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Abstract
Background: Receiver operating characteristic (ROC) curve is widely used to evaluate virtual
screening (VS) studies. However, the method fails to address the "early recognition" problem
specific to VS. Although many other metrics, such as RIE, BEDROC, and pROC that emphasize
"early recognition" have been proposed, there are no rigorous statistical guidelines for determining
the thresholds and performing significance tests. Also no comparisons have been made between
these metrics under a statistical framework to better understand their performances.

Results: We have proposed a statistical framework to evaluate VS studies by which the threshold
to determine whether a ranking method is better than random ranking can be derived by bootstrap
simulations and 2 ranking methods can be compared by permutation test. We found that different
metrics emphasize "early recognition" differently. BEDROC and RIE are 2 statistically equivalent
metrics. Our newly proposed metric SLR is superior to pROC. Through extensive simulations, we
observed a "seesaw effect" – overemphasizing early recognition reduces the statistical power of a
metric to detect true early recognitions.

Conclusion: The statistical framework developed and tested by us is applicable to any other
metric as well, even if their exact distribution is unknown. Under this framework, a threshold can
be easily selected according to a pre-specified type I error rate and statistical comparisons between
2 ranking methods becomes possible. The theoretical null distribution of SLR metric is available so
that the threshold of SLR can be exactly determined without resorting to bootstrap simulations,
which makes it easy to use in practical virtual screening studies.

Background
Structure-based Virtual screening (VS), the process of
docking three-dimensional (3D) models of drug-like
compounds into 3D models of potential drug receptors,
has become an integral part of the drug discovery process
in recent years [1-5]. VS is the computational analog of

biological screening and is used to score, rank, and/or fil-
ter a set of structures by using one or more computational
procedures. Such computational methods are faster and
more cost-effective than physically testing several thou-
sand potential drugs in chemical or cell-based assays,
which has been the norm in the pharmaceutical industry
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for decades. Because in silico screens are faster and less
expensive than those performed by high-throughput
screening (HTS) methods, VS methods can effectively
limit the number of compounds to be evaluated by HTS
to a subset of molecules that are more likely to yield "hits"
when screened. It has also been shown that the "hits"
from VS when compared to HTS are often diverse and
independent, suggesting that VS and HTS might be con-
sidered complementary methods [6,7]. Brenk et. al [7]
went on to show that VS has the ability to identify "hit"
compounds that can potentially be missed by traditional
HTS methods, but can still be developed into acceptable
lead compounds.

Structure-based VS involves the docking of candidate lig-
ands into a protein target and estimating the affinity of lig-
and receptor binding through a scoring function. A key
requirement for the success of VS is the ability of the com-
bination of a docking method and scoring function to
rank actives early in a large set of compounds [3,6,7]; we
refer to such combinations as ranking method hereafter.
Many metrics, AU-ROC, RIE, BEDROC, pROC etc., are
currently used to evaluate the performance of ranking
methods in VS studies [8-17]. However, no docking vali-
dation paper to date has utilized significance testing and
rigorous statistical analysis in evaluating virtual screening
studies, although this has been recommended by Cole et
al. [12]. We are the first to propose such a statistical frame-
work to compare virtual screening studies and the method
has been successfully used in [18] to compare difference
ranking methods.

Receiver operating characteristic (ROC) curves have been
widely used to evaluate VS methods [16,17,19-22]. An
ROC curve is a plot of true-positive rates versus false-pos-
itive rates for all compounds. The area under the ROC
(AU-ROC) curve is the probability of active compounds
being ranked earlier than decoy compounds. AU-ROC is a
well-established statistical method that is also widely used
in many other disciplines [23-25]. Several parametric and
nonparametric statistical methods have been developed
for significance testing [26-32].

Although widely used, AU-ROC is not a good metric to
address the "early recognition" problem specific to VS, as
pointed out by Truchon and Bayly [16]. Since AU-ROC is
equivalent to a simple average of the ranks of the actives,
the good performance of "early recognitions" is offset
quickly by "late recognitions". Let n be the number of
actives and N be the total number of compounds, AU-
ROC is approximately normal distributed, with mean

 and variance . AU-ROC

defined in equation (1) is linearly related to the rank sum

of actives, which is also called Mann-Whitney U test. ri is

the rank of the ith active.

