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Abstract

Background: For many gene structures it is impossible to resolve intensity data uniquely to
establish abundances of splice variants. This was empirically noted by Wang et al. in which it was
called a "degeneracy problem". The ambiguity results from an ill-posed problem where additional
information is needed in order to obtain an unique answer in splice variant deconvolution.

Results: In this paper, we analyze the situations under which the problem occurs and perform a
rigorous mathematical study which gives necessary and sufficient conditions on how many and what
type of constraints are needed to resolve all ambiguity. This analysis is generally applicable to matrix
models of splice variants. We explore the proposal that probe sequence information may provide
sufficient additional constraints to resolve real-world instances. However, probe behavior cannot
be predicted with sufficient accuracy by any existing probe sequence model, and so we present a
Bayesian framework for estimating variant abundances by incorporating the prediction uncertainty
from the micro-model of probe responsiveness into the macro-model of probe intensities.

Conclusion: The matrix analysis of constraints provides a tool for detecting real-world instances
in which additional constraints may be necessary to resolve splice variants. While purely
mathematical constraints can be stated without error, real-world constraints may themselves be
poorly resolved. Our Bayesian framework provides a generic solution to the problem of uniquely
estimating transcript abundances given additional constraints that themselves may be uncertain,
such as regression fit to probe sequence models. We demonstrate the efficacy of it by extensive
simulations as well as various biological data.

Background

Alternative splicing is a ubiquitous phenomenon among
eukaryotic organisms. Based on the most recent studies,
more than 74% of the human genes with multiple exons
undergo this process [1]. Alternative splicing plays an
important role in the function of eukaryote organisms. It
is a versatile process that can be integrated with other reg-
ulatory mechanisms to generate protein diversity, to mod-
ulate cellular responses, and to regulate biochemical

pathways [2-15]. Changes in splicing are often associated
with genetic disease and cancer [16-25]. Thus being able
to measure and compare transcript variant abundance is
critical for understanding the function of a gene.

Many studies have been taken to perform genome-wide
analysis of alternative splicing using microarrays. Most
current approaches, however, focus mainly on qualita-
tively detecting splicing events [1,26-33] by examining the
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presence or absence of known variant-specific exons or
junctions. Presence or absence of a variant is then inferred
based on the transcript annotation.

On the other hand, quantitatively measuring gene-level
expression has been a key task in microarray analysis (see,
for example [34,35]). Most current methods, however,
impose a simple identifiability constraint on probe respon-
siveness (often confused with chemical affinity, despite
depending on multiple factors including hybridization
affinity, which may play a part in the poor prediction
accuracy of pure sequence models) for each probe set
(such as individual exons). Accordingly, none of these
algorithms can reconstruct all variant abundances (across
exons, or between gene families) on the same scale;
though perhaps not a problem when comparing the esti-
mates across experiments, it causes insurmountable diffi-
culty when attempting to compare among different
variants. Further, even concentrating on a single family of
variants, the mathematical linkage between intensity and
the multiplicative model allows for ambiguous recon-
struction. The aim of this paper is to find a generic method
to estimate variant abundances consistently for all variant
structures.

We first review the mathematical model and prove neces-
sary and sufficient conditions to detect and resolve ill-
posed instances of the model.

In a previous work, Wang et al. [36] have implemented a
model-based method to estimate the relative concentra-

tions of known splice variants by incorporating gene
structure into a probe intensity model [34], where the
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probe intensity is modeled by probe responsiveness and
probe abundance, plus an error term. The gene structure
specifies the relationship between known transcript vari-
ants, genomic features and probes, where genomic fea-
tures can be either exons or junctions. This linkage
enables them to use a probe intensity model to estimate
the relative abundance of variants. Maximum likelihood
estimation (MLE) is used to obtain the estimates for vari-
ant concentrations and probe affnities.

This method often leads to unresolved ambiguities in
reconstruction. We have observed the algorithm can not
produce a unique solution for many gene structures [36].
The MLE gives multiple solutions, each one attaining the
(globally) optimal function value. A simple example is the
so-called "two-variant subset" gene structure, where the
feature composition of one variant is a subset of the other
one. Biologically, if the two variants of a gene use different
promoters or 3' UTRs, the gene structure will display the
"subset" property. Figure 1B shows the simulation output
for such a gene structure given in Figure 1A. The algorithm
generates different estimates for probe responsiveness and
variant concentration in different runs even though the
residual-sum-of-squares (RSS) are the same. (For compar-
ison, a simple gene structure that doesn't have this prob-
lem is shown in Figure 2. The algorithm always converges
to a unique solution.) We have also observed that the
same issue widely exists in more complex gene structures.

This is an example of an "ill-posed" problem, where addi-
tional constraints must be added to overcome the singu-
larity, otherwise the ambiguity will seriously limit the
usage of the above method. More recently, Shai et al. [37]
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(B) Estimated Concentrations.

Subset gene structure and the corresponding estimated concentrations. (A) shows a 2-variant "subset" gene struc-
ture, where the genomic composition of variant | is a subset of variant 2. (B) shows the estimated concentrations of the two
variants for 20 different initial values using Wang et al.'s method [36]. Each line indicates estimated concentrations with one set
of initial value; all are globally optimal solutions that give the same RSS. See [36] for details.
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(B) Estimated Concentrations.

A simple two-variant gene structure and its estimated concentrations using Wang et al.'s method [36]. (A)
shows a simple two-variant gene structure with three exons. The two variants have one common exon and each variant con-
tains one unique exon. (B) shows the estimated concentrations with 20 different initial values. The solution is unique for the

two variants.

developed a probability model using unsupervised Baye-
sian learning to estimate variant concentrations. Some
constraints are obtained in a "semi-supervised" fashion by
minimizing the root mean squared error between the final
predictions and the RT-PCR results. Unfortunately, their
model will encounter the same nonuniqueness problem
in general. However, as a special case, for their cassette
exon example with only two variants and the correspond-
ingly simple gene structure (shown in Figure 2A), there is
no ill-posed issue and the solution is unique.

