), then
update the list of observed p-values, i.e. decrease in
one unit the number R and consequently increase
in one unit the number of values above the thresh-

Comparison of the multitest adjustments for homogeneity testsFigure 4
Comparison of the multitest adjustments for homogeneity tests. Number of true and false discoveries obtained 
under the different multitest adjustment methods over a varying proportion (% Effect) of the alternative hypothesis contribut-
ing to the family of comparisons. The sample size of each homogeneity test was small (N = 20). The alternative hypothesis rep-
resents Weak or Strong deviations from the null one. The absolute number of detected true discoveries among 10,000 is shown 
on the left side, while the absolute number of false discoveries is presented on the right side. Values are averages through 
1,000 replicates.
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old (to hold S constant). Repeat the process from
3).

b. If the test is not significant: stop the process and
go to 4)

4) The output of the program is the number of signif-
icants detected in step 3)

This metatest is an exact binomial test. However, when the
number of cases is large (S > 100) it can be approximated
by a chi-square or a G test obtaining exactly identical
results.

Generation of families of p-values by simulation
In order to compare the efficiency of the proposed SGoF
metatest, we need to generate a variable number of com-
parisons with different known (a priori) probabilities of
true discoveries. To generate a list of p-values we per-
formed two different kinds of tests, namely, t and homo-
geneity tests. Whatever the kind of test, two different
scenarios were assayed and, for each, three different num-
bers of experiments, S, were simulated, 100, 1000 and
10000. The scenarios were:

1) The null model is always true (intersection null
hypothesis).

2) An alternative model is true in some of the S tests. We
assayed three different percentages (% effect = 5, 10 and
20%) for the alternative model being true with respect to
the total number S of tests.

Therefore, there were a total of 123 different cases from
the two kinds of tests and all combinations of sample
sizes (see below), number of tests, % of effect and alterna-
tive models. Each test case was replicated 1000 times to
provide empirical standard deviations in the estimates of
multiple adjustments.

t tests
To perform the series of t tests we implemented a modifi-
cation of the procedure outlined in Brown and Rusell
[32]. First, we got standard normal deviates, x, that, after a
t-test, were transformed to p-values via the incomplete
beta function [33]. The mean of the normal deviates gen-
erated for the null hypothesis was 0. We chose the mean
for the alternative hypothesis so that the probability of a
p-value less than 5% should be either 0.10 or 0.25 under
asymptotic conditions. This means an effect of 0.36 i.e.
sampling from N(0.36,1) or an effect of 0.97 i.e. sampling
from N(0.97,1), respectively. As explained above we
assayed three different percentages (% effect = 5, 10 and
20%) for the alternative model being true with respect to
the total number S of tests. We generated the normal devi-
ates under a given, null or alternative, distribution, in

blocks of sample size N = 5, 10 or 20. Because we per-
formed a two-tailed t test with N-1 degrees of freedom, at
the 5% significance level, there was a power of 0.10, 0.18
and 0.33 with sample sizes 5, 10 and 20 respectively when
we tested versus the alternative with mean 0.36, and a
power of 0.38, 0.78 and 0.98, respectively, for the alterna-
tive with mean 0.97. These were, at each test, the probabil-
ities for rejecting the null being false.

G tests
We simulated a homogeneity test comparing the frequen-
cies of two classes (A and B) in two populations (1 and 2).
As above, two different situations, the null and the alter-
native model, were simulated. In the latter, the effect
could be weak or strong (Table 6). To simulate the null
model we resampled data from a 2 × 2 table with equal
expected probabilities of allocating data in cells (see Table
6, null case) until a particular sample size (N) was
achieved. Two different sample sizes were used, namely,
20 and 40. For each sample size, the process was repeated
until a collection S (number of tests) of independent
tables was obtained.

On each re-sampled table, we applied a goodness of fit
homogeneity test, which follows a chi-square distribution
with one degree of freedom [1]. In such a homogeneity
test, the expected numbers per cell were obtained from
frequencies of classes (A/B) and populations (1/2) under
the null hypothesis of homogeneity. In order to obtain a
simulated empirical rate of false positives as close as pos-
sible to the level of significance used, we applied the Wil-
liams' correction. Additionally, when sample size was 20
we also used the Yates correction [1].

To simulate the alternative hypothesis, a percentage of the
simulated tables (% effect 5%, 10% and 20%) were re-
sampled from an alternative model which could represent
weak or strong deviations from the null case (see Table 6).
For example, when simulating 100 tables (S = 100) with a
percentage of 5% of weak effects, that means that the sim-
ulation generated 95 tables from the null model and 5
from the weak alternative model from Table 6.

Notice that, both for t and G tests, we knew a priori which
p-value came from a null or an alternative model; there-
fore, after multitest adjustment we could check a posteriori

Table 6: Probabilities used in the simulation to resample the null 
and the two alternative hypotheses (weak and strong deviations 
from the null hypothesis) in a 2 × 2 homogeneity test.

Null Weak Strong

A B A B A B

Pop 1 1 1 1 0.67 1 0.43
Pop 2 1 1 0.67 1 0.43 1
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which of the significant tests (discoveries) were false (the
false discovery rate, FDR) and which were true. Thus,
when necessary, the power of a given multitest adjustment
was measured as the number of true discoveries divided
by the total of existing effects (false null hypotheses) and
the FDR was measured as the number of false discoveries
divided by the total discoveries.

Comparing efficiencies of alternative multiple adjustments
From the collection of p-values available from each simu-
lated case we applied some of the most common multitest
corrections. The Bonferroni correction (B), adjusts the
level of significance by dividing it by the number of tests
used [2]. The Sequential Bonferroni adjustment (SB)
divides the level of significance by the number of tests,
sequentially subtracting those which were previously sig-
nificant [2,34]. In this manner, it allows for controlling
the familywise error rate (FWER). The false discovery rate
(FDR) adjustment was described by Benjamini and Hoch-
berg [3] and we used its simplest version, that we refer as
to BH, which first ranks all probability values and second,
verifies if

p(i) being the probability of the significant test in rank i, S
the number of tests and q the level of significance chosen
(so that the FDR is maintained below q, provided that
some conditions regarding the distribution of the p-values
hold [35]). Let k be the largest i for which p(i) 7#8804; (i/
S) × q and then declare the hypothesis corresponding to
the smallest k p-values as significant. Since controlling for
FDR is less stringent than for FWER, the FDR based proce-
dures can exhibit higher power in certain conditions.
Unless otherwise stated, we always used q = α = 0.05.

Finally, we also applied the sequential goodness of fit
metatest (SGoF) described above to perform multitest cor-
rection. Therefore, we tested which of the observed signif-
icant cases could not be explained by chance following the
5% significance level. This goodness-of-fit metatest was
calculated by a G-test using the William's correction as we
always simulated 100 or more tests, approximating a chi-
squared distribution with one degree of freedom. Addi-
tionally, we also performed the whole set of simulations
using the exact binomial test, and the results were identi-
cal with S ≥ 1000, though slightly better for S = 100
(results not shown) as expected because with large sample
sizes the G test with one degree of freedom approaches
very well to the binomial test [1].
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