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Abstract

Background: One essential step in the massive analysis of transcriptomic profiles is the calculation
of the correlation coefficient, a value used to select pairs of genes with similar or inverse
transcriptional profiles across a large fraction of the biological conditions examined. Until now, the
choice between the two available methods for calculating the coefficient has been dictated mainly
by technological considerations. Specifically, in analyses based on double-channel techniques,
researchers have been required to use covariation correlation, i.e. the correlation between gene
expression changes measured between several pairs of biological conditions, expressed for
example as fold-change. In contrast, in analyses of single-channel techniques scientists have been
restricted to the use of coexpression correlation, i.e. correlation between gene expression levels.
To our knowledge, nobody has ever examined the possible benefits of using covariation instead of
coexpression in massive analyses of single channel microarray results.

Results: We describe here how single-channel techniques can be treated like double-channel
techniques and used to generate both gene expression changes and covariation measures. We also
present a new method that allows the calculation of both positive and negative correlation
coefficients between genes. First, we perform systematic comparisons between two given
biological conditions and classify, for each comparison, genes as increased (1), decreased (D), or not
changed (N). As a result, the original series of n gene expression level measures assigned to each
gene is replaced by an ordered string of n(n-1)/2 symbols, e.g. IDDNNIDID...DNNNNNNID, with
the length of the string corresponding to the number of comparisons. In a second step, positive and
negative covariation matrices (CVM) are constructed by calculating statistically significant positive
or negative correlation scores for any pair of genes by comparing their strings of symbols.

Conclusion: This new method, applied to four different large data sets, has allowed us to
construct distinct covariation matrices with similar properties. We have also developed a
technique to translate these covariation networks into graphical 3D representations and found that
the local assignation of the probe sets was conserved across the four chip set models used which
encompass three different species (humans, mice, and rats). The application of adapted clustering
methods succeeded in delineating six conserved functional regions that we characterized using
Gene Ontology information.
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Background

Since the introduction of microarray technology in the
1990s, a large number of data sets have been produced in
the field of transcriptome profiling and made publicly
accessible through specialised repositories like the Gene
Expression Omnibus (GEO) at NIH|[1,2] or ArrayExpress
at EBI [3,4]. Based upon the massive analysis of these
types of data, a number of different approaches have been
taken to develop integrated knowledge about the coex-
pression of genes [5], to search for regulatory elements in
upstream regions of genes [6], to define transcriptional
modules [7,8], to understand relationships between the
interactome and transcriptome [9], and other applica-
tions.

The calculation of correlation coefficients between pairs
of genes takes place at the very beginning of most studies
involving the massive analysis of transcriptome microar-
ray data sets, in particular those aimed at constructing
transcription networks. The ultimate quality of these net-
works can therefore be influenced by numerous factors
that are capable of affecting the quality of the correlation
coefficients. Among these factors is the inter-laboratory
reproducibility, which is of great importance because
massive analysis requires collecting results originating in
multiple laboratories.

Apparent discrepancies between the results of several
independent transcriptomic studies in the same system,
e.g. several types of mouse stem cells [10-12] or human
embryonic stem cells [13], have highlighted the need for
more research and for deeper analysis of the factors that
control the accuracy and inter-laboratory reproducibility
of microarray technology. In particular, large comparative
studies addressing various technical points, involving sev-
eral laboratories and comparing different platforms, have
been conducted [14-18]. The interpretation of these
results is difficult because of the large number of con-
founding effects that can bias any particular study (see
[16]). Regarding the calculation of correlation coeffi-
cients, however, it has been possible to order these con-
founding effects according to their relative importance,
revealing that the lab-effect is the most dominant. Indeed,
significant differences can be observed between the results
obtained when the same platform is used in different lab-
oratories to study the same biological systems. When con-
ducted in a realistic way, i.e. leaving each laboratory free
to select the protocols used, all studies converge towards
the conclusion that commercial oligonucleotide microar-
rays deliver results that are far more reproducible than
those generated by cDNA microarrays. For example, in
one study, a systematic evaluation of the relevance and
biases of genetic networks extracted from different expres-
sion datasets showed that the biological relevance of net-
works constructed from Affymetrix data was remarkably
higher than the relevance of gene networks inferred from
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cDNA data [19]. Since these two types of platform are
comparable in terms of sensitivity, specificity, and accu-
racy when they are carefully handled in the same labora-
tory [20], we conclude that the standardization of the
entire process, which is a characteristic of commercial oli-
gonucleotide platforms, plays the main role in the repro-
ducibility of the results by minimizing the lab effect. In
contrast, cDNA platforms are strongly penalized by the
absence of recommended protocols for the preparation of
targets and the possibility of using different hybridization
units, scanners, and software [14]. For these reasons, we
have decided to focus our attention on data generated by
commercial oligonucleotide platforms. Even more pre-
cisely, the Affymetrix platform appears to be optimal for
analysis because concurrent platforms are poorly repre-
sented in the repositories.

Correlation values between genes may be obtained in two
ways. Specifically, genes can be considered to be positively
or negatively correlated either because their absolute
expression levels follow a similar or inverse course across
several biological conditions (referred to as coexpression),
or because relative changes in their expression levels vary
in the same or opposite direction in a series of compari-
sons between two biological conditions (referred to as
covariation). Because individual signals obtained with
double-channel platforms, such as spotted oligonucle-
otide or cDNA microarrays, cannot be used reliably, one
must use variation measures (e.g. fold change) to calculate
the correlations between genes. In contrast, with single-
channel techniques such as in-situ oligonucleotide chips,
no internal controls are necessary and the normalized sig-
nals can therefore be used to calculate gene expression
correlations across several conditions. It follows then that
the vast majority of massive analyses of transcriptomic
results obtained to date with single-channel technique
have only used coexpression.

One conclusion of analyses of inter-platform and inter-
laboratory studies is that variation data are far more repro-
ducible than expression level results (see, for example, the
opposite conclusions reached by Kuo [21] and Irizarri
[15] using expression level and log-fold change correla-
tions, respectively). Using covariation instead of coexpres-
sion should therefore improve the quality of the
correlation coefficients calculated from single channel
results, which account for about 70% of the publicly avail-
able data [2].

While clustering techniques are often used to assemble
substantial subsets of genes [7], when correlations are to
be calculated on all possible pairs of genes most studies
rely on the use of classical correlation measures such as
Pearson's product-moment coefficient or Spearman's rank
correlation coefficient. In contrast, other techniques like
the mutual information score [22], normalized differ-
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ences [23], or cosine correlation distances [24] are rarely
used. To our knowledge, the suitability of the widespread
use of these correlation measures for massive microarray
analysis has not been questioned. The most obvious criti-
cism we could make in this regard is that this type of sta-
tistical tool is too simplistic in view of the complexity of
the relationships that exist between the transcript levels of
any two genes observed across numerous biological con-
ditions. Further, as the number of conditions under con-
sideration rises, the probability increases that the two
genes will have a positive correlation in one subset of con-
ditions and a negative correlation in another subset.
Depending on the relative importance of the two subsets,
the correlation coefficient, calculated using either covaria-
tion or coexpression, will give a positive, negative, or non-
significant value because all the conditions are analyzed
together [25]. For example, there should be a positive cor-
relation between a transcription factor and its targets.
However, it is possible that, under a specific set of biolog-
ical conditions, the expression of another isoform [26] of
the factor or a post-transcriptional modification [27] will
drastically change the factor's activity and give rise to a
negative correlation with its targets (examples shown in
[25] and [28]). This specific problem has long been recog-
nized in the field of unsupervised machine learning, lead-
ing to the development of bi-clustering techniques [29].
However, nothing comparable has been developed to
date for the calculation of gene correlations.

Another point to consider comes from inter-platform and
inter-laboratory studies. The reproducibility of variation is
sometimes assessed by considering the correspondence at
the top (CAT), i.e., the percentage of changing genes in a
test list that are also present in a reference list of the same
size. More generally, methods comparing the most vary-
ing genes found in two independent studies are better able
to support conclusions regarding inter-laboratory [15] or
inter-platform consistency [13] than are methods relying
on correlation coefficients.

Taken together, all of these results indicate that the popu-
lar methods that have been used to date for the massive
analysis of results obtained in different laboratories with
single channel technologies, which rely on correlation
between expression levels, are not the best adapted and
can be outperformed by methods comparing lists of genes
showing statistically significant variations. We have devel-
oped such a method that allows the calculation of both
positive and negative significant correlation scores using
gene expression variations between pairs of biological
conditions as data. When considering a given set of bio-
logical conditions, all studied using the same chipset
model based on the single-channel technique, we first
perform systematic comparisons between any two condi-
tions (therefore, n conditions will give rise to N = n(n-1)/
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2 comparisons). For each comparison, genes are classified
as increased (I), decreased (D), or not changed (N) by
application of our Rank Difference Analysis of Microarray
(RDAM) method ([30,31]). These multiple comparisons
result in the assignation of an ordered string of N symbols
to each gene, e.g. IDDNNIDID....DNNNNNNID. In the
second step, two covariation matrices (CVM) are con-
structed by calculating statistically significant positive and
negative correlation scores for any pair of genes by com-
paring their strings of symbols [32]. This new method,
applied to four different large data sets encompassing
three different species (Man, Mouse and Rat), allowed us
to construct covariation matrices (CVMs) with similar
properties. Further, we developed a technique to visualize,
in three dimensions, the covariation networks encoded in
these CVMs, and found that the local assignation of the
probe sets was conserved across the four chipset models
used. Finally, the application of adapted clustering meth-
ods allowed us to delineate six conserved functional
regions that we characterized using Gene Ontology infor-
mation.

Results

Data filtering

In this first section, we present the data that we used,
explain how the data were organized, and describe briefly
the quality filters that we developed. The filters were used
to eliminate data that could potentially affect the con-
struction of CVMs (a more comprehensive description of
the entire data filtering process is available in the addi-
tional file 1).