The aim of this paper is to find a generic method to esti-
mate variant abundances consistently for all variant struc-
tures. We first review the mathematical model and prove
necessary and sufficient conditions to detect and resolve
ill-posed instances of the model. The natural source of
information contained in probe sequences is used to con-
struct additional constraints in the deconvolution. Due to
the great difficulty of predicting probe effects via sequence
composition, this probe sequence based model does not
produce mathematically perfect constraints. We therefore
incorporate a probe responsiveness model into a super-
vised Bayesian framework, which can accommodate
imperfect or imprecise constraints. A useful side effect is
that this model allows for reconstructing all variant abun-
dances on the same scale between exons, and further, if
the probe affinity model can be improved to produce suf-
ficiently accurate predictions, reconstruct abundances on
the same scale between genes. We demonstrate the poten-
tial efficacy of this method through simulation as well as
experimental data. Although the overall success in recov-
ering comparable signal values across genes is not yet
great, our model succeeds in uniquely resolving alterna-

tive splicing data even given the loose constraints from an
imprecise model.

Results

We first demonstrate the effectiveness of our Dulmage-
Mendelsohn decomposition based grouping procedure
on some simulation data. Then the performance of our
Bayesian method is shown on two real biological datasets.
As we shall see, although the overall fitness on T is not yet
good enough, we do succeed in recovering important
quantities none of the other methods can. R and Matlab
[38] were used.

Simulation Data

In this subsection, we use simulation data with no
sequence information to demonstrate the effectiveness of
the grouping procedure in removing the non-uniqueness
during transcript deconvolution. Deriving the grouping
procedure and building probe responsiveness models,
though related to each other in the framework, are two
independent tasks. By using simulation data, we can skip
the errors in a probe responsiveness model built on probe
sequences. This follows the case in which we have perfect
knowledge of the response of each probe (the limiting
case of a sequence model). We have tried large amount of
data with varying sizes and different gene structures. One
such example is presented as follows.

In this simulation dataset, there are 5 probesets, each one
containing 2 probes, 4 variants, and 6 experiments. So the
probe intensities Y is a 10-by-6 matrix. For space reasons,
we only list the gene structure matrix G here:
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In addition to the Gaussian noise ~ N(0,100) added to the
true signal (AFGT), we appended a significant background
signal uniformly drawn from [1, 200] to increase the
deconvolution difficulty. This background signal is com-
pletely unknown in the estimation. Our task is to recon-
struct both T and A from Y with F and G known.

With no grouping and no additional constraints, the solu-
tions are not unique (infinitely many, as a matter of fact)
and each one is a global minimum of the log-likelihood
but not the truth. See the upper panel of Figure 3 for an
illustration. Although it is relatively easy to get a globally
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optimal solution, there is no appropriate criterion to tell
which estimate is correct or gives the best approximation.

Applying the grouping procedure described in the Meth-
ods Section below to this data, we obtain four probe
groups, which suggests a high deconvolution singularity.
Group constraints are then constructed from the true A or
T to help fit the model. We use alternative optimization
with group-rescaling to solve the model. The lower panel
of Figure 3 shows that after adding the group constraints
in the fitting procedure, the prediction matches perfectly
with the true answer, even with some substantial
unknown background signal.

Biological Data

In this subsection, we demonstrate the power of our gen-
eral framework with two biological datasets - HG-SV and
HG-LS.
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Predicted T on simulation data without and with group constraints. In the upper panel, we plotted the estimated
concentrations of the three transcripts generated by Wang et al.'s deconvolution procedure without group constraints [36]
(denoted by the circles). Note that every solution achieves a global minimum of the log-likelihood function, but they are quite
different and none of them approximates the true T (denoted by the triangles). The lower panel shows the unique estimate
using (four) group constraints; it is very close to the true T, even though the noise is large and there is some unknown back-

ground signal.
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Data description
Two data sets are used in this paper to train the sequence
model and estimate the concentrations.

1. Human gene Latin-square (HG-LS) data. The data
can be found at affymetrix's web site at http://
www.affymetrix.com/support/technical/sample data/
datasets.affx. This Latin Square design consists of 14
spiked-in gene groups in 9 experimental groups. The
concentrations of the 7 gene groups in the first experi-
ment are 0, 0.25, 0.75,1.5,3,12,24,192 and 386 pM.
Each subsequent experiment rotates the spike-in con-
centrations by one group, i.e., experiment 2 begins
with 0.25 pM and ends at 0 pM, on up to experiment
7, which begins with 386 pM and ends with 192 pM.
Each experiment contains 3 replicates. There are 26
probe sets and 286 PM/MM probe pairs in total.

2. Human gene splice variants (HG-SV) data. The data
was generated using a custom designed array. Please
refer to [36] for details of array design and experimen-
tal design. Four genes (MYLK, TPM2, CD44, MAPT)
with two clone variants were spiked in with varying
concentrations. We first mixed targets derived from
two variants (clone 1 and clone 2) with differing con-
centrations: the first variant ranged from 0 to 64 pM
and the second variant ranged from 64 pM to 0 pM
with the total concentration held constant at 64 pM.
By diluting the whole set 4 and 16 times, we obtained
further results for titration sets with total concentra-
tions of 16 pM and 4 pM respectively. There are 42
exon and exon/exon junction probesets and 330 PM/
MM probe pairs in total. The sequences of these 8 var-
iant clones are all known.

