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Abstract
Background: Molecular genotyping of bacteria has revolutionized the study of tuberculosis
epidemiology, yet these established laboratory techniques typically require subjective and laborious
interpretation by trained professionals. In the context of a Tuberculosis Case Contact study in The
Gambia we used a reverse hybridization laboratory assay called spoligotype analysis. To facilitate
processing of spoligotype images we have developed tools and algorithms to automate the
classification and transcription of these data directly to a database while allowing for manual editing.

Results: Features extracted from each of the 1849 spots on a spoligo film were classified using two
supervised learning algorithms. A graphical user interface allows manual editing of the classification,
before export to a database. The application was tested on ten films of differing quality and the
results of the best classifier were compared to expert manual classification, giving a median correct
classification rate of 98.1% (inter quartile range: 97.1% to 99.2%), with an automated processing
time of less than 1 minute per film.

Conclusion: The software implementation offers considerable time savings over manual
processing whilst allowing expert editing of the automated classification. The automatic upload of
the classification to a database reduces the chances of transcription errors.

Background
Genotyping of M. tuberculosis complex isolates has
enhanced TB control and contact tracing while providing
valuable insights on tuberculosis transmission and patho-
genesis [1]. Recently, strain differences were found to
affect clinical presentation [2], and unravelling of the
genes responsible for these phenotypic differences might
lead to the identification of drug- and vaccine targets.

Spacer oligonucleotide typing (spoligotype) analysis is
the most user-friendly and commonly applied genotyping
tool for M. tuberculosis isolates worldwide. Global spoligo-

type databases include 'fingerprints' from thousands of M.
tuberculosis complex isolates from diverse regions [3].
Based on hybridization of the direct repeat region of M.
tuberculosis [4], spoligotype analysis generates reproduci-
ble binary patterns of 43 spacers, which can readily be
shared electronically. This 43 binary spacer format can be
transcribed as a 15-digit code [5], although no interna-
tional standardization has been established. While spoli-
gotype analysis lacks the resolution of the 'gold standard'
genotyping method IS6110 restriction fragment length
polymorphism (RFLP) [6], it has several advantages com-
pared with this technique: Firstly, it relies on PCR ampli-
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fication of M. tuberculosis DNA, which requires much less
DNA and can be applied straight to sputum samples. Sec-
ondly, up to 43 isolates can be completed within one day.
Thirdly, isolates with less than 6 bands on IS6110 RFLP
can be genotyped with a higher resolution by spoligotype
analysis. Finally, the spoligotype patterns can distinguish
between subspecies and clades within the M. tuberculosis
complex and are phylogenetically informative [7].

Spoligotyping generates arrays of spots and typically data
entry and classification is performed manually, which can
result in errors [8], or with often expensive electrophoresis
gel-type software. Spoligotype analysis is a robust method
with reproducibility of over 90% [9], but it can be affected
by the subjective determination of the hybridization sig-
nal, especially after repeated use of the membrane.
Hybridization detection is not an all-or-nothing process
and slight variations in the quality and repeatability of
results requires these images to be double checked by
experienced staff. Alternatively a fully automated multi-
plex bead-based Luminex hybridization assay can be used
[10]. Whereas several papers have described novel data
mining methods for spoligotype data [11,12], to our
knowledge none have developed software to facilitate the
acquisition of the images and classification of spots on a
complete spoligotype film generated by membrane based
hybridization. Commercial software packages have facili-
ties for the semi-automated capture and classification of
spoligo film images. The BioNumerics platform has a
'Character Types' module which can process spot informa-
tion from tif files. Quantity One (Bio-Rad) allows images
to be segmented to quantify spot information via the 'Vol-
ume Tools' function.

To support the spoligotype analysis of a Tuberculosis Case
Contact study in the Gambia [13], we used two supervised
learning algorithms, a neural network [14] and a support
vector machine [15] to categorize the hybridization signal
as positive or negative. These algorithms were incorpo-
rated into a software package that automated the process
of gridding, classification, expert verification and tran-
scription of data from the scanned spoligo film directly
into a database.

Results
Spoligotype analysis was performed according to a stand-
ardized method [4] using commercially prepared mem-
branes from Isogen Biosciences (Maarsen, the
Netherlands). The assay was repeated for isolates with
spacers that were difficult to classify, and for those with-
out any hybridization signal.