Figure 1(A) shows how close the normal approximation is
to the empirical distribution derived from bootstrap.

Truchon and Bayly [16] have discussed several methods to
address the problem of "early recognition". They have
shown that the exponential weighting schemes, BEDROC
and robust initial enhancement (RIE), provide good
"early recognition" of actives. By changing the tuning

parameter, α, users can control the earliness of "early rec-
ognition" to test whether a ranking method is useful in
the context of VS. BEDROC is bounded by interval [0, 1]
and can be interpreted as the probability that an active is
ranked before a randomly selected compound exponen-

tially distributed with parameter α, only when α << 1.

RIE, developed by Sheridan et al [14], used an exponential
weighting scheme, that places heavier weight to "early rec-
ognized" actives.

where xi =  is the relative rank of the ith active and α is

a tuning parameter. BEDROC is derived from RIE and it is
bounded by [0, 1]. BEDROC has a linear relationship with
RIE,

Although RIE and BEDROC produce different values,
their distributions are identical up to a scale and a transla-
tion factor and their correlation is 1, as shown in Figure
1B, C and 1F.

Logarithmic transformation shifts the emphasis from
"late recognition" to "early recognitions". Instead of
working on the ranks of the actives, Clark and Clark [15]
proposed a new metric, pROC, on basis of the negative
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Empirical distributions of ranking scores under the null hypothesis that 10 actives are uniformly distributed, 1000 compounds in totalFigure 1
Empirical distributions of ranking scores under the null hypothesis that 10 actives are uniformly distributed, 

1000 compounds in total. (A) AU-ROC, smooth lines indicate normal distribution with mean  = 0.5005 and var-

iance  = 0.0084; (B) RIE; (C) BEDROC; (D) pROC; (E) SLR, 10 × log(1000)-SLR is Gamma(10, 1) distributed; and (F) 

the perfect linear relationship between RIE and BEDROC.
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logarithmic transformation of false positive rates, θ. When
the false positive rate is zero, Clark and Clark suggested a
zero-point continuity correction be made by replacing
zero with 1/N.

It is heuristic to compare different ranking methods using
all the aforementioned metrics, but whether a ranking
method is better than random ranking or whether 2 rank-
ing methods are truly different is yet unclear. In this study,
we have analyzed and compared the various metrics used
in VS by extensive computer simulations. We have laid
down a statistical framework that can rigorously deter-
mine thresholds and compare different ranking methods
by using AU-ROC, BEDROC, RIE, pROC, or other metrics.
We present a bootstrap method to generate null distribu-
tion for any metric and then discuss how a meaningful
threshold can be selected. We also introduce a permuta-
tion test that allows comparisons between 2 ranking
methods and give the criterion under which their differ-
ence can be claimed as being statistically significant.

Methods
Bootstrap method to generate null distributions
For any ranking method, it needs to be determined
whether a score, whether it is from AU-ROC, BEDROC,
RIE, or pROC, is better than random ranking. Without
knowing the distribution of the metric under the random
ranking assumption, it is impossible to select an appropri-
ate threshold. An ad hoc threshold determined through
experience may help but is difficult to justify. For AU-
ROC, a theoretical distribution can be derived by reason-
able approximations; however, for other metrics, theoretic
distributions are less obvious and difficult to derive. Boot-
strap is an ideal method to derive theoretical distributions
in such cases.

Bootstrap is a re-sampling method that has been widely
used [33-35]. In statistics, null distribution is the distribu-
tion when the null hypothesis that the ranking method is
no better than random ranking is true. Under this null
hypothesis, ranks of the actives come from a uniform dis-
tribution, and the empirical distribution of a metric can
be derived by repetitively drawing ranks from a uniform
distribution over times. Current high-speed computers
take less than a minute to process 1 million such repeats.
Empirical distribution approaches true distribution when
the number of repeats increases, and according to us 1
million repeats is sufficiently large to derive the empirical
distribution of a metric. For example, in pROC, if we
assume that there are 10 active compounds and 990 inac-
tive compounds in a list, under the null hypothesis 10
actives are uniformly distributed so that their ranks can be