HG-SV data

The HG-SV data described previously have two known
transcript variants in their gene structure. In this experi-
ment, we took genes MYLK and TPM2 as training data
(125 probes in total), CD44 as validation data (128
probes), and MAPT (77 probes) as test data. The unknown
T is of size 2-by-30, with 2 variants and 30 experiments.
On this relatively small data set, the estimate is, inevita-
bly, not perfect, with the median absolute error (AE) given
by 4.6, and the mean AE 8.8. However, all the T-entries are
estimated on the same scale and we do observe that our
reconstruction is good in comparing the concentrations
between the two variants. As demonstrated in Figure 4,
our estimated concentration differences roughly follow
the right trend for the 30 experiments. In particular, the
obtained zero-crossings are approximately correct. For
comparison purpose, we ran the SPACE algorithm and got
much larger errors; the median and mean AE are 22.4 and
34.9 respectively. The SPACE estimates are much worse

http://www.biomedcentral.com/1471-2105/10/237

100
1

50
Il

An Y
et

Abundance difference: Variant 1 — Variant 2

-50

o true
x  estimated

SPACE
T T T T T T T

0 5 10 15 20 25 30

experiments

Figure 4

The concentration differences between variant | and
variant 2 for MAPT (HG-SV data): predicted vs. true.
The predicted concentration differences and the true differ-
ences are labeled by red crosses and green circles respec-
tively. For comparison purpose, the estimates using the
SPACE algorithm [39] are also plotted, represented by gray
dots.

especially for the last 19 experiments, as clearly shown in
Figure 4.

HG-LS data

Genes in HG-LS data set only have one transcript. Our
framework is general enough to be applied to such data as
well, corresponding to a special case where G = I. Our goal
here is to compare transcript abundance level between
genes. Since the G matrix is an identity matrix, the number
of additional constraints required for estimating all tran-
script concentrations on the original scale is equal to the
number of transcripts. They can be constructed via probe
responsiveness predicted by the sequence model (10). To
evaluate the performance of the algorithm on this dataset,
we used 12 transcripts for training, 7 for validation, and
the remaining 7 for testing purposes.

Our method allows us (for the first time) to estimate the
whole concentration matrix T with no ambiguity. The
Bayesian method including the standard error informa-
tion of the predicted responsiveness can handle a poor
probe sequence model and is efficient. It is not yet satis-
factory enough to recover every concentration precisely,
with the mean AE given by 34.6 and the median 10.2. This
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is not so surprising considering the poor fit of current
probe sequence-based models and the small sample size
(286 probes in total) of the data. We also ran the SAPCE
algorithm [39] which yields larger errors; the mean and
median AE are 73.1 and 12.0 respectively.

On the other hand, it is interesting and encouraging to
note that the between-experiment and between-variant
information has been restored to a large extent using our
method. To clearly show this, we compare the following
three types of ratios, where T(i,:) and T(:, j) are used to
denote the i-th row (or variant) and the j-th column (or
experiment) of T, respectively, and diag(T), adiag(T) to
denote the diagonal and anti-diagonal of T, and 'med' rep-
resents the median operator.

a. Across—experiment accuracy.

For each variant i, compare T(i,:)/med(f”(i,:)) to
T(i,:)/med(T(i,:)).

b. Across-variant accuracy.

For each experiment j, compare T (:, j)/med( T G N)
to T(:, j)/med(T(:, j)).

c. Across-variant-and-experiment accuracy.

Compare  diag( T )/med(diag( T )) to diag(T)/

med(diag(T)), and adiag(T)/
med(adiag( T )) to adiag(T)/med(adiag(T)).

compare

The results are plotted in Figure 5, Figure 6, and Figure 7.
The SPACE estimates are poor and not plotted in these fig-
ures. To get an overall intuition, see Figure 8 for a summa-
rized ratio-comparison of our method and the SPACE
algorithm. One may find that our results make much
more sense and are much closer to the truth especially for
moderate ratios. By contrast, SPACE is not able to resolve
all deconvolution ambiguities; its T-estimate gives very
misleading between-entry ratios. In all of the figures, we
clearly see that our method is capable of restoring the
ratios between the entries in T to some extent (either col-
umn-wise, row-wise, or diagonal-wise) except for very
large ones. The lower predicted concentrations are likely
due to experimental error where the variants were spiked
in a lower concentration than specified (personal commu-
nication), as was noted in Wang et al. [36]. Our complete
recovery of T is superior to single row recovery as most
other methods are trying to solve. In particular, the across-
row information can be very useful for comparing
between different transcripts.

http://www.biomedcentral.com/1471-2105/10/237

Discussion

The singularity problem arising in deconvolution is com-
mon, both at the variant level and at the transcript level, if
we want to recover from probe intensities all concentra-
tions on the same scale. Our mathematical analysis and
the grouping procedure in this paper apply to any com-
plex gene structures in both situations. Furthermore, we
built a Bayesian framework that adapts to any probe
responsiveness model and probe intensity model (includ-
ing the multiplicative-error models). It reduces the risk of
using poorly predicted probe responsiveness based on
current probe sequence models. Experimental results are
positive and encouraging: our approach is able to recon-
struct all variant abundances on the same scale, and thus
for the first time allows for quantitatively comparing the
estimated abundances between different transcripts. This
is an advantage over most other methods which explicitly
or implicitly impose an identifiability constraint on probe
affinities for each probe set and are thus only meaningful
for comparing the abundances across experiments.

In the experiments, our model cannot yet provide an ade-
quate fit for the microarray data to reconstruct all concen-
trations precisely. A careful study shows that this is largely
due to the poor fitness of existing probe sequence models
(to-date) and the small number of probes of these data-
sets. We expect to develop a more accurate biophysics
model to characterize the probe responsiveness and try
our method on some larger microarrays as well. Moreo-
ver, since it is usually true that many probes might behave
badly, further study is needed to investigate multiplicative
probe intensity models and to design an appropriate
robust fitting criterion in our Bayesian deconvolution
framework.

