
BioMed Central

ss

BMC Bioinformatics
Open AcceSoftware
p3d – Python module for structural bioinformatics
Christian Fufezan*1,2 and Michael Specht2

Address: 1Westfälische Wilhelms-Universität Münster, Institute for evolution and biodiversity, Hüfferstr. 1, 48149 Münster, Germany and
2Westfälische Wilhelms-Universität Münster, Institut für Biochemie und Biotechnologie der Pflanzen, Hindenburgplatz 55, 48143 Münster,
Germany

Email: Christian Fufezan* - christian@fufezan.net; Michael Specht - michael.specht@uni-muenster.de

* Corresponding author

Abstract
Background: High-throughput bioinformatic analysis tools are needed to mine the large amount
of structural data via knowledge based approaches. The development of such tools requires a
robust interface to access the structural data in an easy way. For this the Python scripting language
is the optimal choice since its philosophy is to write an understandable source code.

Results: p3d is an object oriented Python module that adds a simple yet powerful interface to the
Python interpreter to process and analyse three dimensional protein structure files (PDB files).
p3d's strength arises from the combination of a) very fast spatial access to the structural data due
to the implementation of a binary space partitioning (BSP) tree, b) set theory and c) functions that
allow to combine a and b and that use human readable language in the search queries rather than
complex computer language. All these factors combined facilitate the rapid development of
bioinformatic tools that can perform quick and complex analyses of protein structures.

Conclusion: p3d is the perfect tool to quickly develop tools for structural bioinformatics using
the Python scripting language.

Background
The increasing number of high-resolution protein struc-
tures available in the protein database [1] allows knowl-
edge based approaches [2-4] by comparing structural
features throughout non-redundant protein data sets [5].
Such knowledge based approaches can help to identify
key parameters in e.g. ligand binding [6] or can be used to
estimate favourable structural configurations that are
important for de novo protein design or prediction of pro-
tein folding [7,8]. However, such approaches require a
rapid development of new structural bioinformatic tools
that are adapted to the questions asked, which in turn
requires a robust framework or module. p3d is such a

module for the Python scripting language http://
www.python.org. Although similar modules exist as part
of the BioPython project [9] or part of the biskit package
[10], p3d was developed in order to offer a Python mod-
ule that is powerful and fast, yet intuitive to use. The sim-
plicity of p3d is due to a) the usage of object oriented
programming (i.e. atoms are treated as vectors), b) the
implementation of a query parser that translates queries
written in human readable language into a combination
of algebra set operations and c) the fact that no additional
Python packages are necessary. The speed is due to the
usage of a binary space partitioning (BSP) tree which
allows very fast queries in 3D [11]. The additional

Published: 21 August 2009

BMC Bioinformatics 2009, 10:258 doi:10.1186/1471-2105-10-258

Received: 29 April 2009
Accepted: 21 August 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/258

© 2009 Fufezan and Specht; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 5
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19698094
http://www.biomedcentral.com/1471-2105/10/258
http://creativecommons.org/licenses/by/2.0
http://www.python.org
http://www.python.org
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10:258 http://www.biomedcentral.com/1471-2105/10/258
strength is obtained by the flexible combination of both
speed and complexity in the intuitive and thus natural
queries to the structural data.

The combination of these factors makes p3d the optimal
module to rapidly develop new and powerful bioinfor-
matic tools that follow the Python philosophy of making
the source code readable.

Implementation
p3d is written in python 2.6 and compatible with the
upcoming new standard Python 3.0. PDB files are read
into the p3d structure, schematically illustrated in figure
1. During pdb loading each atom is converted into an
atom object, which inherits all properties form the vector
class (see below). These objects are stored into a list and
linked to their proper sets, which will be used by the query
function. Figure 1 shows some sets and how they inter-
sect. Queries can therefore be directly translated into alge-
braic set operations, e.g. "select all atoms that are oxygens,
belong to the residue name ATP and have a residue id
smaller than 20". For fast queries in 3D a binary space par-
titioning (BSP) tree is generated automatically. There, the
structure is divided into small subspaces. Figure 1 illus-
trates the recursive divisions performed on an aquaporin
structure (Chain A, 1RC2.pdb [12]) during tree initialisa-
tion. The implemented query functions allow the combi-

nation of all sets, of the BSP tree neighbor search and of
custom user defined vectors or atoms. Thus very complex
queries can be formulated in a human readable syntax
(see below).