The method that we used to calculate CVMs relies on our
ability to perform systematic comparisons between any
two biological conditions present in sets of experiments
coming from different laboratories and on the availability
of datasets obtained over a large panel of experimental
conditions with the same standardized collection of
probes. These two criteria, plus others described in the
Introduction, led us to restrict our analysis to datasets
originating from Affymetrix platforms, and to consider
four chipset models in which the number of biological
conditions studied was greater than 100 as of October
2004 (see additional file 2). We organized the down-
loaded data into a structure in which the samples are
grouped according to the biological conditions and exper-
iments. With this nomenclature, experiments and sam-
ples correspond, respectively, to Geo Data Sets (GDS) and
Geo Samples (GSM) in GEO. A given biological condition
groups all the replicated experimental points (Table 1,
"before filtration" section).

A preliminary step in the Rank Difference Analysis of
Microarray (RDAM) [30,31] is the transformation of each
signal into a relative rank, i.e. the placing of the signal
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Table I: Platform origin of the data downloaded from GEO.
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before filtration first filtration end filtration NR filtration

chipset model Hexp #biol #point Hexp #tbiol Hexp #biol Hexp #biol
Human Genome U95 Set 32 237 882 23 136 15 71 13 37
Human Genome U133 Set 24 174 538 19 137 18 126 13 88
Murine Genome U74 Version 2 56 351 808 50 251 37 205 36 89
Rat Genome U34 Set 22 183 543 18 119 13 96 13 41

134 945 2771 110 643 83 498 75 255

For each model listed, the number of experiments (#exp), the number of biological conditions (#biol), and the number of samples (#points) are
indicated. Columns labelled "before filtration" indicate the raw figures at the time the data were downloaded. Columns labelled "first filtration",
"end filtration", and "NR filtration" indicate the figures obtained once the unusable (first and end) and redundant samples (NR) were eliminated. For
these three groups, the number of samples is twice the number of biological conditions.

value into the signal distribution, expressed on a continu-
ous scale of 0-100. This transformation is important
because it acts as a normalisation procedure that allows
different samples to be compared. We eliminated all sam-
ples having more than 500 missing probe sets (which
would result in a systematic bias towards higher ranks) or
more than 500 probe sets with identical signal values
(resulting in the random assignation of order ranks).

As RDAM can take advantage of duplicated measurements
to evaluate the noise distribution and improve statistical
power, we did not consider biological conditions repre-
sented by only one sample, and we selected exactly two
replicates for all of the other biological conditions. We
calculated the distance between any two samples (see
Methods) and identified the two most similar replicates
for each biological condition. We then inspected the scat-
ter plots of the ranks of duplicates. Some duplicates were
clearly of poor quality, e.g. with correlation coefficients
smaller than 0.7, and the corresponding conditions were
not used. Conversely, some duplicates were abnormally
similar, e.g. with correlation coefficients greater than 0.98,
and were discarded as well because they were technical
replicates. Table 1 summarizes the effects of this first filtra-
tion step on the four chipset models used in this study:
18% of the experiments (24/134) and 32% of the biolog-
ical conditions (302/945) were eliminated.

Following the first filtration step, we performed system-
atic comparisons between each pair of biological condi-
tions. A visual inspection of the heat maps representing
such comparison revealed that conditions with technical
replicates or with poor quality duplicates stood out sys-
tematically from the rest by showing a higher or lower
level of variation, respectively. The downloaded data were
initially processed either with MAS4 or MAS5, the two
main currently available versions of the Affymetrix analy-
sis suite (see Methods). Comparison heat maps showed
that the level of variations in MAS4/MAS5 comparisons
was significantly higher than in MAS4/MAS4 or MAS5/

MASS. These observations led us to eliminate MAS4 sam-
ples from our systematic comparisons. Table 1 summa-
rizes the effect of this final filtration step on the four
chipset models used for this study: 38% of the experi-
ments (51/134) and 47% of the biological conditions
(447/945) were eliminated.

Another potential source of bias in the construction of
CVMs is the presence of multiple experiments that contain
similar biological conditions. In order to give the same
weight to each biological condition and to eliminate
redundant conditions, we constructed a distance matrix
and defined as redundant those conditions that shared
more than 80% identity. After this process, the number of
biological conditions in chipset models HG-U95, HG-
U133, MG-U74, and RG-U34 was 37, 84, 89, and 41,
respectively (versus 71, 126, 205, and 96 at the comple-
tion of the quality filtering steps).

Construction of CYM

Following the application of the quality filters described
in the preceding section, we had multiple PxT matrices at
our disposal for each chipset model, with P representing
the number of probe sets and T the total number of com-
parisons. For example, the results of the analysis of the
HG-U95 dataset can be synthesized under 12625 x 2485
matrices, since 71 biological conditions passed the quality
filters (71 biological conditions allows for 71*70/2 =
2485 comparisons). Each matrix may contain one of the
results produced by the RDAM analysis, such as the esti-
mated total variation, the p-value, the false discovery rate
(FDR), or the sensitivity. In these matrices, positive and
negative values refer, respectively, to increased and
decreased variations. From these raw values, we then con-
structed an oversimplified matrix in which variation was
coded as either increased (I), decreased (D), or not
changed (N). The decision rule necessary to make this
transformation of numerical into symbolic values can be
any expression that uses the statistical quantities assigned
to each variation. In our case, we constructed two sym-
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bolic covariation matrices by using an FDR threshold
value of either 10% or 1% (in the latter case, variations
that had an FDR in the range -1 to -0.01; -0.01 to 0; 0 to
0.01; and 0.01 to 1 were labeled N, D, I and N, respec-
tively). The number of symbolic matrices can be extended,
if necessary, by considering, for example, conditions with
a given property, e.g. a definite pathology or condition
[32].

Calculation of CYM

The variation profile of a given probe set across all the
comparisons is represented by an ordered series of sym-
bols shown as a line in the symbolic matrix. If we extract
two lines from the symbolic matrix, keeping them in reg-
ister, and consider the different combinations of symbols
in a particular comparison (column), we can encounter
three different types of informative relationship between
the two corresponding probe sets: the two probe sets can
have the same type of variation (II or DD) and are thus
said to be positively correlated (C); the probe sets can
have opposite variations (ID or DI) and are said to be neg-
atively correlated (A); or only one type of variation is
ascertained (IN, NI, DN or ND) and they are said to be
questionable (Q). The number of columns belonging to

RAW DATA (1) & PERMUTED DATA (b)

Anti
Corr

Figure |
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each of these classes (#C, #A and #Q) is counted and the
corresponding percentages are referred to as Corr, Anti,
and Quest (for example Corr = #C*100/T). These calcula-
tions, which allow the construction of three independent
variables, are extended to all the possible pairs of probe
sets, producing one matrix of positive correlation scores
(the CORR matrix), one matrix of negative correlation
scores (the ANTI matrix), and one QUEST matrix, with
each matrix having the same PxP dimension.

Finally, we applied the same procedure to a randomized
submatrix of size 1500xT in order to statistically eliminate
non-significant values from the CORR and ANTI matrices.
Because each line was randomized independently, the
number of I, D, and N symbols in each line was con-
served, but no significant positive or negative correlations
could exist between any two lines (probe sets). The result-
ing CORR, ANTI and QUEST matrices could then be used
to determine the noise and to extract the pairs of probe
sets in which the Corr and Anti values were outside of the
noise. Panel A of Figure 1 shows that for a given (Corr,
Anti) coordinate the Quest value was consistently higher
in the randomized comparisons than in the raw data. We
therefore traced the surface defined by the 5th minimum
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Selection of statistically significant Corr and Anti values. Left panel: Values corresponding to 10¢ pairs of probe sets of
randomized and raw data are plotted as black and red points, respectively. Right panel: surface defined by the 5th minimum of
Quest at a given (Anti, Corr) value and determined in 19 x 106 pairs of probe sets after randomization of comparisons.
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of Quest for each (Corr, Anti) coordinate and set the Corr
and Anti values of points located above this surface to
zero. Then we re-calculated the Corr and Anti values that
were outside of the noise, using informative relationships
exclusively, in order to properly process probe sets that
had significant variations in a small fraction of the com-
parisons. For example, if 5000 comparisons are consid-
ered, two probe sets that are positively and negatively
correlated in 100 and 10 comparisons, respectively, and
questionable in 90 comparisons will have their Corr val-
ues changed from (2% = 100*100/5000) to (50% =
100*100/(100+10+90)). The resulting CORR and ANTI
matrices can be interpreted as networks: probe sets i and j,
indexed by the ith line and the jth column, are interpreted
as nodes, linked by two valued edges equal to CORR(], j)
and ANTI(], j), respectively.

Table 2 shows that this procedure had a dramatic effect
and eliminated a large fraction of the scores initially
present in the CORR and ANTI matrices (from 75% for
ALL10 networks to 97% for NR1 networks). The mean
connectivity value was governed by three factors. First, the
number of comparisons used had a positive effect; we
observed that the mean ratio of ALL to NR mean connec-
tivity values equalled 3.6 + 2.3, a value comparable to the
mean ratio of the number of comparisons between these
two series of networks (4.2 + 1.6). Secondly, the mean

Table 2: Statistical properties of networks
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connectivity was dependent on the FDR and increased by
a factor of 3 + 1.44 when the FDR changed from 1% to
10%. Finally, the chipset model used also had a strong
influence. Examining the mean connectivity normalized
by the number of comparisons allowed us to classify the
chips in the following order: Human Genome U95 Set,
Rat Genome U34 Set, Human Genome U133 Set, and
Mouse U74 Version2 (with 1.4, 0.3, 0.17 and 0.16 links
per comparison, respectively).