Conclusion

The matrix analysis of constraints provides a tool for
detecting real-world instances in which additional con-
straints may be necessary to resolve splice variants. While
purely mathematical constraints can be stated without
error, real-world constraints may themselves be poorly
resolved. Our Bayesian framework provides a generic
solution to the problem of uniquely estimating transcript
abundances given additional constraints that themselves
may be uncertain, such as regression fit to probe sequence
models. We demonstrate the efficacy of it by extensive
simulations as well as various biological data.

Methods

We will first review the previous work which this work is
built upon, then will detail the singularity problem and
propose a grouping procedure using Dulmage-Mendel-
sohn decomposition. This grouping procedure allows us
to detect the number and type of additional precise con-
straints needed for resolving splice variants. We then pro-
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Across-experiment ratios (on HG-LS data). The estimated values are denoted by crosses, while the true concentration
ratios are denoted by circles. For each of the seven variants, we compare the across-experiment quantities (defined in (a) in

the subsection of HG-LS Data) between the estimated T and the true T.

vide a general Bayesian framework for incorporating
imprecise constraints, and construct a probe responsive-
ness model using the probe sequence to provide such con-
straints.

Previous Model

Wang et al. [36] developed the following model to esti-
mate variant concentrations by relating transcript concen-
trations to the observed probe intensities:

Y = AFGT + E (1)

The observed probe intensities are given by a p-by-x matrix
Y = [y;], where y; is the intensity of probe i for experiment

j. A = [a;] is a p-by-p diagonal matrix with g;; representing
the probe responsiveness for probe i. F = [f;] is a p-by-q
matrix with values 0 or 1, where p is the total number of
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Figure 6

Across-variant ratios (on HG-LS data). The estimated values are denoted by crosses, while the true concentration ratios
are denoted by circles. For each of the nine experiments we compare the across-variant quantities (defined in (b) in the sub-

section of HG-LS Data) between the estimated T and the true T.

probes, ¢q is the total number of features; f; equals 1 if

probe i belongs to feature [, and 0 otherwise. The relation-
ship between features and transcripts is represented by a
g-by-t matrix G = [g;,], referred to as the gene structure

matrix, containing binary values of 1 or 0, where g, =1
means feature | is present in transcript k, while g = 0

means this feature is absent. The transcript concentrations
of a given gene in all experiments are represented by a t-

by-x matrix T = [¢;;], where t; represents the concentration
of transcript k in experiment j. See Figure 9 for an illustra-
tion of these matrices. The observed probe intensities Y
are noise contaminated signals, with experimental error
matrix denoted by E = [¢;]. Heteroscedasticity was intro-
duced in the model by assuming &~N (0, o?max(y;, C))

for some properly chosen constant C. An additional scale

constraint on Zf_l a; is added in fitting the model using
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Maximum likelihood estimation (MLE) to estimate the
unknowns A and T.

The Non-uniqueness Problem

Typically, A and T have non-unique solutions for many
given gene structures G. Consider, for instance, the follow-
ing G with the second column a 'subset' of the first one in
terms of the transcript composition:

it

This G matrix has full rank, yet the algorithm converges to
multiple global minima with infinitely many solutions
(see Figure 1 for an illustration). In addition, increasing
the number of probes or changing the optimization crite-
rion in the fitting procedure does not alleviate the prob-
lem.

Before going into technical details and concrete algorithm
design, we explain why the above singularity constitutes
an intriguing problem in practice and introduce our rough
ideas for removing the deconvolution ambiguity in gene
alternative splicing. First, note that this non-uniqueness is
essentially different from the common issue of multiple
local minima in nonconvex optimization. We will show

that when the problem occurs, there exist infinitely many
solutions of the target concentration matrix T all of which
attain the global optimum but far from the true T, as a
result of some type of degeneracy in the gene structure
matrix G. This indicates that a macro-model relating tran-
script concentrations to observed probe intensities (like
Li-Wong [34] or our previous model given by (1)) alone
cannot resolve the non-uniqueness. It reflects the ill-
posed nature of this deconvolution task: additional
sources of information must be provided to remove the
ambiguity and to identify the truth.

Naturally, we turn to probe sequences at the microscale
and aim to build a probabilistic probe responsiveness
model on sequence composition. However, to the best of
our knowledge, none of such models is perfect, due to the
fact that probe responsiveness is a sophisticated biochem-
ical process which is dependent on many other factors in
addition to sequence composition. Therefore, incorporat-
ing these imperfect predictions from a micro-model into
a macro-model is a challenging problem, and we must
take a statistical point of view.

In short, additional constraints on A or T are needed to

overcome the singularity. The following questions then
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Figure 9
Matrix representation of Wang et al.'s model [36].

Wang et al Bioinformatics. 2003

arise: How much information is sufficient? What type of
constraints should we impose in the fitting procedure? In
the next subsection, we provide a rigorous mathematical
analysis to answer these questions.

Solving the Singularity Problem Mathematically
Suppose G is known. We consider the problem of recov-
ering A and T given

Y = AGT (2
where A is a diagonal matrix.! Assume G satisfies the fol-
lowing properties:(i) G is a 0-1 matrix; (ii) G has full col-
umn rank; (iii) G has no zero rows. Define the following
solution spaces:

w, =
w, =

{(A,T): the diagonal entries of A are positive, all entries of T are positive
{(A, T): the diagonal entries of A are positive, T is negative,
and there is at least one nonzero entry within each row of T}.

Assume the decomposition problem (2) is solvable in W,
or W,. The following two theorems establish the relation-
ship between the separability of G and the uniqueness (up
to a global scaling constant, which is implicitly assumed
throughout this section) of solution.