The spoligotype film was then scanned using a transpar-
ency enabled scanner (Microtek ScanMaker i800) at a low
resolution of 300 pixels per inch, with a 256 level greys-

cale. Transparency enabled scanners have a light source in
the lid of the scanner as well as the base. The images were
scanned to tiff files (although any common image file
type can be used), appropriately cropped and rotated so
that the rows (isolates) were true horizontal. The auto-
mated processing of spoligo films can be divided into four
main processes, automatic grid placement, feature extrac-
tion, supervised learning and data storage.

Algorithm – Automatic grid placement
There are two key problems with automatic gridding.
Firstly, due to the physical process of developing films the
rows and columns are not necessarily orthogonal. Sec-
ondly, the spoligotype films have small irregularities in
the width of the spacer lanes and isolate rows, often with
blank or smudged areas. To address these irregularities, we
used a 2 dimensional autocorrelation of the spoligo
image to identify non-orthogonal rows and columns. For
an M by N image matrix x, the autocorrelation requires the
calculation of:

where i = -M to M and j = -N to N and elements of x that
lie outside its range are set to zero. Image sizes tend to be
approximately 1500 by 1500 pixels, which make the
above summation computationally expensive. The auto-
correlation is calculated by taking the inverse Fourier
transform of the product of the Fourier transform of the
image and its complex conjugate (Wiener-Khinchin Theo-
rem). Figure 1 shows the image of a spoligo film with
non-orthogonal rows and columns. The non-othogonal-
ity can be seen in the image autocorrelation shown in Fig-
ure 2, where the columns are not aligned with the true
vertical yellow line. The angle from the true vertical for the
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Typical spoligo film with non-orthogonal rows and columns, and blank and smudged areasFigure 1
Typical spoligo film with non-orthogonal rows and 
columns, and blank and smudged areas.
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columns can be calculated by finding the arc through the
centre with the highest correlation. Figure 3A shows an arc
between ± 2 degrees and Figure 3B gives the mean inten-
sity sweeping in 101 steps from -2 to + 2 degrees, where
the highest correlation occurs at an angle of 0.96 degrees.
To calculate the mean intensity along an arc, a 'nearest
neighbour' 2 dimensional interpolation is used as the arcs
do not pass exactly through a pixel.

The image could now be sheared to make the rows and
columns orthogonal, but this creates an edge effect prob-
lem and the displayed image is no longer identical to the

film. For these reasons the grid lines were rotated rather
than the image.

The number of columns in a film is set at 43 and the
number of rows has a maximum of 43. Given these
parameters it is trivial to place an initial grid, allowing for
the rotation affect. Each grid line is then moved -15 to +15
pixels (0 to 15 for edges) from its initial position and the
mean intensity for each position is calculated. White areas
in the image have high intensity values and dark areas low
values and the grid line is moved to the area of highest
intensity.

The films typically have rows missing due to failed isolates
or controls and these areas must be detected as noise
because they have very few low intensity dark pixels. Fig-
ure 4A shows the profile for the grid line between two well
defined rows in comparison to Figure 4B where the sec-
ond row has very few defined cells. A bump hunting algo-
rithm is used to locate the local maxima and the following
threshold is calculated, where c is the number of maxima
and mi are the mean intensities for each perturbed grid
line.

For noisy data with no well defined dark cells the numer-
ator tends to be large and the denominator small, and for
the example in Figures 4A and 4B, Tnoise = 0.11 and 3.93
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Heat map of auto-correlation of spoligo film with non-orthogonal rows and columnsFigure 2
Heat map of auto-correlation of spoligo film with 
non-orthogonal rows and columns.

Extracting auto-correlationsFigure 3
Extracting auto-correlations. Figure 3A heat map of film autocorrelation, with arcs of ± 2° from film centre. Figure 3B 
mean auto-correlation along each arc.
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respectively. Based on trial and error the threshold was set
at 0.93, which successfully relocated the initial grid lines
for the 874 lines on the 10 films (note one film only had
38 isolates) analysed here, using the following criterion.

If c>0 and Tnoise < 0.93

Move grid line to the highest intensity peak

Else

Do not move grid line

After the optimum position for a grid line was determined
the remaining lines were moved to maintain the initial
separation and the process is repeated for each grid line in
turn. Figure 5 shows the automatic grid lines for the film
in Figure 1 and individual cells are defined by the four
intersections of the relevant rows and columns. The auto-
mated software implementation allows any line to be
manually moved, but the classification process was not
sensitive to small movements in the grid lines.