drawn randomly with replacement from 1 to 1000. One
pROC value is calculated in each repeat, and this process
is repeated 1 million times to derive the empirical distri-
bution of pROC. As a large pROC value indicates good
early recognition, we can select a threshold large enough
such that only a small percentage of pROC values are
larger than the threshold. This small percentage is called
the type I error rate, that is, the error rate of claiming that
the ranking method is better than random ranking when
it is actually truly random. The threshold is usually chosen
to be the 95% percentile (5% type I error rate) of the null
distribution; a more stringent threshold is often set at the
99% percentile (1% type I error rate) of the null distribu-
tion. On the other hand, we can also locate the observed
pROC value on the null distribution. The probability that
the null distribution is greater than the observed pROC is
the p value. The ranking method is better than random
ranking if the p value is less than 0.05. Because the ranks
are drawn from a known uniform distribution, this boot-
strap method is also called "parametric bootstrap".

Figure 1(A)–(D) shows the empirical null distributions of
the AU-ROC, RIE, BEDROC, and pROC, respectively. All
distributions are derived assuming there are n = 10 active
compounds and a total of N = 1000 compounds, actives
and in-actives included. In Figure 1(A), the smooth line
on top of the empirical distribution of AU-ROC is the
approximated theoretic distribution, which is a good
approximation to the empirical distribution. Figure 1(B)
and 1(C) show the empirical distribution of RIE and BED-
ROC at α = 20. These 2 distributions are identical in shape
up to a scale and a translational factor; Figure 1(F) shows
the perfect linear relationship between these 2 metrics. For
the rest of this paper, we will assume RIE and BEDROC to
be 1 method and will discuss BEDROC method only, as
all the properties of BEDROC apply to RIE too.

Null distributions are not fixed and they change when the
list of actives and inactives changes. For BEDROC, null
distributions also change for different tuning parameters
α. Figure 2 shows the distributions of BEDROC for differ-
ent number of active compounds. It is obvious that the
distribution becomes more centered when the number of
actives increases so that the thresholds should also change
accordingly. The central limit theorem predicts that the
distribution will be approximately normal for large set of
actives, but this is not true for a list of small number of
actives. Although BEDROC is bounded by [0, 1], it does
not always have a probability interpretation like AU-ROC
does. Because 2 ranking methods may have different
underlying distributions, they cannot be compared if
ranks are derived from different sets of compounds or
BEDROC has different tuning parameters.
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Null distribution of BEDROC for different lists of compounds Figure 2
Null distribution of BEDROC for different lists of compounds (A) n = 5 and 95% threshold is 0.20; (B) n = 10 and 95% 
threshold is 0.16; (C) n = 20 and 95% threshold is 0.14; and (D) n = 100 and 95% threshold is 0.17.
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Sum of the log of ranks test (SLR)

In statistical theory, if X is uniformly distributed, -log(X)
follows a Gamma(1,1) distribution [36]; if X1, X2, ..., Xn are

all independently uniformly distributed, then

 follows a Gamma(n,1) distribution. Under

null hypothesis,  follows a uniform distribution so that

-log ( ) is Gamma(1,1) distributed. On the basis of this

theory, the theoretical distribution of the sum of the log

of ranks statistic (SLR), , can be derived from

Eq (5). Noted that a low SLR prefers "early recognition."

The threshold for the SLR statistic is easy to derive theoret-
ically. Suppose n = 10 and N = 1000, the 95% percentile
of Gamma(10,1) is 15.7. The 95% threshold for SLR is 10
log(1000) - 15.7 = 53.38. Thus a ranking method is
deemed as statistically significantly better than random
ranking if the observed SLR is less than 53.38. Figure 1(E)
shows the empirical distribution of SLR under null
hypothesis, with n = 10 active compounds and a total of
N = 1000 compounds. The smooth line on top of the
empirical distribution is the theoretical distribution
derived from Equation 5.

Equation (4) can be rewritten as Eq (6) in terms of the
ranks of actives. Except for the normalizing factor, the sec-
ond parts of Eq (5) and Eq (6) are similar. The only differ-
ence is that SLR uses the rank itself but pROC subtracts the
number of actives from the rank. Because of the subtrac-
tion, pROC place slightly more emphasize than SLR on
"early recognition". As noted by Clark and Clark [15],
pROC is unbounded when ri - i = 0, for which they recom-
mended replacing the false positive by 1/N as a zero cor-
rection.