Performance of correlation scores

To examine the differences between our correlation scores
and the widely used Pearson's correlation coefficients, we
performed an evaluation using a cross validation-like
approach. First, we defined three classes of probe set pairs,
characterised by the different combinations of our posi-
tive and negative correlation scores. For each of these
classes we calculated how many probe set pairs had the
Pearson's correlation of their expression levels more than
0.50 or less than -0.50 (Figure 2, panels A to C). We
noticed that the probe set pairs that had a marked imbal-
ance between positive and negative scores were properly
selected by the Pearson correlation coefficient method,
albeit with a reduced efficiency. For example, 99% of the
probe set pairs defined by us as mainly positively corre-
lated in the HG-U133-NR10 network - i.e. with positive
and negative scores respectively above 10 and -10 - also

chipset network #biol #comp #Hraw #sel %sel mco mc mdc ma mda
Human Genome ALLI 71 2485 74017943 8400736  I1.35 1331 3621 2238 1331 1386
U95 Set (12 6245 ps) ALLIO 78414854 16751383 21.36 2654 2681 2285 1595 17.10
NRI 37 666 70749360 2291090 3.24 363 42.10 2086 29.07 21.03

NRI10 77866285 14260641 1831 2259 29.63 2343 20.01 2091

Human Genome ALLI 126 7875 182604317 7963686  4.36 715 3571 2398 9.0 8.8l
U133 Set (22 283 ps) ALLIO 235733279 20713103 879 1859 2937 2247 1190 1227
NRI 88 3828 160751542 3704369 230 332 47.68 3004 9.12 8.25

NRI0 227849133 10331556  4.53 927 3804 2640 1132 1129

Murine Genome ALLI 205 20910 75925711 11013118 1451 1764 2237 1848 11.87 1226
U74 Version 2 (12 488 ps) ALLIO 76566772 40596332 53.02 6502 20.63 21.28 1871 20.37
NRI 89 3916 74613508 2567219 3.44 411 3818 28.10 1191 1212

NRI10 77231972 4633426 6,00 742 3324 2724 1552 1598

Rat Genome ALLI 96 4560 25130304 2645806  10.53 601 36.69 2601 16.07 16.64
U34 Set (8 799 ps) ALLIO 35636045 6508820 1826 1479 2999 2392 1669 17.58
NRI 41 820 19937680 902388  4.53 205 55.05 4633 2335 2326

NR10 33301044 1801457 5.4l 409 4168 3250 21.72 2219

For each of the models listed, four networks were constructed based upon the combination of two independent factors: either all the biological
conditions retained at the end of the two selection steps or only the non-redundant ones (labelled ALL and NR, respectively), and either 1% or 10%
FDR (labelled | and 10, respectively). For each network, the table displays the number of biological conditions (#biol), the number of comparisons
performed (#comp), the number of positive correlation scores in CORR (#raw), the number and percentage of statistically significant positive
correlation scores (#sel, %s), the mean connectivity of a node (mco), and the mean and median positive (mc and mdc) or negative (ma and mda)
correlation values linking a node to its neighbours. The values in the last five columns were computed on statistically significant correlation scores.
The #raw, #sel and %sel values for the negative correlation scores in ANTI were similar to those of CORR and are therefore not indicated.
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Figure 2

Efficiency of detection by Pearson's correlation coefficient in three classes of probe set pairs. A, B, C: We
defined, in network HG-U133-NRI0, three classes of probe set pairs that had positive and negative correlation scores of,
respectively, > 10 and > -10 (mainly positively correlated and labelled CORR in A), > 10 and < -10 (positively and negatively
correlated and labelled CORR & ANTI in B) and < 10 and < -10 (mainly negatively correlated and labelled ANTI in C). For
each class we selected 30,000 random probe set pairs; the Figure indicates the percentage of the pairs that had a Pearson's cor-
relation coefficient of greater than 0.5 or less than -0.5 (correlation coefficients were calculated on the ranks, but similar
results were obtained with the log2 of signals). A probe set pair has its positive (red) and negative (blue) score plotted on the
x-axis, and its Pearson's correlation coefficient plotted on the y-axis (a probe set pair is therefore represented by two points
located on a line parallel to the x-axis). D, E, F: For the three subsets of probe set pairs whose Pearson's correlation coeffi-
cients were greater than 0.60 (D), 0.50 (E), or 0.40 (F), we have displayed the sorted values of the corresponding positive and
negative scores ((a probe set pair is therefore represented by two points). The percentage of pairs that also existed in the net-
work is indicated on the left of the curve, and the right side of the curve shows the ratio between the total number of pairs
found to be positively correlated in the network and the number of pairs that would have been selected if the process of selec-
tion by Pearson's correlation coefficient, here applied to 30,000 probe set pairs, had been extended to the entire set of probe
set pairs. Figures for negatively correlated probe sets were similar (not shown).

had positive Pearson's correlation coefficients. However,
only 18% of these pairs had correlation coefficients that
were greater than 0.50. The same is true for the mainly
negatively correlated probe set pairs, but in this case the
fraction of selected pairs was even smaller, with only 12%
of them having a correlation coefficient of lower than -
0.50. It is worth noting that the selection efficiency can be
largely improved by defining more homogeneous classes.
For example, using refined positively correlated probe set

pair classes with negative scores of above -3 or equal to 0
instead of above -10 enables a selection efficiency of 25%
and 60%, respectively. We can therefore infer that correla-
tion coefficients applied directly to expression levels are
very sensitive to the presence of small subsets of biological
conditions in which the correlation is inverted relative to
the main trend existing in all the other conditions. In con-
trast, our method is able to find about 25% of the probe
sets pairs with positive and negative scores respectively
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greater than 10 and lower than -10, which remain unde-
tectable when correlation coefficients are used (see panel
B of Figure 2).

Second, we selected three subsets of probe set pairs which
had Pearson's correlation coefficients of greater than 0.60,
0.50, or 0.40 (Figure 2, panels D to F), and estimated the
fraction that belonged to the covariation network. In all
cases, the retrieval rate using our method was high, reach-
ing, for example, 80% when the probe sets were correlated
at more than 0.50. In this particular case, however, we
noticed that the network constructed using the correlation
coefficient had 2.7 times fewer links than our network.

Based on these observations, we concluded that our
method clearly outperforms methods based on the use of
correlation coefficients in the selection of pairs of probe
sets that are only partly correlated. Since the fraction of
such probe sets is expected to increase in parallel with the
number of biological conditions used to construct corre-
lation matrices, this method is thus particularly well
suited for the massive analysis of transcriptomic microar-
ray results.

CVM validation

To ensure that our method delivered reliable results, we
applied several validation techniques. First, the informa-
tion stored in a pair of positive and negative CVMs
describes a network in which each pair of nodes is linked
by at most two edges, corresponding respectively to a pos-
itive and a negative correlation, and taking their values in
the | 0,100] interval. In such a network or graph, the loca-
tion of a particular node can be characterized by two
neighbourhoods, i.e. the combination of all the nodes
which are either positively or negatively correlated with
this node. Comparing the neighbourhoods of probe sets
targeting the same genes is a good approach for assessing
whether CVMs constructed from different chipset models
have high degrees of similarity. Secondly, we devised a
technique to add a geometrical structure to the networks
to visualise their internal structure. We observed that the
correlation values did not obey the triangular inequality,
i.e. f(anti(a, c), corr(a, c)) < = f(anti(a, b)corr(a,
b))+f(anti(b, c), corr(b, c)), with corr(i, j) and anti(i, j)
being the positive and negative correlations between
nodes i and j, respectively, and f being a simple function
calculating a value analogous to a distance by combining
the positive and negative correlation values existing
between i and j. Without such a property, a network
remains an abstraction and cannot be represented in a 2D
or 3D space in a realistic way. Once the nodes have been
mapped to definite positions in space, the geometrical
properties of the structure, such as the distance between a
given node and its first neighbour, and structural proper-
ties such as its organization into clusters can be used to
compare networks.

http://www.biomedcentral.com/1471-2105/10/214

Topological network similarity assessed by measuring probe set
neighbourhood similarity

A striking feature of the CVMs that we constructed is the
variability of their mean connectivities in both intra- and
inter-chip comparisons. For example, if we consider the
NR10 networks, which we favour for most of our applica-
tions, the mean connectivity ranges from 409 (RG-U34)
to 2259 (HG-U95), and the two human chipsets differ by
a factor of 2.4, with 927 links for HG-U133 and 2259
links for HG-U95. Nevertheless, we expect that some kind
of similarity exists across all the networks despite differ-
ences between the species and the biological conditions
used.

To assess this similarity, we calculated, for each pair of
probe sets targeting the same gene in two different chipset
models, the probability that the observed overlap
between their neighbourhoods occurred by chance. Let-
ting C be the number of common probe sets between two
chipset models, i be the rank of a probe set in a first net-
work and j the rank of a probe set targeting the same gene
in a second network, N1i and N2j be the number of neigh-
bours for the ith and the jth probe sets in their respective
networks (positive and negative correlations are treated
independently), and I be the observed number of com-
mon probe sets between N1i and N2j, we calculated the
probability of observing at least I common probe sets
using the hypergeometric probability h(I, C, N1i, N2j)
that the observed overlap is due to chance in the case of
total independence between the two networks; we called
this probability the neighbourhood similarity p-value.