Algorithm – Feature extraction and supervised learning
The success of any supervised learning technique depends
on the ability of the features extracted to discriminate.
There is no prescriptive rule for the determination of these
features and the selection difficulty is compounded in this
case by the wide range of film quality and the large
number of cells that have to be processed. Features that
discriminate on low noise/high quality films might not be

the same as those on films of inferior quality. Given that
the automated implementation has to run in real time, a
small number of features should be extracted from each
cell. Initially simple summary statistics are extracted from
each cell, i.e. the mean and the median pixel intensity for
each cell.

The largest dark region within a cell is then selected, as fol-
lows. The intensity of the pixels is thresholded, by setting
those below the lower quartile intensity for the cell to
white and the remaining pixels to black. The largest of the
resulting black regions is selected as the region of interest.

Row mean intensity profiles for perturbation of horizontal grid linesFigure 4
Row mean intensity profiles for perturbation of horizontal grid lines. Figure 4A shows the profile for moving a grid 
line between rows with many dark cells. Figure 4B shows the profile moving the grid line through noisy light areas, with few 
dark cells.

Automatic grid placement, where rows and columns are non-orthogonalFigure 5
Automatic grid placement, where rows and columns 
are non-orthogonal.
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The vertical and horizontal profiles of the cell pixels
through the centre of this region are then extracted and
smoothed. The profiles are smoothed using a B-splines
smoother [16], with a uniformly high degree of smooth-
ing, to reduce the number of noisy peaks. The B-splines
smoother is appropriate for a real time application as it
has a fast computational implementation. The amplitude
of each smoothed profile and the number of minima are
calculated. Positive cells typically yield profiles having
well defined centrally located minima and large ampli-
tudes, in contrast to negative cells.

Due to the non-uniformity of the spot sizes, there can be
edge effects caused by overlap from neighbouring cells.
These cells can be identified using a symmetry index, cal-
culated by taking the largest central square image from a
cell and rotating it by 90 degrees and calculating the cor-
relation coefficient of the pixel intensities with the un-
rotated square image. Cells with large central features tend
to have higher correlation than cells with noise or non-
symmetrical edge features. Figures 6 and 7 compare the
horizontal and vertical profiles for a positive cell with a
central spot to those from a negative cell having an edge
artefact. For these cells the most effective discriminator is
the rotational symmetry coefficient, which is 0.84 for the
image in Figure 6 and -0.13 for the image in Figure 7.

This gives seven features which are fast to compute (com-
putations have to be repeated for up to 43*43 cells) and
are able to discriminate between positive and negative
cells from a range of different quality films. At the expense
of information, the dimensionality of multivariate train-
ing sets can be reduced using principal component analy-
sis [17]. For this application where the dimensionality of
the features is small and a wide range of film qualities may
have to be processed, there is little computational advan-
tage in attempting to reduce the dimensionality.

Based on a training set of the seven extracted features
where the true classification of the cell is known, super-
vised learning algorithms can classify cells based on
unseen sets of cell features. The implementation of two
common supervised learning algorithms, a neural net-
work and a support vector machine are described here and
compared in the following section.

A feed forward neural network links inputs to outputs by
a series of one way connections. The inputs are the seven
features for each cell and there are two outputs represent-
ing a positive or negative cell. A unary encoding is used for
the outputs in the form of a 2 element vector [a b], where
a perfect prediction is [0 1] and [1 0] for a positive and
negative cell respectively.

Feature extraction from a positive cell with a central featureFigure 6
Feature extraction from a positive cell with a central feature.
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Between the input and output layers there is at least one
set of neurons, which connects the inputs to the relevant
outputs for the training set. More complex relationships
can be modelled by increasing the number of neurons
and/or increasing the number of layers between the
inputs and outputs. There is no prescriptive method for
determining the number of neurons or hidden layers and
for the films classified here, 2 layers with 5 neurons in
each layer gave good performance across all films. The
number of layers and neurons are parameters that can be
easily changed. The network was trained using back-prop-
agation and the Levenberg-Marquardt algorithm was used
to optimise the weights. One of the key problems with
neural networks is overfitting, where the error on the
training set is very small, but the network does not gener-
alise well when used to process unseen data. To overcome
this problem the training sets are divided into two, a train-
ing and a validation set. The validation set is classified at
each iteration (epoch) during training, based on the
weights obtained from the training set only. If the net-
work over fits the data, the error on the validation set
tends to increase. An early stopping rule is applied if this
occurs for 6 consecutive iterations and the network based
on the minimum of the validation error is returned. The

requirement for the neural network to converge in a real
time implementation restricts the size of the training set.
Simulation showed little improvement in classification
performance for sets of more than 3% of the cells, split
evenly between the training and the validation set.