Permutation test to compare two ranking scores
When 2 ranking methods that use the same compound
list are both significantly better than random ranking, it is
useful to find by using appropriate metrics whether 1
method is superior and whether the difference is statisti-
cally significant. Because the distribution of actives is no
longer uniform for such comparisons, we have proposed
a permutation test to compare 2 ranking scores.

The permutation test is a type of non-parametric test, the
null hypothesis being that the 2 ranking methods are
equivalent. Here we use the SLR method as an example to
demonstrate the permutation test, but the technique is
applicable for other metrics too. Under the equivalent
assumption, the difference of SLR between 2 ranking
methods, x and y, is zero, i.e. SLRx - SLRy = 0. Hereafter, we

also use x and y to denote the set of ranks. Assuming that
xi and yi are ranks of the ith active for the 2 ranking meth-

ods, the permuted ranks are given by  and , where by

 and  are random samples from the pool of ranks (x,

y). From this, the exact distribution of the difference
between the 2 ranking methods can be calculated and the
observed difference can be compared with the null distri-
bution to determine whether the difference is significant.
For example, let x = {55,2,4,16,150,1,3,7,215,744} and y
= {27,65,47,595,158.5,200,22,440.5,223,40}be the
ranks of 10 active compounds for 2 ranking methods
from a list of 749 compounds. Our objective is to test
whether x is significantly better than y. The observed dif-
ference is SLRx - SLRy = -17.45. A permuted sample

becomes x* = {55,2,47,16,158.5,200,3,440.5,223,744}
and y* = {27,65,4,595,150,1,22,7,215,40} and the new
statistic of the permuted data is SLRx* - SLRy* = 6.98. Of the

2000 such permutations calculated, the observed test sta-
tistic is less than the permuted statistics 1922 times, which
results in a p-value of 0.039. We therefore conclude that x
is statistically significantly better than y at a type I error
rate of 0.05.

Results & Discussion
We use simulation studies to examine AU-ROC, SLR,
BEDROC, and pROC in detail. In this section, we compare
different metrics and investigate the conditions under
which the metrics perform best. We also compare the sta-
tistical power of the metrics using the simulated data of
ranking experiments.

How early is early?
To compare the "earliness" that different metrics empha-
size, we studied the average ranks of the earliest recogni-
tions at 10%–100% of the total number of actives for the
ranking methods deemed better than random ranking.
The total number of compounds was N = 1000 and we
increased the number of active compounds from n = 5 to
n = 100 to examine the consistencies and pattern under
different conditions. The null distribution of each metric
is derived from 10,000 bootstraps and the threshold at
5% error rate is empirically determined. Since α = 20 for
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Table 1: Comparisons of the "earliness" of different metrics to detect early recognitions for different number of actives (n = 5, 10, 20, 
100).