Theorem 1. (Necessity) Suppose Problem (2) is solvable in
W, under the above setup. Then the solutions can not be
unique, as long as there exists some nonsingular C such that M
= GC1is separable.

Here, M is separable in the sense that there exist some row per-
mutations P and column permutations Q such that PMQ is

M 0
block diagonal, say, |: 01 :| . Note that the blocks are not

2
necessarily square.

The proof is simple. Let (A, T) € W, be a solution to (2),
MObe a separable matrix for some nonsingular C, and per-
mutation matrices P, Q. That is,

Y = AGT = AMCT = AP" - M° - Q'cCT.
Define YO = PY, A0 = PAPT, T° = QTCT. We get

YO = A°MOTO, (3)
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According to the block diagonal form of

0

o | M) o ) A 0
M" = , write A9 as , and T° as
0 M) 0 A)

T,
T |

Define

1,0

— A 0

Agp=|" 1 /Ta0b=[aTl ]
’ 1 ’ bTo
p o :

forany a, b > 0. Then AS,bMOTa(fb = A°M°T° . The conclu-

sion thus follows by noticing that C'Q T.), is continuous

for positive (a, b) and W, is open.

The following sufficiency theorem states that we only
need to study one special M for uniqueness. This has great
advantage in practice.

Theorem 2. (Sufficiency) Suppose Problem (2) is solvable in
W,. Then if a 'maximally orthogonalized' M (as will be clear
below) is nonseparable, and T is of full row rank, then the solu-
tion is unique in W,.

Here M is generated in the following way: apply as many as pos-
sible column subtractions to G, until we get a nonnegative M =
GC-! with the maximum number of zeros. M is referred to as a
‘maximally orthogonalized' version of G.

Before proving the theorem, we introduce a simple
lemma.

Lemma. If MX = MY and M has full column rank, then X =Y .

In fact, we can get nonsingular M = [M M ] by expanding
M since it has full column rank. Then

M[X;Y]z[M ML][X;Y}:O:[X;Y]:O:XzY.

Let (A, T), (B, S) € W, be two solutions. Note that in this
case the elements of M are either 0 or 1, and C is nonneg-
ative. Introduce the same symbols as before: M%= PMQ, Y°
= PY, A° = PAPT, T° = QTCT, B° = PBPT, S° = QTCS, and
assume M0 is in the following echelon form without loss
of generality:

http://www.biomedcentral.com/1471-2105/10/237

(4)

Denote by ; the row index of the first 1 in the j-th column

of M0, 1 <j <q, where g is rank(M?) (or the number of col-

umns of M by assumption). Let D = B°" A%, We need to
show D « [; if so, the theorem follows by the lemma.

Suppose for the moment diag(D) consists of two distinct
al
values g, b, and ordered in the way of |: " bl } with a
m

#b,andn, m=>1.

MO
Ifn>1, write M%as { 1) ] according to the block form of
M,

D. It is easy to see from (4) that MY is full column rank.
So

0 0
DMT’ =M°S° & {al” ][ML}T‘):{MIJSO
bl || MY M9

aM{T® = M?S°
bMIT® = M3S°

ar® =8°
L=y
MIT® =0

The last equivalence is by the lemma.

On the the other hand, MY must have at least one posi-

tive entry, otherwise

MY M)Q'c
G:MC:PT[ leQTC:PTIi ;QT :
M? MIQ'c

would have zero row(s). Put one such index to be (i, j).
Then the j-th row of T%is 0, and so is a certain row of QTP.
Moreover, to make sure T = C-1QTis nonnegative, the row
subtractions C-! must not change this particular row.
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Accordingly, T also has zero row(s), which contradicts the
definition of W,,.

If n <, say ,; < n <l for some j >1. Write M° as

M) 0
X 0 |, with the number of rows of X or M) being
X MY
al,
m - (l-n-1) m', and D= bl,,_.» ,
bl,,

T Sy
T° =[ 10 ], s° ={ 2‘|, accordingly. For convenience,
T, S;

we use Z(iy, ..., i ji - jir) to denote the submatrix of Z
made by the entries located at the i;-th, ..., i;-th rows and
thej;-th, ..., j, -th columns, and Z(iy, ..., i;;:) the submatrix
by taking out the i;-th, ..., i,-th rows of Z. From

al, M) 0 70 M) 0 §0
bl,,_. x 0 10 =l x 0 "
bIm' X Mg

we have

{aln } Mo ||| | M o |[S)
by | x MO T? x MO s
Recall that [X M) | is a submatrix from the echelon form

of MO (see (4)), composed of q -j + 1 blocks: M°(I;, ..., I;,;
- 1), MLy, e Ly - 152), o and MO(D, o o+ m).

Let us consider the [;block M°(I;, ..., I;,; - 1;:) first. We can

write it as [Z;e; 0], where ¢; s the j-th column of this block.

Let t?, s? be the j-th row vectors of T9, SO, respectively.

Then from
al M o of|T| [M® o oSt
o |_ 0
bl Z]» e; 0 L |= Z]- e; 0 si |
bl X X X X X X XxX|| x

We get the basic equations:

ar? = 89, (5)

http://www.biomedcentral.com/1471-2105/10/237

e(s)-bt?) = (b-a)Z,;T). (6)

Discuss the following three cases:

1. There exist two rows (k;, k;) in [Z; ¢] such that
Zj(ky;:), Zj(k,;:) are different, but ¢;(k,) = ¢;(k,). Then it
is not difficult to learn from (6) that the rows of T,

are linearly dependent (details omitted). And so T = C-
1QTP can not have full row rank.