Support vector machines are closely related to neural net-
works. They construct a hyperplane separating the input
vectors into two categories and so are ideal for binary clas-
sification problems. Support vector machines have inte-
gral support to minimize overfitting by creating a soft
margin between categories that allows some misclassifica-
tions. To allow non-linear separations a kernel function is
used to transform the data and in contrast to determining
the numbers of neurons and hidden layers for a neural
network, only the appropriate kernel needs to be chosen
for a support vector machine. Simulation showed that a
linear kernel function gave the most appropriate fit, with
non-linear fits showing overfitting problems. In common
with the neural networks simulation, a training set of
1.5% of the cells was adequate. Given the integral support
for overfitting and the use of a linear kernel no further
control for overfitting was necessary and a validation set
was not required.

Feature extraction from a negative cell with an edge artefact form a neighbouring cellFigure 7
Feature extraction from a negative cell with an edge artefact form a neighbouring cell.
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A neural network is initialized with a set of random
weights and for repeat training sessions it will converge to
different classifications from the same training set. This is
in contrast to a support vector machine, which results in a
one to one relationship between the training set and the
classification.

Algorithm – Data storage and retrieval
The data from the classified films are automatically
updated to an Access data base, although any common
database standard such as SQL server or Oracle could be
substituted. Each film is stored as a separate table, where
each row is labelled with a unique isolate identifier and a
row position identifier. To enhance data quality and port-
ability, film images are stored directly within the database
(see implementation for technical details).

Testing
The algorithms above were tested on ten films, where
quality ranged from very high, to images with uneven
exposure and noisy artefacts. The gold standard for com-
parison with the supervised learning algorithms was pro-
vided by manual classification by an experienced
laboratory technician and verification by a senior scien-
tist. Visual confirmation by the above staff showed good
automatic grid placement for the ten films and a neural
network and a support vector machine were applied to
each spoligotype film, using identical training sets.

The two classifiers were compared using 10-fold cross-val-
idation. For a real time practical implementation, the
training sets of 1664 cells generated by10-fold cross-vali-
dation on a complete film of 1849 spots are not feasible.
To test the dependence of the classification on realistic
training sets, 1000 randomly selected training sets (the
only constraint was that they must contain both positive
and negative cells) consisting of 1.5% of the cells (with a
validation set of 1.5% of cells for the neural network),
were generated. Figure 8 shows (neural network red o,
support vector machine black *) the percentage of cor-
rectly identified cells by cross-validation. The box plots in
Figure 8 summarize the distribution of correct classifica-
tions from the 1000 simulations of smaller training sets
for each film. The reduction in the accuracy of the classifi-
ers when using small training sets is greatest in the poorer
quality films. The median percentage discordance
between the two classifiers for each film is shown by the
blue line in Figure 8.

A rank based analysis of variance on the percentage of cor-
rect classifications, allowing for the clustering effect of
film [18], shows no significant difference (p = 0.90)
between the classifiers for the 10-fold cross-validation. For
the data simulated from smaller training sets the support
vector machine showed a border line significant improve-

ment (p = 0.047) over the neural network. The smaller
training sets compared to those from the 10-fold cross-
validation resulted in a significant (p < 0.001) perform-
ance degradation for both classifiers. Generally for realis-
tic training sets the support vector machine gives slightly
better classification, shows less dependence on the train-
ing set and is computationally faster to fit. In terms of real
time software implementation for small training sets there
is little functional difference between the two methods.

The best films have median correct classification rates
above 99%. For the poorer quality films there is as
expected a lower classification rate and greater depend-
ence on the training set selection. The results in Figure 8
are conservative as the training sets were chosen randomly
and there was no constraint to include training cells hav-
ing diverse characteristics. In reality decisions about diffi-
cult to classify cells may depend on neighbourhood cells
and exposure artefacts, which is why the software imple-
mentation facilitates user re-classification. The worst per-
formance occurred for the third film, which has a very
uneven spot exposure making classification difficult even
by manual inspection.