Metric 1 Metric 2 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

n = 5

pROC AU-ROC 0.80 0.80 0.70 0.70 0.70 0.56 0.42 0.42 0.42 0.32

BEDROC AU-ROC 0.86 0.86 0.72 0.72 0.72 0.46 0.28 0.28 0.28 0.18

SLR AU-ROC 0.79 0.79 0.72 0.72 0.72 0.58 0.43 0.43 0.43 0.32

SLR pROC 0.52 0.52 0.52 0.52 0.52 0.52 0.51 0.51 0.51 0.52

SLR BEDROC 0.44 0.44 0.47 0.47 0.47 0.61 0.66 0.66 0.66 0.67

pROC BEDROC 0.46 0.46 0.48 0.48 0.48 0.60 0.65 0.65 0.65 0.67

n = 10

pROC AU-ROC 0.78 0.77 0.73 0.67 0.61 0.52 0.46 0.40 0.35 0.32

BEDROC AU-ROC 0.81 0.87 0.76 0.62 0.49 0.38 0.30 0.23 0.20 0.18

SLR AU-ROC 0.76 0.76 0.73 0.67 0.61 0.54 0.47 0.41 0.36 0.33

SLR pROC 0.54 0.52 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.54

SLR BEDROC 0.50 0.35 0.45 0.54 0.61 0.66 0.67 0.69 0.70 0.70

pROC BEDROC 0.51 0.37 0.45 0.55 0.61 0.65 0.68 0.69 0.69 0.69

n = 20

pROC AU-ROC 0.77 0.75 0.71 0.66 0.58 0.52 0.45 0.39 0.35 0.33

BEDROC AU-ROC 0.85 0.84 0.71 0.57 0.44 0.34 0.26 0.21 0.18 0.17

SLR AU-ROC 0.77 0.75 0.71 0.66 0.60 0.54 0.47 0.41 0.36 0.34

SLR pROC 0.51 0.52 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53

SLR BEDROC 0.40 0.38 0.50 0.58 0.65 0.69 0.71 0.72 0.72 0.72

pROC BEDROC 0.41 0.38 0.48 0.58 0.63 0.66 0.69 0.70 0.70 0.70

n = 100

pROC AU-ROC 0.75 0.73 0.67 0.61 0.54 0.48 0.42 0.38 0.35 0.34

BEDROC AU-ROC 0.87 0.79 0.62 0.47 0.36 0.28 0.22 0.19 0.17 0.16

SLR AU-ROC 0.75 0.72 0.68 0.62 0.56 0.50 0.44 0.39 0.36 0.35

SLR pROC 0.55 0.55 0.56 0.56 0.56 0.57 0.57 0.58 0.58 0.58

SLR BEDROC 0.32 0.42 0.56 0.64 0.69 0.72 0.74 0.74 0.74 0.74

pROCa BEDROC 0.34 0.43 0.56 0.63 0.68 0.70 0.72 0.73 0.72 0.72

The top early recognitions are represented as percentages.
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BEDROC is suggest by Truchon and Bayly [16], we use this
parameter throughout our simulations.

Table 1 shows the proportion by which the average ranks
of a metric are smaller than that of another metric. SLR,
pROC and BEDROC all have better "early recognitions"
than AU-ROC does for the first 30% and for most of the
40% of early recognized actives. SLR and pROC are better
than AU-ROC for up to 50%; BEDROC starts performing
worse than AU-ROC at 40% of the actives when n = 50
(data not shown) and this difference in performance
becomes more obvious when n = 100. With α = 20, BED-
ROC clearly places heavier emphasis on the first 10% to
20% of actives than other metrics. Beyond 30%, both SLR
and pROC have smaller average ranks than BEDROC.
Overall, the performance of SLR and pROC are similar in
rewarding early recognitions.

As there is no solid criterion to judge earliness, one could
potentially construct a new metric that emphasizes "early
recognition" more than any existing metrics. However,
whether the newly constructed metric is reasonable or not
depends entirely on the user's discretion. Increasing α in
BEDROC shifts the emphasis to in favor of earlier hits,
and using weighting functions in SLR and pROC can
achieve the same effect.

Weighted SLR methods
The SLR method can be fine tuned to place more empha-
sis on early recognized active compounds by incorporat-
ing appropriate weighting functions. One weight function
we consider is the powered arithmetic weights w = {n, n -
1, ...1}β, where β is the power. The weighted SLR metric is
defined in Eq (7). Increasing the power increases the
emphasis on "early recognition."

Tables 2 compare the "earliness" of wSLR at different β
values with BEDROC for different number of actives.
There is a general trend that wSLR improves against BED-
ROC in the top 10% list when β increases. When β is large,
emphases are placed only on the several top active com-
pounds in the list. This explains why BEDROC seemingly
outperforms wSLR in the top 10% list for n = 100. When
only looking at the top 1 active compound in the list [data
not shown], it becomes much more clear that one can
increase the weight of early recognitions by increasing the
power of the weight function. It is worthwhile to mention
here that the weight function is also another way to incor-
porate external information into the wSLR metric. For
example, one can incorporate IC50 values of the actives to
wSLR by applying the weight function to the ranks of their
IC50 [18].

Statistical power: single ranking method
The null distribution helps determine a threshold above
or below which a ranking method can be declared statisti-
cally significantly better than random ranking. However,
for examining the specificity of the metrics, we also need
to determine the probability (statistical power) that a
ranking method is above or below this threshold when a
ranking method is truly better than random ranking. We
have adopted the simulation method outlined by Tru-
chon and Bayley [16] for this purpose. Briefly, we assume
a typical VS study with N total compounds in which there
are n active compounds and N - n decoy compounds. The
ranks of the n active compounds are drawn from an expo-
nential distribution; n random numbers, {u1, u2, ..., un},
from a uniform distribution, are first generated and then
inverse transformed according to Eq (8). Their ranks are
taken as the integer part of (Nxi + 0.5),

as shown in Eq (9). λ is an important parameter that con-
trols the earliness of response by which active compounds
are ranked; a high λ value favors early recognition and λ =
0 corresponds to random ranking.