2. There exists some row k in [Z; ¢;] such that Z;(k,:) has
at least one 1, but ¢;(k) = 0. Observing the entries of (b

-a) T all have the same sign in (6), we immediately

obtain T, (k';) = 0 for some k'. By a similar argument

as in the case n > 1, T must have a zero row, which

21,
makes a contradiction again.

3. Therefore, [Z; ¢;] can only be made up of identical
rows apart from the zero rows. From the construction
of the 'maximally orthogonalized' M, given any col-
umn index £ 1 < f<j - 1, there must exist some row
index a such that Z(a;f) = 0, ¢j(@) = 1. Therefore, the
rows of the [Z; ¢ are either [0 ... 0] or [0 ... 0 1]. But

then Z=0, from which it also follows that s? = bt? .

For the next block M°(L;, ..., ;,, - 1;:) that can be written
as

[Zj+1 X ej+1 0]'

due to s? = bt]Q , it is easy to verify that the basic equations

become

0 _ ¢O
aly = Sy,

ej+1(5]Q+1 - bt?ﬂ) = (b- a)ZjHTlO'

And Z;,, = 0, s?ﬂ = bt?+1 by similar reasoning. Continue

this process till block the I th block; we will finally obtain

X = 0, which means MO is separable. In summary, a = b
must be true.

In fact, the above discussions can generalize to diag(D)
containing multiple distinct values which are not neces-
sarily ordered. We omit the proof details as the derivations
are similar. (In fact, the key is still the 3-case discussions;
yet note the the contradiction in case 2 would be made
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regarding the full row-rankness of T. In the end we get a
block diagonal matrix which is again separable.) Theorem
2 is now proved.

Intuition of the Theorems
In the following, we will give an intuitive explanation of
the theorems using a few simple examples.

First, it is easy to see that if there exists some nonsingular
C such that M GC is 'separable’, that is, M can be written
in a block diagonal form like

X 0
M= ,

where all blocks are not necessarily square, then the solu-
tion, if exists, must be non-unique. So our task is to pre-
vent such M from being separable. Moreover, our
sufficiency theorem states that we only need to consider
one particular M that is 'max-orthogonal' (described in
Theorem 2): if it is nonseparable, and T has full column
rank, then the solution is essentially unique. The full rank
requirement can not be dropped in general, but is possi-
ble for some special cases.

Constraints can be imposed on A or T or both. In this
work, unless otherwise stated, we construct constraints on
A. Basically, the number of rows of blocks of the finest
block diagonal form of the 'max-orthogonalized' M is the
minimum number of constraints we need, and the effec-
tive constraints should be between-block quantities to
overcome the factorization singularity.

Now we apply our theorems to some special examples.
First, consider

1 01
G=(0 1 1],
1 01
from which we have
1 0 O
M=|0 1 0].
1 00

Although this structure is a valid biological example, it is
impossible to uniquely discern the transcript concentra-
tions. Intuitively, this is due to the ambiguity caused by
the the third transcript and the conjunction of the first two
transcripts. But our grouping analysis is able to tell what
type of information and how much we need to overcome
this problem for any complex G.

http://www.biomedcentral.com/1471-2105/10/237

Next let us take a look at the alternatively spliced gene
structure in Shai et al. [37]. The cassette exon structure can
be expressed as

_ o = O O =

N e Y T W S

Based on our theorems, it is easy to see that the solution
is unique.

Finally, we point out the fact that the rank constraint can
not be dropped in general; as an example, consider

1 1
o |01 1
G=M" = ,Y =AGT = BGS = ,
01 1 6
1 01 6
where
1
A =diag(1,1,2,2), T=|1 |,
2
1
B =diag(1,1,1,1),S=| 1
5

G is nonseparable but rank(T) = 1. The solutions are not
unique. This conclusion provides some guidance in exper-
iment design. As a conservative consideration in selecting
the transcripts to do microarray experiments, we want T to
have full row rank, to reduce the problem of deconvolu-
tion singularity to the issue of G-separability only. On the
other hand, given a particular G, through studying which
of the three cases the 'max-orthognalized' M falls into, we
may have a broader choice. For example, if each individ-
ual probeset corresponds to a different transcript, i.e., the
G in Theorem 2 is given by F-I or F, then case 1 does not
exist, and the rank constraint can be dropped; the same
conclusion is true for G with only 2 columns (2 variants).

Grouping Procedure in Practice

In practice, to obtain the finest (irreducible) block diago-
nal structure of M, we use the Dulmage-Mendelsohn decom-
position [40] which arose in finding strong Hall
components in graph theory. The whole procedure is
summarized as follows.
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Grouping Procedure
1. Basis transformation.

(a) Apply column subtractions to G until we get a
'max-orthogonal' M with GC = M (see Theorem 2
for the detailed explanation).

(b) Remove the zero columns of M.

2. Find the sparse structure (or the finest block diago-
nal form) of M.

(a) Compute N = MMT.

(b) Find the sparse structure of N using Dulmage-
Mendelsohn decomposition. Denote by P the cor-
responding row permutations.

(c) Applying P to M, obtain the column permuta-
tions Q such that PMQ is block diagonal. Each
diagonal block (not necessarily square) defines an
individual group as an outcome. Record the group
indices from P, Q.

After the procedure, the probes are classified into a few
groups. As mentioned earlier, the number of groups is the
minimum number of constraints required. Effective
probe-responsiveness constraints should be imposed
between groups.

It is worth mentioning that too many constraints do not
necessarily lead to a better solution. This is especially true
when the constraints are on A but A is poorly estimated.
For example, incorporating every responsiveness estimate
as an independent constraint into the deconvolution
process, though providing enough information to remove
the non-uniqueness, is very sensitive to the estimation
errors in A. In contrast, group-based constraints offer just
enough information to deal with the singularity, and the
group means of the estimated responsiveness have
smaller error and provide a more stable recovery of T in
the end.