The outputs from either a neural network or a support vec-
tor machine can be used to highlight the quality of cell
classifications. The output from the neural network is a
vector with 2 rows and the same number of columns as
cells classified. Each column is an estimate of the classifi-

Comparison of neural network and support vector classifiersFigure 8
Comparison of neural network and support vector 
classifiers. Symbols compare the percentage of correct clas-
sifications from 10-fold cross-validation for a neural network 
(red) and support vector machine (black). Box plots compare 
the classifiers based on 1000 training sets from each spoligo 
film and the blue line shows the median percentage discord-
ance.
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cation, where [0 1] and [1 0] are perfect positive and neg-
ative predictions and well classified cells are polarized in
these directions. The output from a support vector
machine is the distance from the hyperplane and the sign
of the distance determines the category of a cell. Figure 9
shows the histogram of the first row of the output vector
from a neural network for the third film, representing the
poorest classification. There are clearly some values
around 0.5, indicating poor classification. Cells within
this region can be tagged as likely to be poorly classified.
In a similar manner for a support vector machine the dis-
tances from the hyperplane clustered around 0 could be
used to identify difficult to classify cells.

There are many different image processing morphological
operations and filters that attempt to improve the quality
of image, but these had little affect on the classification
error for the poorer quality films. The disadvantage of
image transformations is that the film image can be
noticeably different from the actual film, which doesn't
promote user confidence. The only transformation that
was universally applied and accepted was a simple con-
trast stretch.

Implementation
Software for the preceding applications was developed in
Matlab (The Mathworks Inc version R2008b), which
offers a rich program development environment and ded-
icated image processing and neural network toolboxes.
Matlab is compatible with MAC OSX, Linux and Windows
operating systems. Although it is ideal for developing and
testing code, the language is interpreted, which makes
some of the more intensive numerical operations rela-
tively slow, affecting the user-friendliness of this interac-

tive software application. Code written and compiled in
C++, can be incorporated into Matlab applications, result-
ing in faster execution speed, often greater than 10 fold.
The Fast Fourier transform, two-dimensional interpola-
tion, and the morphological operations are written in
C++.

The code is controlled from a graphical user interface and
films are defined by their image name, where the actual
image can be in any of the common graphical file types.
The code then runs (on a machine with a Xeon 3.4 GHz
CPU and 1 GB of RAM) in the following order (user
actions in italics):

1. User selects film for processing from file browser

2. Automatic grid placement (5 seconds)

3. User can manually move grid lines if required

4. Extracts features from all cells (15 seconds)

5. User chooses training set and marks any regions excluded
from classification

6. User chooses classifier (Neural network or support vector
machine)

7. Trains and displays classified film (1 second)

8. User verifies and edits classification

9. Writes classification and film image to a Microsoft
Access database (1 second)

Even though the process is completely automatic, the user
can override any of the computer generated results. Every
line of the grid is a selectable graphics object and the lines
can be moved forward, backwards, up or down one pixel
at a time. After classification any of the cell classifications
can be over-written before updating the results to a data-
base. Connection to the Access database is via an object
linking and embedding database connector and all data-
base actions are automatically written from the Matlab
code using SQL (structured query language), so no knowl-
edge of Access is required. Rather than storing a link to the
spoligotype film image; for integrity and database porta-
bility the actual film image is stored directly in the data-
base. This requires the image to be converted to a Blob
(binary large object) and written from Matlab to an OLE
(object linking and embedding) field in the relevant data-
base table. A typical resolution spoligotype film after
resizing by a factor of a quarter consumes 500 kB of space
in the database table. Storage within a single Access data-
base is only limited by the product limit of 2 GB, which

Histogram of first element from neural network classifier outputFigure 9
Histogram of first element from neural network clas-
sifier output.
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would not affect a server sided database such as an SQL
server.