We were first interested in using this approach to compare
probe set pairs targeting the same gene within a given
chipset model. We assumed that examining such probe
set pairs would allow us to eliminate any negative interfer-
ence that might exist between two different chipset mod-
els due to the heterogeneity of the biological conditions
used or to the observed inter-chip mean connectivity var-
iability. The distribution obtained in these conditions
should therefore give us a kind of standard that we could
use to interpret the inter-chipset comparisons. Consider-
ing that more than two probe sets could target the same
genes, we decided, in this case, to retain the two extreme
p-values calculated for each of the possible probe set pairs
combinations. Therefore, probe sets targeting the same
genes were split into two categories: i) unique pairs (hav-
ing only two probe sets) providing one series of p-values,
and multiple pairs (having more than two probe sets) pro-
viding two series of p-values. As a control, we also con-
structed two randomized versions of the unique category:
in the "random pairs" category, the second probe set was
taken randomly, and in the "random network" category
the second probe set had its neighbours randomized
before calculating the p-value. The five distributions cor-
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responding to these four categories are displayed in
Figure 3.

Plotting the correlation scores against the log10(p-value),
as shown in Figure 4 for the unique pairs category,
showed that most of the probe set pairs with a log10(p-
value) of less than -10 were also related by a high positive
correlation score; these two characteristics led us to con-
sider them as truly targeting the same gene transcript. We
hypothesized that the few pairs that had similar neigh-
bourhoods but with correlation scores equal to zero were
composed of probe sets targeting two alternatively spliced
transcripts of the same gene, with different regulation
(preliminary results not shown). We decided to use this
log10(p-value) limit of -10 to determine, in Tables 3 and
4, the fraction of probe set pairs that could be considered
consistent on the basis of their high neighbourhood sim-
ilarities.

It is worth noting that the random pairs have a notable
fraction of consistent pairs (10.2 + 1.7 in NR1 networks
and 19 # 0.8 in NR10 networks, compared to 36.2 + 4.4
and 46.8 + 3.9 for the unique pairs). At least two explana-
tions could account for the high level of consistency
observed between the randomly selected probe sets. First,
the networks under consideration are scale-free (results
not shown) and contain several hubs connected to a large
proportion of the other nodes. As a consequence, two
probe sets selected at random have a high probability of
counting most of these hubs as neighbours. Second, the
high mean connectivity (Table 2) means that the network
can be subdivided into a large number of overlapping
subsets that have a high degree of inter-connectivity - an
analysis technique known as biclustering- and the proba-
bility that two random probe sets will be found in one of
these subsets is therefore not negligible. Finally, it can be
seen that the heterogeneity within multiple pairs is very
high, since the worst p-value curves are superimposable
on those of the random pairs (Figure 3), and the fraction
of consistent pairs calculated from the best p-values is 1.5
times the fraction of unique pairs (55.8 + 5.8 in NR1 net-
works and 72.8 + 5.9 in NR10 networks, compared to
36.2 + 4.4 and 46.8 + 3.9 for the unique pairs). In view of
this analysis, we conclude that the fraction of consistent
pairs calculated from the best p-values of multiple pairs is
the right statistical tool to use to estimate the neighbour-
hood similarity between two networks, because it
increases the fraction of pairs suitable for this type of com-
parison. We expect that the fraction of consistent pairs
that can be obtained when testing for the similarity of two
networks is around 55% and 70% for the NR1 and NR10
networks, respectively.

The presence of numerous consistent pairs - i.e. with a
log10(p-value) < -10 - allowed us to construct two sub-
networks with pair-wise correspondence between all of
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Figure 3

Neighbourhood similarity for probe sets targeting a
common gene. The cumulative distribution frequency (cdf)
of the logarithm of the p-values is plotted for the following
categories of probe set pairs in network HG-U95-NR10: —
unique pairs, i.e. genes targeted by exactly two probe sets
(red: CORR, blue: ANTI). — multiple pairs, i.e. genes targeted
by more than two probe sets. In this case, we considered
either the best (magenta: CORR, cyan: ANTI) or worst p-val-
ues (magenta interrupted: CORR, cyan interrupted: ANTI). —
random pairs, where the first probe set of unique pairs is
matched with a probe set randomly selected from the sec-
ond network (green: CORR, black: ANTI)- random network,
where the first probe set of unique pairs is matched with a
probe set taken from the second network after its neigh-
bours have been randomized (green interrupted: CORR,
black interrupted: ANTI). If the number of common neigh-
bours is larger than expected, the logl0(p-value) is calculated
(left part of the curves, < 0), otherwise the opposite of the
logarithm is calculated (right part of the curves, > = 0). A
vertical line at log| O(p-value) = -10 indicates the position of
the inflection point used to tabulate the cdf values in Table 3.
The presence of a strong inflection point at around -10 is an
artefact of the algorithm, which is unable to calculate cor-
rectly very low p-values.

their nodes by randomly assigning each member of a pair
to one of the sub-networks. Counting the fraction of links
that is conserved between these two sub-networks is
another way of measuring the overall reproducibility of
the methods. We found that the mean reproducibility
ranged from 42% to 88%, depending on the connectivity
of the nodes considered (respectively > 0 and > 200). The
final columns of Table 3 and Table 4 show one example
of such a measure, for nodes having a connectivity of
greater than 100 (see additional file 3).

We used the same approach to compare matched net-
works constructed in two different chipset models. The
results obtained were similar to those displayed in Figures
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Figure 4

Neighbourhood similarity p-value and positive corre-
lation for pairs of probe sets targeting a common
gene. In the lower part of the figure is plotted (in red) the
cumulative distribution frequency (cdf) of the logarithm of
the neighbourhood similarity p-values for the unique pairs
category in network HG-U95-NR10 (this curve corresponds
to those of Figure 3, with an inversion of the x and y axes;
the probe set pairs to the left of the green vertical line have a
log10(p-value) < -10). In the upper part of the figure is shown
the positive correlation score of the same probe set pairs.
Red crosses indicate probe set pairs with a score > 20 and
log10(p-value) < -10. Blue crosses designate probe set pairs
with a score <= 20 or a log|0(p-value) >= -10.

3 and 4 for intra-chip comparisons (result not shown);
Table 4 presents the numerical values obtained measuring
the neighbourhood similarity. The first conclusion we
were able to reach from this analysis was that the similar-
ity of the networks across different chipset models and/or
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different species remained very high: the fraction of con-
sistent probe set pairs was 59.0 + 6.0 and 57.8 + 7.7 for the
NR1 and NR10 CORR networks, respectively. It is worth
noting that the mean best value obtained by matching dif-
ferent chipset models (59 + 6) in the NR1 CORR networks
was directly comparable to the best value obtained within
individual networks (55.8 + 5.8). This means that the 1%
FDR selection truly succeeded in finding positive correla-
tions, which were conserved across the three species stud-
ied independently of the set of biological conditions used.
Indeed, this level of conservation drops when a 10% FDR
selection is applied (from an expected value of 70% to an
observed value of 58%); we may suppose that this is a
direct consequence of the disparity among the biological
conditions used. Considering that this effect was of the
same magnitude in the comparison between the two
human networks and in inter-species comparisons, we
conclude that differences in regulation between species
cannot be easily detected if the networks are not normal-
ized with respect to their biological conditions.

Taken together, all of these observations indicated that
some kind of invariant topological organization underlies
the structure of all of the networks that we constructed.
However, as we only considered the first neighbours of
each probe set, i.e. all the probe sets that were correlated
with it, we cannot conclude that this shared organization
exists at every scale. It seems sensible, however, to think
that as long as small scales are considered our networks
are congruent. Finally, we observed that there was a clear
difference, which had not been observed in our previous
study restricted to single networks, between the CORR
and ANTI fraction values, with the CORR values being
greater by 26 + 6 points (NR1) and 20 + 5 points (NR10).
We can therefore speculate that negative correlations are
far more sensitive to the nature of the biological condi-
tions used to construct the network than are positive cor-

Table 3: Fraction of consistent probe set pairs targeting the same gene.

random pairs unique pairs multiple pairs <-10

chipset model network #pairs %sel #pair %sel #pairs %sel J%com
HG-U95 NRI 1537 I 1519 32 625 48 66
HG-U95 NR10 1563 19 1561 43 633 67 50
HG-UI133 NRI 2721 8 2653 33 2023 56 47
HG-UI133 NRI0 2821 20 2814 44 2061 72 37
MG-U74v2 NRI 1442 12 1438 41 336 62 62
MG-U74v2 NRI0 1460 18 1460 51 337 8l 46
RG-U34 NRI 1110 10 1075 39 507 57 74
RG-U34 NR10 1144 19 1141 49 521 71 59

For each CORR network, the table indicates the number of probe set pairs considered (#pairs) and the percentage of probe set couples (%sel) with
a logl 0(neighbourhood similarity p-value) of less than -10 in three categories of probe set pairs: labelled random pairs, unique pairs, and multiple
pairs (see Figure 3 legend). For the multiple pairs category, the probe set pair having the best p-value is retained. The final column (%com) presents
the mean percentage of links that are common between two sub-networks constructed by considering probe sets with more than 100 links and by
picking the first or the second probe set from all the probe set pairs with a logl0(p-value) < -10. ANTI network values are very similar.

Page 10 of 23

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:214

http://www.biomedcentral.com/1471-2105/10/214

Table 4: Fraction of consistent probe set pairs targeting the same gene in two networks.

CORR ANTI

chipset model | chipset model 2 network #pairs %sel %com #pairs %sel
HG-U95 HG-UI33 NRI 4600 64 40 4143 42
HG-U95 HG-UI33 NR10 4769 67 34 4605 52
HG-U95 MG-U74v2 NRI1 2061 53 45 1914 27
HG-U95 MG-U74v2 NR10 2093 50 42 2057 32
HG-U95 RG-U34 NRI 1603 51 65 1433 18
HG-U95 RG-U34 NR10 1653 48 60 1602 21
HG-UI33 MG-U74v2 NRI 3285 65 45 3002 38
HG-UI33 MG-U74v2 NR10 3332 65 37 3268 47
HG-UI33 RG-U34 NRI 2230 58 65 1886 25
HG-UI33 RG-U34 NR10 2316 58 54 2214 33
MG-U74v2 RG-U34 NRI1 1503 63 59 1345 34
MG-U74v2 RG-U34 NR10 1554 59 51 I511 41

The fraction is calculated with the best value of the multiple pairs category. For each comparison between two networks, the table indicates the
chipset model of the first and second network (chipset model | and 2), the name of the networks (network), the number of probe set pairs
considered (#pairs), and the percentage of probe set pairs (%sel) with a log|0(neighbourhood similarity p-value) of less than -10 in networks
constructed either on positive (CORR) or negative CYMs (ANTI). The column (%com) indicates the percentage of links shared between two sub-
networks constructed by examining probe sets with more than 100 links and picking the first or second probe set from all the probe set pairs

having a log|0(p-value) < -10.

relations, and that the former have greater weight in the
shaping of networks.