A Bayesian Framework for Estimating Splice Variant
Concentrations

Our idea for resolving deconvolution ambiguity in gene
alternative splicing is as follows. First use experimental
data with known T to estimate A. Train a probe respon-
siveness model on sequence composition in a supervised
fashion. Next for all probes in the target microarray data,
predict their responsiveness based on their sequences.
Finally construct group constraints and use this informa-
tion to fit a probe intensity model to get a unique solution
of all transcript concentrations. The procedure is shown in
Figure 10.

http://www.biomedcentral.com/1471-2105/10/237

Unfortunately, according to our experiments, the predic-
tions from any existing probe sequence-based model are
found to be poor and so we adopt a Bayesian framework
to include the standard errors. This framework combines
a probe intensity model and a probe sequence model into
one optimization function. We will address these aspects
in detail below.

Probe Intensity Model

A regression model with additive errors, by Li and Wong
[34] and Wanget al. [36], is used in our computation with
modifications:

Y = AFGT +E, (7)

or in the scalar form of

Vi = Zaiifikgkltlj + 1 (8)
I,
Typically, y; is PM;; - MM;; as in most literature. We pro-
pose a novel way of constructing the responses y;;

PM;; — min(PM;;) + min(PM), 9)
i ij
where min(PM;) denotes the minimum intensity of the
j

i-th probe in all experiments, and min(PM;) the mini-
ij

mum intensity of the total array. Note that it does not
require MM probes. In principle, this PM correction
assumes the array has at least one experiment with no sig-
nal (T;= 0 for some i, j) which is true for nearly all practi-
cal microarray data. Our experiences show that the new
responses given by (9) have an advantage over the usual
way of subtracting MM from PM signals, which may have
something to do with the founding that the hybridization
sources can be different for many PM and MM probe pairs
[41].

We construct a weighted additive model, denoted as WAM,
to avoid taking the log transformation of the y; (possibly

negative). Let €;~N (O, 65 ). If there are MM probes avail-

able, let 0'1% oc PM;; - MM;;, which can be seen as a result

ijs
of the positive correlation between PM probes and paired
MM probes. In fact, it can be justified from the Affymetrix

PLIER model [42] by applying the Delta method to it. If
there are no MM intensities, we simply put G; oc PMiZj.

Either way is simple and successful; they show a signifi-
cant improvement over the original additive models by Li
and Wong [34] and Wang [36].
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(with known T) model model
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Test/Validation > Probe afﬁnlty y_> Probe 1nten81ty — Restore the whole T
data model model

Figure 10

Procedure outline for estimating transcript concentrations. The probe sequence model is trained supervisedly on
some data with T available. Then predict the (grouped) probe responsiveness on the new dataset to help recover all concen-

trations via the probe intensity model.

Probe Responsiveness Model

First, consider the nearest neighbor model - PDNN by
Zhang et al. [43], and a physical probe selection model
(PSM) by Mei et al. [44]. Both models train the sequence-
related parameters in an 'unsupervised' way, because no
information from transcript abundances (T) is exploited
in the training. We found these probe responsiveness esti-
mates can be far away from the truth. Using spike-in data,
we can compare them to the more trustworthy estimates
derived supervisedly by using the T in the model fitting, as
shown in Figure 11.

As we can see from the figure, the response estimates from
PDNN and PSM, though similar to each other, seem to
deviate a lot from the 'truth' (which can be learned well on
the spike-in data); indeed, the unsupervised nature of the
trainings makes it a very difficult task to estimate both A
and T at the same time. In contrast, by taking the informa-
tion from T into account, supervised methods, such as the
robust median estimator or our WAM below, only need to
estimate A in the fitting procedure, and is more accurate
and efficient. Correspondingly, for spike-in data with T
available, the supervised methods are far better than unsu-
pervised methods in training a probe sequence model.

Motivated by the physical models proposed by Naef and
Magnasco [45] and by Wu et al. [46], we build the follow-
ing probe responsiveness model on a 25-nucleotide-long

probe sequence (b;)7) .

PDNN estimate

PSM estimate
—#— WAM estimate
—e— Median estimate;

500
I

probe affinities

probe index

Figure 11

Model training: supervised vs. unsupervised. The figure
gives a comparison of some response estimates. The first
two are both unsupervisedly trained, with A and T unknown,
from the PDNN model [43], and the probe selection model
(PSM) [44], respectively. The WAM estimate is obtained by
estimating A (with T known) from our model (7); a robust
median estimate (the median of the ratios of Y to FGT) is
also plotted. Note that the first two deviate from the last
two which are trained in a supervised manner.
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25
log(a) = Z SPUI(i) + ¢,
i=1
where € ~N(0, 62), b;is one of the four nucleotide bases
(A, T, C, G) at position i of a probe. SP(4), SP(¢), SP(C) and
SP(T) are four unknown natural cubic spline functions.
They reflect the nucleotide difference and the position-
dependent effect in modeling the probe responsiveness. It
is worth pointing out that there is an essential difference
between our model and GCRMA [46]. GCRMA models
probe responsiveness in the sense of non-specific binding
(NSB), corresponding to T = 0, while ours characterizes
the probe responsiveness for specific targets in a particular
dataset, which is meaningful to the problem we are trying
to solve.