Assuming that n actives need to be simulated, Eq (10)
shows how to calculate the probability that at least m
actives are ranked in the top z of the list. For example, the
probability that at least m = 1 active ranked in the top z =
50% of the list is 0.92 when n = 10 and λ = 5. The proba-
bilities for different combinations of m, λ, and z are
included in [Additional file 1].

Figure 3 shows the statistical power of SLR, AU-ROC,
pROC, and BEDROC for different λ values, ranging from
0 to 20. AU-ROC is uniformly most powerful of among all
metrics, SLR and pROC are tied as the second most pow-
erful, and BEDROC is the least powerful metric. Because
BEDROC overemphasize a very small proportion of
actives, it is poorer than other metrics at detecting true
early recognitions. A smaller α can increase statistical
power but it should be carefully selected to make sure that
early recognition is also addressed. The statistical power of
all metrics approaches 1 when λ >15, confirming that all
metrics are able to evaluate which ranking methods are
better than random ranking.

wSLR w ri i
i

a
=

=∑ log( )
1

(7)

x log u e i ni i= − − − =−1
1 1 1 2

λ
λ[ ( )], , , ,… (8)
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1
1
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Table 2: Comparisons of the earliness of wSLR and BEDROC (α = 20) at different powers and number of actives, β = 0, 0.5, 1, 2, 5, 10, 
n = 5, 10, 20, 100.