Geometrical network similarity assessed by measuring probe set
neighbourhood distance and degree similarity

The geometrical representation of a network in 2D or 3D
space is another important point to be considered. To
map each node to a particular set of coordinates, we
devised an algorithm called Keiko which uses a physical
paradigm. For a given pair of probe sets, we calculate the
difference between the positive and negative correlation
scores and interpret the resulting positive or negative val-
ues as an attractive or repulsive physical force, respec-
tively. We then place the nodes randomly on the
periphery of a 3D universe and let the attractive and repul-
sive forces act incrementally by repeatedly activating
forces restricted to a given range, starting with the highest
absolute values and finishing with the lowest (see legend
to Figure 5). As this aggregation process advances, the dis-
crete clusters which are present at the beginning get pro-
gressively closer, ultimately forming what we call a probe
set map (not shown). We show in Figure 5 six successive
steps of this aggregation process, showing that the discrete
foci which appeared at the very beginning (panel A) got
progressively closer (panels C and D) and finally formed
a clump at the end of the process (panels E and F). In each
network, numerous probe sets stayed outside of the final
probe set map (representing 34%, 41%, 24%, and 47% of
the probe sets for the HG-U94, HG-U133, MG_U74v2,
and RG-U34 chipset models, respectively).

To check the continuity of the structures that appeared in
the initial steps, we used the software Gene DIVER [33] to

delimit dense regions buried in a sea of unorganized
points and observed how these clusters of points evolved
throughout the process. As shown in Figure 6, clusters that
appeared in the first steps were maintained in the final

Figure 5

Mapping of probe set position in 3D space with Keiko.
Each panel shows the configuration of nodes after attractive
forces greater than 60 (A), 50 (B), 40 (C), 30 (D), 20 (E), or
| (F) have been activated and an equilibrium obtained (net-
work HG-U95-NRI). For repulsive forces, the threshold
used to activate the forces is equal to the attractive force
minus 10. Each node is allowed to move in the direction
resulting from the sum of the attractive and repulsive forces,
and the whole network reaches a new configuration charac-
terized by its potential energy. When the difference in energy
between two successive configurations is inferior to a given
threshold, new forces with smaller values are activated.
Nodes are not allowed to collapse, and repulsive forces are

automatically added when the distance between two nodes is
below a given limit.
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configuration; we thus concluded that our method allows
probe sets to follow stable trajectories.

Another issue that we addressed was the influence of the
random starting positions of points on the reproducibility
of the process. We constructed several Keiko maps from
one network and compared these maps to one another. To
compare any two maps and assess the reproducibility of
the network geometry, we first searched, for each node,
the closest node in a map used as a reference, which was
given a rank equal to one; we then measured in another
test map the distance and the rank which separated the
two corresponding nodes. A distance score was calculated
by determining the ratios of the median distances before
randomization of the test map to the median distances
after randomization (see panel C of Figure 7). Similarly, a
ranking score was calculated by determining the ratios of
the median neighbourhood degrees (see panel D of Figure
7). The upper parts of Table 5 and Figure 7 show that the
process is largely reproducible, although the random posi-
tions of the points at the start of the process introduce
some local fluctuation.

The same technique, applied to the comparison of maps
constructed from different chipset models, allowed us to
confirm that the high level of similarity that we had

gl

Figure 6

Clustering of probe sets with Gene DIVER. Eleven clus-
ters found by Gene DIVER on HG-U133-NR1 in step I, the
final step of the mapping process by Keiko (A, B, corre-
sponding to without and with all other non-clustered probe
sets, respectively) are represented at step 30 (C) and step 60
(D). A and B show one cluster (in cyan) that is not significant
because it is composed of probe sets that were not activated
and that stayed randomly positioned at the periphery of the
3D universe. Five clusters found by Gene DIVER on HG-
UI33-NRI at step 60 of the mapping process by Keiko (E)
are represented at step 30 (F).
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observed on networks, at least at a small scale (Table 4),
was still present when these networks were mapped to a
definite 3D configuration with Keiko (Figure 8 and Table
5). Indeed, Figure 8-A shows that clusters of points located
in any given region of the map in a particular network
remained grouped when mapped in another network. Vis-
ual inspection of Figure 8-B shows that the lines linking a
given probe set in two different networks are not strictly
parallel. Taking into account that the distance or rank
between a given probe set and the closest different probe
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Figure 7

Reproducibility of Keiko 3D mapping. Two Keiko probe
set maps constructed on HG-U133-NRI are compared (rep-
licates a and c of Table 5). A — Twelve clusters found by
Gene DIVER in replicate c are displayed in the upper right
corner. The corresponding points on replicate a are dis-
played in the lower left corner. All the points belonging to a
given cluster in replicate c are linked by a coloured line; the
same is true for the corresponding points in replicate a. B —
Two points corresponding to a pair of probe sets are linked
by a line coloured according to the cluster they belong to. C
— In blue is plotted the probability density of the distance in
replicate a between one point and the closest point (i.e. its
rank is equal to 1) in replicate c. In red is plotted the proba-
bility density of the mean distance in a series of random per-
mutations of replicate a. The black vertical line shows the
median value of the first distribution. The magenta vertical
line indicates the mean of the 100 median values calculated
on permuted maps. The ratio between these two values was
used to calculate the distance score, which represents the
"distance similarity" between the two maps. D — In blue is
plotted the probability density of the ranks in replicate a
between one point and the closest point in replicate c. In red
is plotted the probability density of the mean ranks in a series
of random permutations of replicate a. The ratio between
the two values marked by the two vertical lines was used to
calculate the ranking score, which represents the "rank simi-
larity" between the two maps.
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set does not change dramatically when measured in a
matched network (Table 5), we can conclude that the top-
ological similarity detected in the previous section — most
of the first neighbours of a probe set in a given network
are also first neighbours of the same probe set in a
matched network - is reflected by a geometrical similarity
- the closest probe set to a given probe set in one network
stays close to the same probe set in a matched network -
when our mapping procedure is applied.

Structural and functional organisation of the networks
The above analysis showed that our methods succeeded in
constructing networks whose geometrical and topological
properties were well conserved over a short range. In this
section, we show how larger conserved functional regions
can be defined and how a synthetic view of the large scale
structure of a network can allow conclusions to be drawn
about the general organization of the network.

Large scale structural organisation of the networks

The clusters found by Gene DIVER in the Keiko probe set
maps could have been used to study the large scale struc-
tural organisation of the networks, as it was possible to
identify clusters sharing the same genes across the four
networks (results not shown). However, as local density is
not an invariant characteristic of Keiko maps (Figure 7),
we preferred to concentrate instead on finding a more
robust definition of density that was independent of any
geometrical representations, using the clustering coeffi-
cient to this effect. In this case the clusters are formed by
probe sets which are linked together by a high number of
edges. The Markov clustering algorithm [34,35] is
designed to find this type of cluster by simulating a ran-
dom walk inside the network and interpreting the
strength of a link - in our case the difference between the

Table 5: Reproducibility and similarity of the geometrical
structures.

distance score ranking score

comparison mean std mean Std
HG-Ul33 repavsrepb 4 0.03 20.62 0.22
HG-Ul33 repavsrepc 4.22 0.03 27 0.3
HG-UlI33 repavsrepd 4.09 0.03 24.43 0.26
HG-U95 vs HG-U133 236 0.06 4.12 0.15
HG-U95 vs MG-U74v2 1.93 0.05 3.56 0.15
HG-U95 vs RG-U34 2.6 0.17 3 0.23
HG-U133 vs MG-U74v2 1.9 0.04 3.6l 0.14
HG-U133 vs RG-U34 3.1 0.13 3.63 0.2
MG-U74v2 vs RG-U34 3.36 0.14 35 0.2

The three top lines show the geometrical and topological scores
calculated between replicates of the HG-U133-NR| Keiko map, giving
an indication of the reproducibility of the mapping process. The lower
part of the table shows the scores calculated between maps
constructed on different chipset models. The scores were calculated
as indicated in the legend to Figure 7.
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Figure 8

Geometrical and topological network similarity. Two
Keiko maps are compared, one constructed on MG-U74v2-
NRI and another on RG-U34-NRI. Only unique and multiple
probe set pairs are taken into account in the display and sta-
tistics. A — Six clusters found by Gene DIVER in the RG-
U34-NRI map are displayed in the upper right corner. The
corresponding points on the MG-U74v2-NR| map are dis-
played in the lower left corner. All the points belonging to a
given cluster in the RG-U34-NR| map are linked by a col-
oured line, and the same is true for the corresponding points
in the MG-U74v2-NR| map. B — Two points that corre-
spond to a pair of probe sets are linked by a line coloured
according to the cluster they belong to. C — In blue is plotted
the probability density of the distance in the RG-U34-NRI
map between one point and the closest point in the MG-
U74v2-NR| map. In red is plotted the probability density of
the mean distance in a series of random permutations of RG-
U34-NRI. The black vertical line indicates the median value
of the first distribution. The magenta vertical line marks the
mean of the 100 median values calculated on permuted maps.
The ratio between these two values is used to score the "dis-
tance similarity" between the two maps. D — In blue is plot-
ted the probability density of the ranks in the RG-U34-NR|
map between one point and the closest point in the MG-
U74v2-NR| map. In red is plotted the probability density of
the mean rank in a series of random permutations of RG-
U34-NRI. The ratio between the two values marked by the
two vertical lines is used to calculate a ranking score that
scores the "rank similarity" between the two maps.

positive and negative correlations between two probe sets,
set to zero if negative or below a given limit - as the prob-
ability of following that link. We observed that clustering
networks using limits of 0, 10, or 20 gave comparable
results, and that clustering with too high of a limit, e.g. 50
or 60, resulted in too few probe sets being located in clus-
ters of reasonable size. We therefore used limits of 0, 30,
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and 40 and compared, for each limit, the clusters obtained
in the four networks constructed with a 1% FDR. We
determined a set of six common regions, with each region
possibly resulting from the merging of several clusters in a
particular network (see Methods), combining 71%, 60%,
67%, and 68% of the probe sets present in the probe set
maps of the HG-U94, HG-U133, MG_U74v2, and RG-
U34 NR1 networks, respectively. All of the probe sets
belonging to clusters not used in the construction of the
regions and all of the non-clustered probe sets belonging
to the probe set map were assigned to regions 7 and 8,
respectively, for the sake of convenience (these subsets are
not proper regions since they are not constructed on the
basis of common content across the four networks).