(10)

Clearly, there exists redundancy in the sequence model

(10) because A, T, C, G all appear in it and each sequence

is of fixed length. To avoid over-parametrization and

remove ambiguity, we take SP(T) as a constant function,

that is, u is chosen as the baseline, and now the value
25

of SP’)(i) represents the response change if we replace

the nucleotide at the i-th position from T to b; (= A, C, G).
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Figure 12

Probe responsiveness curves. Four position functions are
shown to reflect the nucleotides' difference in responsive-
ness. The baseline is 'T' on 25 positions of every probe. The
three curves correspond to the probe responsiveness
change if replacing 'T' by 'A’, 'C', and 'G' respectively. These
functions are estimated using smoothing splines.
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To specify the natural cubic splines, we select 7 knots at
positions 1, 5, 9, 13, 17, 21, 25, which give the best
adjusted R2 value empirically. So there are 7 x 3 + 1 = 22
unknowns. Figure 12 demonstrates the spline functions
trained on the HG-LS data, from which the nucleotide dif-
ference and position dependency in modeling the probe
responsiveness are clearly seen. These (specific-binding)
probe responsiveness are different than non-specific bind-
ing curves [45,46].

Bayesian Priors and Optimization

Theoretically speaking, after fitting the responsiveness
model, we are able to predict the response for any probe
with known sequence composition to a given concentra-
tion; group constraints can be easily constructed to resolve
the singularity problem in the recovery of all transcript
concentrations. The practical difficulty is, however, the
trained responsiveness model does not fit well enough in
general. Figure 13 below shows how poor the estimates
can be, which is unfortunately true for any existing probe
response model to-date. It is worth mentioning that to
ensure the error in estimating T is small, the prediction for
A should be accurate on the original scale instead of the

affinity
80

60

40

20

| — true

--- fitted
T T T T T T
0 10 20 30 40 50

probe index

Figure 13

Trained probe responsiveness on HG-LS data. We
present 50 probes chosen at random. The true probe
responsiveness is in solid lines while the value fitted with
supervised training is in dashed lines. The fitted values devi-
ate a lot from the true for most probes, which indicates poor
goodness-of-fit of the probe responsiveness model. It is
worth mentioning that most papers choose to display similar
quantities on log scale. But to have a small error in T, A
should be well predicted even on the original scale.
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—> —> using D-M »
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v
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Best model <€— regularization l€—— model with 4—
parameters L-BFGS-B
Figure 14

A Bayesian framework for building transcript concentration estimation model. The sequence based model is
trained on the training data in a supervised way. Then for the validation data, group-constraints are constructed from the pre-
dicted probe responsiveness to remove deconvolution ambiguity as discussed earlier. 'Fuzzy' constraints can be considered in
fitting a probe intensity model with standard errors included (see (I 1)). During the optimization, the exact group-constraints

with no standard errors serve as an initial estimate.

log scale as most other methods chose to display their fit-
ted variables.

To solve this problem, we use a Bayesian approach by
including the uncertainties of probe responsiveness pre-
dictions into the model. For each probe group G, we
make a prediction, denoted by Pred,, for the geometric
mean of probe responsiveness, with the standard error
given by se,. Then incorporate 'fuzzy' group constraints
into the fitting procedure of the probe intensity model, by
minimizing the following function L:

2
1 1
L= E wU((AFGT)i}. _yi]_)z +A E} —Se}% (|Gk| E (log(al-)—Predk)]
ij e

(11)

Minimizing (11) amounts to solving the maximum likeli-
hood estimation of a Bayesian model with Gaussian pri-
ors. The regularization parameter A is determined by
validation. Figure 14 summarizes the complete Bayesian
procedure of building the model.

Related Work

Recently, a work related to reconstruction non-unique-
ness has appeared [47], where Lacroix et al. studied a tran-
scriptome reconstruction problem in sequencing
experiments. Under the exact information hypothesis

(which may not be realistic at the present time as noted by
the authors), they considered linear systems and intro-
duced the notion of interchangeable sets to identify the
possible singularity theoretically. Mathematically speak-
ing, this is a much simpler problem compared to resolving
deconvolution ambiguity in microarray data analysis. In
fact, Lacroix et al. studied the model of y = Gt with y, t
being vectors, while we investigate a higher order equa-
tion with errors-see equation (7) for example. In [47],
nonuniqueness only arises from the rank deficiency of G,
but even a G of full rank, like the subset gene structure or
an identity G, leads to infinitely many solutions in our
setup due to the existence of the unknown A which repre-
sents the probe responsiveness. To address such prob-
lems, we perform a rigorous mathematical analysis and
take a statistical point of view in the algorithm design. We
also go a step further by proposing to use probe sequence
information to resolve the reconstruction ambiguity, in
addition to identifying all possible singularities of the
model using our grouping procedure introduced earlier.

Another related work is [39] in which Anton et al. used
nonnegative matrix factorization (NMF) to fit Wang et
al.'s model (1) in optimization. NMF is a class of algo-
rithms in multivariate analysis. As a matter of fact, our fit-
ting procedure in implementation is an example of NMF,
too. The difference is that our approach has more statisti-
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cal flavor. In microarray data analysis, we are able to build
a statistical model by relating transcript concentrations to
the observed probe intensities, like Li and Wang [34] or
our model, with heteroscedastic errors. With such an
explicit error distribution available, the log-likelihood
naturally acts as a specific optimization criterion which
tends to yield better estimation accuracy than a general
purpose divergence function like K-L entropy used in their
paper. Moreover, it is worth pointing out that [39] does
not fully tackle the deconvolution ambiguity problem as
addressed in this paper. We have mentioned when intro-
ducing the non-uniqueness problem that even when the
gene structure is known, there may exist infinitely many
global minima far from the true T, which is essentially dif-
ferent than the common issue of multiple local minima in
optimization as NMF. The nature of this nonuniqueness
determines additional source of information must be pro-
vided to remove the ambiguity and to identify the truth.
Nevertheless, this serious problem is more or less masked
out by the well-known fact that NMF possesses too many
local optima.

In the experiments performed in the Results Section, we
include the SPACE algorithm by Anton et al. [39] for com-
parison purpose.
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