β 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

n = 5

0 0.44 0.44 0.47 0.47 0.47 0.61 0.66 0.66 0.66 0.67

0.5 0.50 0.50 0.50 0.50 0.50 0.58 0.62 0.62 0.62 0.62

1 0.53 0.53 0.49 0.49 0.49 0.55 0.58 0.58 0.58 0.58

2 0.60 0.60 0.48 0.48 0.48 0.50 0.52 0.52 0.52 0.52

5 0.65 0.65 0.40 0.40 0.40 0.40 0.42 0.42 0.42 0.43

10 0.65 0.65 0.34 0.34 0.34 0.34 0.36 0.36 0.36 0.38

n = 10

0 0.50 0.35 0.45 0.54 0.61 0.66 0.67 0.69 0.70 0.70

0.5 0.56 0.40 0.47 0.55 0.60 0.63 0.65 0.65 0.66 0.66

1 0.60 0.42 0.48 0.54 0.58 0.60 0.61 0.61 0.61 0.61

2 0.68 0.46 0.47 0.51 0.53 0.55 0.55 0.56 0.56 0.56

5 0.77 0.43 0.37 0.38 0.39 0.41 0.42 0.43 0.44 0.44

10 0.83 0.36 0.29 0.31 0.33 0.34 0.35 0.36 0.37 0.37

n = 20

0 0.40 0.38 0.50 0.58 0.65 0.69 0.71 0.72 0.72 0.72

0.5 0.46 0.41 0.51 0.58 0.63 0.65 0.67 0.67 0.67 0.67

1 0.48 0.44 0.51 0.56 0.60 0.61 0.61 0.62 0.62 0.62

2 0.55 0.46 0.49 0.53 0.55 0.56 0.57 0.57 0.57 0.57

5 0.60 0.41 0.40 0.42 0.44 0.46 0.46 0.47 0.47 0.47

10 0.56 0.33 0.30 0.32 0.33 0.36 0.37 0.38 0.39 0.39

n = 100

0 0.32 0.42 0.56 0.64 0.69 0.72 0.74 0.74 0.74 0.74

0.5 0.36 0.45 0.57 0.63 0.67 0.69 0.70 0.70 0.70 0.69

1 0.39 0.46 0.56 0.60 0.63 0.65 0.65 0.65 0.65 0.65

2 0.44 0.48 0.56 0.59 0.61 0.61 0.61 0.61 0.61 0.61

5 0.47 0.42 0.46 0.47 0.48 0.49 0.50 0.50 0.50 0.51

10 0.45 0.33 0.34 0.36 0.38 0.39 0.40 0.40 0.41 0.41

The top early recognitions are represented as percentages.
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Statistical power of different metrics for λ values from 0 to 20 for different number of actives (n = 5, 10, 20, 100) when com-paring with random rankingFigure 3
Statistical power of different metrics for λ values from 0 to 20 for different number of actives (n = 5, 10, 20, 
100) when comparing with random ranking. Black line, AU-ROC; blue line, SLR; turquoise line, BEDROC; and red line, 
pROC.
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Statistical power of different metrics at different λy values for different number of actives (n = 5, 10, 20, 100) when comparing different ranking methodsFigure 4
Statistical power of different metrics at different λy values for different number of actives (n = 5, 10, 20, 100) 
when comparing different ranking methods. Black line, AU-ROC; blue line, SLR; turquoise line, BEDROC; and red line, 
pROC.
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When λ = 20, BEDROC returns to a value of 1/2 when

α << 1. The authors imply that 1/2 should be set as a

threshold of early recognition "usefulness". The threshold
at 0.01 type I error rate for BEDROC is 0.22 for n = 10,
which is much lower than 1/2. For 1 million bootstraps
under the null hypothesis, the maximum value for BED-
ROC value 0.354; thus, it is too stringent for BEDROC to
use 1/2 as a threshold. Selecting an appropriate tuning

parameter α for BEDROC is challenging; when α is too
large, BEDROC considers only a small proportion of early

recognized actives, and when α is too small, BEDROC
becomes similar to AU-ROC.

Statistical power: comparing two ranking methods
To assess the statistical power of comparing 2 ranking
methods, we fix the tuning parameter of ranking method,
x, with λx = 5 and vary the tuning parameter λy for the
ranking method y. For a comparison, we randomly draw
the ranks of actives from the pool of (x, y) and calculate
the p value by the permutation test. Two ranking methods
are considered significantly different if p value is less than
0.05. For each parameter setup, 10,000 comparisons are
repeated. False-positive rates are evaluated when λy = 5. As
shown in [Additional file 2], false-positive rates are high-
est for AU-ROC and those for SLR, BEDROC, and pROC
are comparable. Figure 4 shows the power of all metrics
for different λy values for different number of actives.
When λy > 5, AU-ROC is most powerful, followed by SLR;
pROC is slightly less powerful than SLR but still much
more powerful than BEDROC. For any fixed λy = 5, the sta-
tistical power of all metrics increases as the number of
actives is increased.

Conclusion
Many metrics used in practice address the early recogni-
tion problem differently, but their performances can be
adjusted by using different tuning parameters, α and β.
However, an appropriate tuning parameter should be
selected very carefully due to the "seesaw effect" observed
in our simulation studies if a metric overemphasizes early
recognition, it becomes too specific and only a very small
proportion of actives have a play in the metric, and the
metric loses statistical power to detect true early recogni-
tions. This is seen in BEDROC at α = 20. Although the sta-
tistically significant ranking methods defined by BEDROC
have smaller average ranks in the first 10–30% of the list
than those defined by AU-ROC, SLR, and pROC, BED-
ROC is the least powerful of all metrics. On the other
hand, AU-ROC gives equal importance to all actives and
does not reward early recognition in particular, but it
remains the most powerful test. A good tuning parameter
should be based on the consideration of both statistical
power and "early recognition". It is advisable to deter-

mine the null distribution by mathematical derivation,
bootstrap samplings, or permutations before determining
the threshold.

As a rule of thumb, 2 scores derived from 2 different com-
pound lists cannot be compared directly. Our simulation
studies- have shown that the null distribution of a metric
changes with the number of actives. A threshold used in
one study may not apply to other studies. Except AU-
ROC, all other metrics do not have a probability meaning
and cannot be interpreted in the probability language
even if they are bounded by [0, 1].

The statistical guideline proposed in this paper can be
used as a general procedure to make statistical compari-
sons in evaluating virtual screening studies. This guideline
is applicable to any metric. Under null hypothesis, the
theoretical distribution of SLR metric can be derived from
Gamma distribution. The threshold for significance test is
easily calculated without resorting to bootstrap simula-
tions, which makes it practically useful in virtual screen-
ing studies and superior to other metrics.
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