The dendrogram of Figure 9 shows that all of the regions,
except for region 3 of RG-U34, are perfectly grouped with
respect to their ranks, and that each group of regions is
well separated from the others, meaning that we suc-
ceeded in delineating six different regions that are well
conserved in the four networks. For the six regions, we
measured the mean percentages of conserved probe sets to
be39% + 12,48% + 11, 29% + 23, 53% + 5, 57% + 6, and
60% =+ 6, respectively.

The probe sets located in each region are highly con-
nected, with a mean connectivity of 0.44 + 0.17 and 0.42
+ 0.17 for the positive and negative correlations (the con-
nectivity of a region is equal to the number of edges it con-
tains divided by the total number of edges it could
contain, and the mean is calculated over all six regions).
Another characteristic of the regions is the large fraction of
edges emanating from the probe sets located in a given
region that target probe sets located in the same region
(0.40 + 0.13 of links stay inside the regions). The equality
of the positive and negative connectivity does not mean
that the two types of correlation have the same impor-
tance inside the regions. In fact, we found that positive
correlations were predominant inside the regions, having
a mean value of 40 + 6, which was much greater than the
negative correlations, which were measured at 7 + 3. In
comparison, calculating the same values between a given
region and the other five regions showed that positive and
negative correlations had the same weight: the correlation
values were equal to 22 + 5 and 23 + 6, respectively, and
the connectivity was equal to 8 + 4 in both cases (see addi-
tional file 4 for complete results). From these averaged
properties, we can characterize the network as a structure
comprised of six loosely connected regions that contains
highly connected probe sets with high positive correlation
and low negative correlation.

By mapping all the probe sets belonging to a given region
onto the probe set maps constructed with Keiko, we found
that the corresponding points were also localized to a
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defined region made up of a dense subset of points local-
ized in a small part of the whole space, with very few inter-
sections with the other regions. This means that the
application of two very different algorithms produced two
congruent outcomes: either a clustering of probe sets by
Markov clustering, or a disposition of the probe sets in a
3D space by the Keiko algorithm. The combination of the
two types of information - regional membership and
position - allowed us to obtain a synthetic view of and
have a more precise perspective on the structural organisa-
tion of the networks coded inside the CVM. We calculated
for each pair of regions an inter-region correlation trend
(see section V of Materials). Each region was then dis-
played both as a circle positioned at the barycentre of its
probe sets and as a closed line delimiting its maximal
extension. The positive and negative correlation trends are
represented by red and blue lines, respectively, whose
widths reflect the trend strength. Figure 10 displays the
four maps obtained with this procedure.

We observed, first, that the probe set map architecture is
shaped by both attractive forces, which are responsible for
the formation of dense regions of probe sets and for the
proximity of some regions, and repulsive forces, which are
responsible for the separation of some regions. For exam-
ple, the HG-U95 and HG-U133 networks, which have
strong parallel negative trends, are outstretched (Figure
10-A and 10-B), while RG-U34 is constrained into a trian-
gular shape by strong orthogonal negative trends (Figure
10-C). Conversely, as most of the inter-region trends in
MG-U74v2 are slightly negative, it is not surprising that
the corresponding structure is symmetric and round (Fig-
ure 10-D). Another interesting observation is that positive
correlation trends are not transitive over long distances: if
regions A and B are close and positively correlated, and so
are regions B and C, then regions A and C have a positive
correlation trend as well. But if we add a more distant
region D that is positively correlated with, e.g. C, then
regions A and D may have a negative correlation trend, as
exemplified by regions 1, 4, 6, and 5 of Figure 10-A. In
other words, a chain of positively correlated regions is
generally terminated by negatively correlated regions.

Finally, we note that it is impossible to obtain a consensus
description of the network structure: six well-defined
regions, each composed of highly correlated probe sets,
are indeed present in all four networks, but the relation-
ships between these regions are not constant over the four
networks, and some regions that are mainly negatively
correlated in a given network are positively correlated in
another network, e.g. regions 1 and 2 in the HG-U95 and
HG-U133 networks. Given the high similarity between
the networks demonstrated above, we conclude that their
organisation into six regions is a strong and fundamental
characteristic, whereas their observed relationships are

Page 14 of 23

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:214

HE-UI33 RS ‘ 4

RGUM R4 o=
AG-U3L_R3 ‘

MG-UT42_R4

HE.UI33 R4

) | i

Figure 9

Dendrogram of the six common regions found in the
four NRI networks. The regions are named as follows: at
the beginning the name of the chipset model is indicated, fol-
lowed by the region number. The distance used to measure
the closeness of two regions was taken as equal to | —
Inter(1,2)/min(1,2), where Inter(l,2) is the number of probe
sets common to the two regions and min(1,2) is the mini-
mum of probe sets in the two regions. For example, MG-
U74v2 and RG-U34 have 745 and 1041 probe sets, respec-
tively, in region 5, of which 410 and 785 are present in the
alternate chipset model. As MG-U74v2_R5 and RG-U34_R5
have 264 probe sets in common, we calculated a distance
equal to | —264/410 = 0.35, which reflects the 70% of the
probe sets they have in common.

largely dependent on the particular subset of biological
conditions used to construct them.

Small scale structural organisation of the networks

The structure of the core network, i.e. composed of six
regions, becomes more apparent when the CVMs are dis-
played after having been reordered by clustering positive
correlation measures independently in each region using
annealing clustering [36], as shown in Figure 11 for the
HG-U133-NR1 CVM (see additional file 5 for a represen-
tation of all the CVMs). In accordance with what is shown
in Figure 10 and with the conclusions of the preceding
section, this representation shows that the six regions are
loosely connected. In addition, the clustering makes it
obvious that the probe sets are organized within each
region into overlapping groups of tightly correlated probe
sets — a characteristic of functional modules- and that the
interactions between the modules within a given region
are strong. However, we were unable to find a simple way
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of identifying modules that were common to the four net-
works; better analytic techniques and/or normalization of
the biological conditions could potentially show that the
different networks are similar at this level of organization.
It can also be seen in this particular example that in
regions 2, 3, and 4 most of the probe sets are present
within modules, whereas in the other three regions about
one-third of the probe sets are sparsely correlated. It might
not be coincidental that these sparsely correlated probe
sets are never implicated in positive correlations between
the regions, and that only probe sets within modules can
have both positive and negative correlations between the
regions.

Functional organisation of the networks

We used the GENERATOR tool (Pehkonen et al., 2005) to
calculate p-values for all the GO terms associated with the
genes present in the different regions, and asked whether
the regions were homogeneous with respect to their Gene
Ontology annotations. By considering the five GO terms
with the most significant mean p-values, we were able to
determine, without ambiguity, the main characteristics of
each bona fide region within the three branches of the GO
nomenclature. To give a short description for each region,
we selected the five most representative terms from the
three GO branches (i.e. biological process, molecular
function, and cell component; see the "Fist5GO" sheet in
the additional file 6)) and constructed the following
descriptors, using one representative term for each GO
branch, corresponding respectively to regions one to six:
immune system/signal transduction/lysosome (1),
nucleic acid metabolic process/nucleic acid binding/
nucleus (2), cell adhesion/extracellular matrix structural
constituent/extracellular matrix (3), energetic metabo-
lism/NADH dehydrogenase activity/mitochondrion (4),
nervous system/ion channel activity/neuron (5) and
metabolism/oxidoreductase activity/endoplasmic reticu-
lum (6). The six regions are therefore related to the
immune system, nuclear processes, cellular adhesion,
energetic metabolism, the nervous system, and metabo-
lism, respectively.