Figure 10 shows the graphical user interface for defining
the training sets, with a user entered training set of 1.5%
of cells for a support vector classification. Rectangular
regions or individual cells can be classified by the user and
as cells are added the displayed size of the training set is
incremented. Failed isolates can be marked in the same
manner (shown in blue) and are then excluded from the
classification process. Either of the classification tech-
niques discussed in this paper can then be implemented.
The results from the chosen classifier (a support vector
machine in this case) are then displayed directly onto the
film as shown in Figure 11. The red crosses or ticks are the
output from the selected classifier and can be re-classified
by the user, by right clicking on any cell. The classifica-
tions shown in green are those cells with the weakest clas-
sification. After verification and re-classification the
results are automatically up-loaded to the database, which
occurs instantaneously. The unique isolate identifiers
shown to the right of the film can be extracted from any
convenient source such as a database, Excel or a text file
and are then stored with the data in the database.

The results in Figure 8 were obtained using randomly
selected training sets, but intelligent choice of the training
set is likely to give superior performance. The film in Fig-
ure 11 is film 1 from Figure 8 and had a median correct
classification of 97.4%. The support vector machine clas-
sification displayed in Figure 11 correctly classified 98.1%
cells with 8 cells having weak classification (marked with
green ticks and crosses), including 3 incorrectly classified
cells.

Films can be re-classified at any time and users are warned
before updating any existing classifications in the data-
base. An additional graphical tool displays previously
classified films and allows cell classifications to be viewed
and if necessary edited.

Discussion
We developed a method for automating the transcription
of spacer classification from spoligo films. With a large
throughput of films from the laboratory, the process had
to offer a high degree of automation, but allow manual re-
classification and provide a systematic method for storing
the data. There appear to be no commercial packages
exclusively for the processing of spoligo films.

Matlab is a high level programming language with excel-
lent graphical capabilities, dedicated image processing,
supervised learning tools and sophisticated native support
for database connectivity, which make it ideal for process-
ing and managing spoligo film data. C++ can also be
incorporated into Matlab programs, allowing this applica-
tion to run within a realistic timeframe.

After scanning, the processing of the spoligofilms was
divided into four categories, grid application, classifica-
tion, manual verification and data storage. The automated
processes run in less than 1 minute, which is a considera-
bly less than manual processing. The implementation
described here uses either a neural network or a support
vector machine as classification tools. They provide robust
classification, with the support vector machine showing
superior performance on realistically sized training sets.
In terms of the number of cells correctly identified it is of
little practical relevance. Given the speed of film specific
classifiers there is little advantage in using the same global

Definition of training set and marking of failed isolates (rows in blue)Figure 10
Definition of training set and marking of failed iso-
lates (rows in blue).

Support vector machine classificationFigure 11
Support vector machine classification.
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classifier for multiple films. There are many other types of
classification algorithm, which could easily be incorpo-
rated into the modular code.

The Matlab source code is available for download from
the 'statistics and data management' page of The Gambia
MRC website http://www.mrc.gm and from the corre-
sponding author. It requires the image processing, neural
network and bioinformatics (for support vector machine)
toolboxes. Bespoke code or alternative classifiers could be
used to replace the reliance on toolboxes. Data is currently
output to a Microsoft Access 2007 database, but there is
native support for all the database systems most com-
monly used in medical research. The modular nature of
the code makes it straightforward to add additional out-
put formats. For example the input format for the spol-
Tools software [19] is text with format "name: binary
pattern: cluster size" (where cluster size refers to the
number of isolates with a particular pattern). The Matlab
code stores output data in a two-dimensional matrix
which can easily be written to a text file, from where it
could be pasted into the spolTools page. Although this
paper has concentrated on films with 43 spacers, the only
limitation on the addition of further spacers [8] is the size
of the scanner.

Many aspects of the gridding, feature extraction, and
supervised learning are generally applicable to other labo-
ratory image-based analyses, and could be adapted to the
analysis of microarray or well-plate images. Further
research will optimise the software implementation,
explore the development of platform independent execut-
able code and compare the speed and accuracy of tradi-
tional manual data entry against classification with the
automated method.

Conclusion
We developed a user friendly software package that can
capture and classify data generated by reverse hybridiza-
tion methods, such as spoligotype analysis. Although fully
automated the software allows for manual editing, before
uploading the data to an Access database. Tools are also
provided to visualize existing data and make retrospective
changes. The software is publicly available, and potential
users can contact us for assistance, modification and addi-
tions to the software.

Availability and requirements
The Matlab (version R2000b) source code, user guide and
anonymous test film images are available from the 'statis-
tics and data management' page of The Gambia MRC
website http://www.mrc.gm and the corresponding
author. Note the source code requires the image process-
ing, neural network and bioinformatics toolboxes.
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