Several observations allowed us to conclude that these six
regions form a well-established structure that is present in
all four networks when studied at a functional level. First,
most of the terms with a p-value of <= 0.01 (OLog >= 2)
were directly or indirectly related to the main characteris-
tic of their region. Second, the characteristic terms had
extremely low p-values and were present in a high propor-
tion of the genes. Third, we calculated two scores for GO
terms having p-values equal or inferior to 0.001 (OLog >=
3) for each region and each network, in order to assess the
degree of homogeneity in each region; we found that the
similarity score, which is the percentage of GO terms
found in at least three networks, and the purity score,

Page 15 of 23

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:214

http://www.biomedcentral.com/1471-2105/10/214

Figure 10

Mapping of regions found with the Markov clustering algorithm onto Keiko probe set maps. A: HG-U95, B: HG-
U133, C: MG-U74, D: RG-U34. Each of the six regions corresponds to a circle whose size is proportional to the number of
probe sets it contains. Regions one to six are colour-coded as magenta (immunity), yellow (nucleus), cyan (adhesion), red
(energetic metabolism), green (nervous system), and orange (metabolism), respectively. The extent to which the probe sets
belong to a given region is indicated by a loop of the same colour. Red and blue lines indicate the inter-cluster correlation
trends. Negative correlation trends — a condition in which the mean of the negative correlation values is greater than the mean
of the positive correlation values — are rendered by blue lines, and positive correlation trends by red lines (see section V of
Methods). The dashed lines correspond to trend >= | and < 2, and the three increasing widths of the continuous lines corre-
spond to increasing strength values (respectively to range 2-3, range 3-5, and >=5).

which is the percentage of GO terms specific to the region
under consideration, were both high, with means of 97%
and 73%, respectively (see the "GOScores" sheet in the
additional file 6 for complete results). We also found,
however, that three regions of the rat network were not
really pure and were enriched in genes normally assigned
to other regions in the three other networks: region 1 was
enriched in GO terms associated with region 3 (more spe-
cifically related to collagen metabolism and cartilage
development), and regions 2 and 3 contained many terms
linked to region 1 (immunity).

Another function of GENERATOR allows the clustering of
genes to groups that have GO terms in common. We con-
structed another score that measures the number of clus-
ters containing a given GO term. This information
allowed us to detect groups of genes with very specific
functions (see the "GOClustering" sheet in the additional
file 6). For example, the GO term "DNA unwinding" was
very specific and was found only eight times in the list of
GO terms corresponding to the human chipsets. In HG-

U94 and MG-U74, this term was found in two clusters:
one cluster of 138 and 114 genes, respectively, mainly
related to transcription (clusters 17 and 14), and one clus-
ter containing 60 and 53 genes, respectively, linked to the
regulation of chromatin and DNA packaging (clusters 2
and 10). In HG-U133 and RG-U34, all the "DNA unwind-
ing" terms were found in one cluster per dataset, contain-
ing 119 genes (cluster 7) and 14 genes (cluster 4),
respectively, related to chromosome organization. This
score also confirmed the difference between regions 4 and
6. By listing the terms with the highest mean scores calcu-
lated for the four networks, we found that in region 4 all
the terms were related to energy production (e.g. glycoly-
sis, fatty acid beta-oxidation, alcohol catabolic processes,
respiratory chain complex I, cellular respiration), while in
region 6 most of the terms were connected to specialized
catabolic or anabolic functions (amino acid catabolic
processes, nitrogen compound catabolic processes,
tetrapyrrole binding, fibrinogen complex, protease inhib-
itor activity, lipid transporter activity, peroxisome).
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Discussion

Our study highlights the importance of doing quality con-
trols and underlines the effects of various parameters on
the structure and quality of the constructed networks. A
typical example is the dramatic reduction in mean con-
nectivity, which was reduced by a factor of three when the
redundancy of biological conditions was taken in account
(cftable 2). Another example is the presence of artefactual
variations, which were observed in comparisons between
data analyzed by two different versions of the Affymetrix
software. The significant impact of the analysis method
used raises particular concern since there is no required
field for indicating the analysis method used when data
are deposited on the GEO repository site. We are confi-
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dent that all of the data we ultimately used were analysed
by MAS5 because they were all uploaded by the end of
2005, a time when alternative analysis methods were not
frequently used. In a recent paper, Lim WK et al. [37] esti-
mated the impact of normalization procedures on the cor-
relation structure. Testing the hypothesis that highly co-
expressed gene pairs are more likely to share common GO
terms and to predict protein-protein interactions than are
uncorrelated genes, they showed that the MAS5 algorithm
outperformed the RMA [38] and Li-Wong methods [39],
and also that the GRCMA methods [40] were of little use
because they introduced many correlation artefacts. In
view of this evidence, it seems advisable to work directly
on raw data (Affymetrix CEL files) and to normalise the

Figure 11
Structure of the HG-U 133 NRI positive and negative CVMs. We clusterized positive correlation measures independ-
ently in each region using annealing clustering. The six regions, ordered on a diagonal from top left to bottom right, display the
positive correlation values between the probe sets belonging to each region. Shown above and below this diagonal are the pos-
itive and negative correlation values between probe sets belonging to different regions.
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probe set signal computation by applying the same
adapted algorithm. The Celsius project, which is designed
to be a repository of raw Affymetrix data and of various
analytic methods, makes this approach perfectly realistic
[41]. Independent of the algorithm used to calculate the
pair-wise correlations, normalisation is certainly one of
the most important steps for attaining a high degree of
reproducibility when networks constructed in different
species are compared. Accordingly, we think that our
results could be greatly improved by normalising the net-
work against the targeted transcripts. The statistical study
of probe set neighbourhoods (Figures 3, 4 and Tables 3, 4)
shows that two probe sets assigned to the same genes can
have divergent neighbourhoods. We have obtained pre-
liminary results showing that this occurs mainly because
they target alternatively spliced transcripts with opposite
modes of regulation. By grouping the probe sets targeting
the same sets of transcripts and having the same neigh-
bourhoods, it should be possible to construct transcript-
oriented networks that are simpler, more complete and
more reproducible [42].

To validate our method, we followed a widely used
approach that assesses the quality of a particular list of
genes by showing that the overrepresented GO terms char-
acterising the genes belong to the same functional class
[43]; this approach has been extensively applied to the
clusters of genes found in coexpression networks [44,5,8].
To increase the validity of the test, we verified that the
large regions we detected with the Markov Clustering
Algorithm were not only characterised by a derivative of
the "guilt by association" method [45] but were also con-
served across four networks encompassing three evolu-
tionarily close mammalian species. The extension of the
study to four networks allowed us to add a test confirming
the invariance of the local network topology by consider-
ing the reproducibility of the neighbourhood of a given
gene across the four networks. The Keiko method that we
developed - which enables the creation of 2D and 3D
geometrical representations of the network while keeping
the essential information encoded in CVM, with nega-
tively and positively correlated probe sets being farther
away or closer, respectively, according to the strength of
the correlation - facilitates the visualisation and compar-
ison of the networks. At the smallest scale, we observed
that the local architecture is well conserved and is mainly
shaped by strong positive correlations. With respect to the
relationships between the regions defined at a higher
scale, we observed that all four networks displayed a low
mean inter-region connectivity. However, the strength
and direction of the mean inter-region correlations were
not conserved. We presume that this lack of reproducibil-
ity was mainly due to the lack of normalisation in the bio-
logical conditions used.
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Several studies have used different species to construct
coexpression networks [46], and it is interesting to see
how our findings compare to their results. Among these
studies, those aimed at delineating modules are not
adapted for such comparisons. Modules are subsets of co-
regulated genes associated with particular biological con-
texts — the subset of conditions under which co-expression
takes place- and they form collections of numerous small
overlapping lists of genes [47]. In contrast, our method
partitions the entire gene set into a relatively small
number of large, non-overlapping groups. J.M. Stuart et al.
[8] searched for pairs of genes whose expression was sig-
nificantly correlated in four evolutionarily diverse organ-
isms (yeast, worms, flies and humans) in order to identify
physiologically important, evolutionarily conserved
examples of gene coregulation; they defined 12 compo-
nents. As they did not list the metagenes belonging to
each of the 12 components that they defined, we used the
general biological description that they provided for each
component and searched for regions with an overrepre-
sentation of the GO terms linked to that description. Most
of the correspondences were many-to-one relationships:
components 2 (ribosome biogenesis), 5 (cell cycle), 6
(general transcription), 8 (translation initiation, elonga-
tion and termination, aminoacyl tRNA biosynthesis), and
9 (ribosomal protein subunits) corresponded to region 2
(nuclear processes); and components 10 (secretion) and
11 (neuronal) corresponded to region 5 (nervous system).
Conversely, some components were split and gave rise to
one-to-many relationships: component 3 had one func-
tion (energy generation, oxidative phosphorylation and
TCA) linked to region 4 (energetic metabolism) and
another function (gluconeogenesis) associated with
region 6 (metabolism). Similarly, component 1 had one
function (cellular cortex) linked to region 3 (adhesion)
and another (signalling) associated with regions 1
(immunity), 2 (nucleus), and 3 (adhesion). Component
12 (lipid metabolism, peroxisome) corresponded to
region 6 (metabolism), component 4 (proteasome) had
no clear counterpart, and component 7 (animal specific)
was too loosely defined to find any correspondence.

By applying principal component analysis (PCA) to the
expression levels of orthologous human and mouse genes
in different tissues, Chen et al. [44] identified 12 con-
served gene expression response modes (CGEMs), each
one characterized by a list of the most significant genes
(around 70 genes). One of these specialized modes (pro-
tein biosynthesis and ribosome) corresponds to region 2
(nucleus). Five modes which are characterized by GO
terms, Kegg Pathways, and COG classes corresponding to
the same general function (e.g. immune response and
Toll-like receptor signalling pathway (mode H13M12))
match in a one-to-one ratio to regions 1, 2, 3, 4, and 6.
Five heterogeneous modes (e.g. cell adhesion and genera-
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tion of energy (mode H10M8)) correspond to multiple
regions, and one mode (organic acid transport, proton
transport) has no particular match with any region. No
mode has a clear match with the nervous system (region
5), although several nervous system tissues were present
in the samples used.

Taking all of these studies together, we note that there
were three types of potentially problematic results: first,
there was a coexistence of groups with very general func-
tions that corresponded to the six regions we defined (e.g.
generation of energy, cell cycle) and groups with very nar-
row functions (e.g. gamma-hexachlorocyclohexane degra-
dation, peroxisome); second, some separated groups had
the same function (e.g. glycolysis/gluconeogenesis); and
finally, some groups were heterogeneous (cell adhesion
and transcription). We conclude that our method, when
applied to inter-species comparisons, was capable of
defining reproducible groups that had biological func-
tions with the same degree of generality. Since our
method generates networks with high mean connectivity,
we assume that using high values of Pearson's correlation
coefficient, e.g. higher than 0.6 or even 0.7, results in
sparse networks (see Figure 2) which could explain the
occurrence of very specialized groups and the splitting of
otherwise homogenous large regions into several isolated
groups when clustering methods are applied.

Conclusion

The distinction between coexpression and covariation has
never been clearly addressed with respect to the massive
analysis of transcriptomic microarray data, and the choice
between these two approaches has been mainly dictated
by technical considerations: single- and dual-channel
techniques results are de facto considered to be coexpres-
sion and covariation, respectively. Although several argu-
ments, derived from large-scale studies on the
reproducibility of inter-laboratory microarray results, con-
verge toward the conclusion that variations (and more
specifically lists of varying genes) are far more reproduci-
ble than are signals, it has only been in time course anal-
yses that the benefits of the covariation approach have
been recognized and single-channel results specifically
manipulated to give covariation values [48,49]. The
method that we have devised to calculate probe set corre-
lation scores is the first to implement these principles,
allowing the covariation approach to be applied to the
major compendium of microarray results represented by
Affymetrix data. Another advantage of our method is its
ability to deal with circumstances in which the correlation
between two given probe sets is positive in one compari-
son subset and negative in a second one. In such cases, the
widely used Pearson's correlation coefficient is ineffective,
while our method can properly calculate both positive
and negative correlation scores.
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We applied our method to four data sets covering three
different mammalian species (humans, mice, and rats). In
addition, we conducted in-depth comparisons between
the corresponding covariation networks in order to vali-
date our method. First, we determined that the four net-
works shared a similar network topology by measuring
the probe set neighbourhoods. Second, we developed a
technique to display the networks in 3D, revealing that
the local assignation of the probe sets was conserved
across the four networks. Finally, we applied the Markov
clustering algorithm and showed that the transcriptional
networks are organized into six loosely connected regions,
each representing one of the main physiological functions
in mammalian species and containing around 1000
genes.

Methods

Data Selection

Software Determination

To determine the version(s) of the software used to calcu-
late the signals for each sample, we first searched in the
corresponding GSM files for names specific to each ver-
sion of the Affymetrix microarray suite. Mas3 was
assigned if any of the terms "mas3", "mas 3", or "microar-
ray suite 3" was found in the header. Mas4 and Mas5 were
assigned on the same principles. The field names line was
also scanned and the software version assumed to be
Mas4 if in any of the fields "average difference", "pairs
used", "avg diff", or "log avg" was encountered. The field
"detection p-value" was considered indicative of the Mas5
version. In some cases, a second program was used to
refine the signal values delivered by the Affymetrix soft-
ware. For example, Dchip [39] utilisation was inferred if
the names "dchip", "li-wong," or "li-wong" were present
in the header. The names "rma" and "genespring," when
found, indicated the use of the corresponding method or
software [38,50].

Distance Between Samples

We constructed a median sample in which the rank of
each probe set represented the median of its ranks over all
the samples. We compared each sample with the median
sample by applying the RDAM algorithm and selected all
of the probe sets having a p-value smaller than, e.g.,
0.005, in at least one comparison (see RDAM method,
infra). We calculated the distance between each pair of
experimental points in the probe set space, with log2 of
the signal being used as the unit and with each axis repre-
senting one of the probe sets selected in the previous step
(ranks were transformed into signals using an identical
function for all the samples). Finally, we traced a dendro-
gram, a two-dimensional, "tree-like" diagram that sum-
marizes the distances between experimental points, by
connecting points according to their proximity.
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Detection of Redundant Conditions

Median biological conditions were constructed by dupli-
cating the median samples constructed as explained in the
preceding sub-section. We compared each biological con-
dition that survived the quality filtration steps with the
median biological conditions by applying the RDAM
algorithm, and selected in each comparison the varying
probe sets at FDR 10% (see RDAM method, infra). We cal-
culated the distance (d) between any two biological con-
ditions by computing the number of common varying
probe sets (#com) and by normalising by the minimum
of varying probe sets in each of the two compared condi-
tions (min(#varl,#var2)) as follows: d = 1-#com/
min(#varl,#var2). The set of non-redundant conditions
was constructed incrementally. The conditions that had
the highest mean distances from all the other conditions
were selected for seeding the process. Then the conditions,
sorted from the highest mean distance to the lowest, were
passed successively and added if (and only if) its distance
from all the conditions selected in a previous step was
greater than 0.20 (i.e. less than 80% similarity). Finally, a
dendrogram was constructed to display the selected non-
redundant conditions.

Data analysis

RDAM method

Rank Difference Analysis of Microarray (RDAM) [30]
allows the identification of statistically significant signal
variations between two biological conditions. Each signal
is first replaced by its rank in an ordered series of all the
signals, and the rank is then scaled from 0-100. The
scaled rank allows the definition of the expression level of
each gene by placing its signal in the signal distribution;
this simple transformation is in fact a normalisation
method that makes all results directly comparable. Each
pair of signal values for a given gene measured in two
independent experiments is converted into a variation
value by computing the difference in the corresponding
ranks. To compensate for the fact that variation is depend-
ent upon the rank value, the following local normalisa-
tion procedure is employed: V., = (V-m,)/s,, where m,, is
the local mean value of the variation and sV is the local
standard deviation of the variation, calculated by moving
a window across the rank range. When applied to dupli-
cated experiments, the standardized Rank Difference
(zRD) is totally independent of the rank value. Therefore,
all the points can be used to construct the empirical vari-
ation distribution in the case of the tested null hypothesis
(no significant variation is expected when comparing bio-
logically identical samples), allowing accurate and precise
p-values to be assigned to the actually observed variation.

The following quantities were estimated by RDAM: the
total variation (TV), the p-value of a variation, the false
discovery rate (FDR), i.e., the percentage of false positives
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in a selection, and the sensitivity (S), i.e., the percentage
of the total variation that is found in a given selection.
Subsets of genes can be selected using any of the three lat-
ter parameters (p-value, FDR, or S) or a combination of
them.

In the case of an absence of replicates, e.g. in comparisons
made between each sample and the median sample to
construct dendrograms (additional file 1), the empirical
variation distribution observed between the test and the
control retains the property of being largely independent
of the rank and can be used to assign p-values.

If signal values are needed, for example to calculate a dis-
tance between the samples, a single function is used to
convert all the ranks into signals. The function used is sim-
ply the observed relationship between the rank and the
signal for a given sample.

Architecture of Keiko maps

Probe sets located within a set of clusters covering a large
portion of the Keiko map - e.g. clusters defined with Gene
DIVER - were used to calculate the best projection plane
defined by Principal Component Analysis (PCA). Each
cluster is represented on this plane by a unique point
located at the barycentre of all the probe sets of the cluster.
For each probe set i of a cluster j, we calculate the mean

positive MCij = mean ( Ci ki) ) and negative

MA/J = mean ( A i) ) correlations of probe set i with all

the other k probe sets of the cluster. The main trend of the
relationships among the probe sets of the cluster is set to

positive (or negative) if the mean MC’ = mean(MClj ) is

greater (or smaller) than MA’ = mean(MAij ). The ratio
RL = MCT[ R = MAL represents the strength of the
MAJ mc)

positive (negative) correlation trend. Similarly, we define

R(Ci’j ) or Rgi‘j ) between two clusters i and j. To display
this information, we use Cytoscape, which allows the user
to place points representative of clusters on the projection
plane. Using this software, the main intra-cluster or inter-
cluster correlation trends can be represented with red or
blue lines, for positive or negative trends, respectively,
whose widths are indexed on the trend strength.

Generator

We use the GENERATOR tool [51] to group each set of co-
varying genes into functionally analogous subsets. Such
grouping allows an investigation into whether the set is
comprised of several biological processes. GENERATOR
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takes two gene sets: the main set of genes to be analysed,
and a background set that includes the other genes in the
microarray. A clustering procedure is then applied to the
main set to obtain functionally analogous subsets of
genes. To cluster the genes, their associations with GO
terms [52] are represented as binary data. As observed in
Pehkonen et al. (2005), such data tends to be very high
dimensional and to contain subgroups only in the small
subsets of all the data attributes (GO terms). Thus, GEN-
ERATOR uses a clustering procedure based on Non-nega-
tive Matrix Factorization (NMF) [53-55]. NMF has shown
good performance with sparse binary data and with large
numbers of dimensions in text mining and in image anal-
ysis [56,54].

With the GENERATOR tool, the clustering of a gene set is
performed several times for a particular number of clus-
ters 1. The solution with the smallest least squared error is
considered to be representative of the cluster number r.
The tool also performs clustering for different numbers of
clusters from 1 (representing the gene set without group-
ing) to a user-selected number. Each clustering process is
performed from a random starting initialization using
NMF. A summary is then produced based on the different
clustering solutions. There are two guidelines for inter-
preting such results (given in Pehkonen et al., 2005). First,
when clusters remain similar in different clustering solu-
tions, they can be interpreted as representing a non-ran-
dom outcome. Second, the functional entities from broad
to specific are observable in a set of clustering solutions
from a small to a large number of clusters.

GENERATOR also shows an associated theme for each
obtained cluster. This is performed by ranking GO terms
within each cluster by their hypergeometric p-values,
which compares the frequency of a given GO-term within
a cluster against its frequency among the overall microar-
ray. Additionally, GENERATOR removes GO terms with
weak overrepresentation in the whole gene list (against
the chip), as these can be considered non-important. Also,
GO terms with weak overrepresentation in individual
clusters (relative to other clustered genes) are removed, as
they are not relevant to each obtained cluster.

List of abbreviations used
CVM: covariation matrix; FDR: False Discovery Rate.
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