Results and Discussion
p3d offers an intuitive and robust interface between the
Python scripting language and the complex nature of pro-
tein structure files. The input files can be in pdb format or
the compressed gzip versions. All following examples,
indicated with ">>>" are within the Python IDLE console,
but can equally be incorporated into standalone scripts. A
more detailed documentation for all modules and func-
tions can be found online [13]. Loading a protein struc-
ture is done via:

>>> from p3d.protein import Protein

>>> pdb = Protein('2AXT.pdb.gz')

All atoms are treated as vector objects and can be rapidly
accessed via hash tables, algebra of sets, lists, the BSP-tree
class and any combination of those. For example all
atoms are stored in the list pdb.atoms and the hash table
can be found in the dictionary pdb.hash. Detailed informa-
tion of how the structural data can be directly accessed can
be found in the online documentation [13].

An easier and more intuitive access to the structural infor-
mation is offered via the query() or lookUpAtom() func-
tions. These functions try to return a set of atoms or one
atom object, respectively. The usage for the query function
is e.g.:

>>> atoms = pdb.query("chain A and resid 13..25")

This will return all atoms that are part of chain A and have
a residue id from 13 to 25. The returned list of atom
objects can then directly be used in another query (see
below) or can be treated like vectors. The complete syntax
of the query-string can be found in the online documen-
tation [13].

Such a generalised approach brings a lot of flexibility and
robustness. As a result, a lot of exceptions in pdb files can
be handled without additional precautions, for example:
a) Multiple models/structures (NMR, e.g. 7GAT[14]), b)
Alternative side-chain conformers (e.g. 1BPH, [15]) or
alternative main chain tracings (e.g. 1AZZ, [16]), c) disor-
dered residues (e.g. 1EN2, (Saul et al. 2000)) and d) non
amino acid residues, e.g. DNA (e.g. 7GAT[14]).

Benchmarking BioPython's pdb module against p3d
showed that both modules have their strengths and weak-
nesses and, as usual, the results depend on the choice of

p3d data structuresFigure 1
p3d data structures. The p3d data structures are a) a list
of all atom objects that can be treated as vectors, b) a variety
of sets, where each atom can be member of several sets and
c) a Binary space-partitioning (BSP) tree that allows fast spa-
tial queries to the protein structure. Illustrated are the
recursive divisions performed on an aquaporin structure
(Chain A, 1RC2.pdb [12]). Finally, the implemented query
functions allow the combination of all three hashes and cus-
tom user defined vectors or atoms to formulate complex
queries in a human readable syntax.
Page 2 of 5
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1RC2
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2AXT
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=7GAT
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1BPH
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1AZZ
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1EN2
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=7GAT
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1RC2

BMC Bioinformatics 2009, 10:258 http://www.biomedcentral.com/1471-2105/10/258
the testing routines. For example, BioPython's pdb mod-
ule performs a faster neighbour search since it calls a sub-
routine written in c from a different BioPython module
whereas p3d relays on its BSP Tree that is written in
Python and is as such slower. P3d is however faster in
selecting wanted atoms due to its implementation of sets
whereas BioPython's pdb module requires looping and
unfolding over all entities. As a result p3d performs better
if a neighbour search is connected with a complex query,
such as all protein oxygen atoms within 3 Å of ATP simply
because BioPython's pdb module requires a neighbour
search for each ATP atom and additional checking if the
found atom is part of the protein.

From a programming point of view, another clear advan-
tage of p3d is its intuitive and simple usage, e.g. during
benchmarking sample scripts written in p3d required one
line using the query function while BioPythons pdb mod-
ule required 7 lines including 4 loops over all pdb struc-
ture entities.

Another advantage of p3d is that each atom is treated as
one object and no additional conversions or translations
have to taken into account. The atom objects are created
from each line in the pdb files. Each created Atom object
holds all information regarding its properties, i.e. the Car-
tesian coordinates (x, y, z), the atom type, the residue
name and number, the peptide chain and parent protein
it is part of.

Therefore simple recursive queries through a protein
structure can be performed, e.g.:

>>> atom = pdb.lookupAtom("resname ILE & oxygen &
resid 30")

>>> chainAtoms = atom.allAtomsOfSameChain()

>>> residueAtoms = atom.allAtomsOfSameResidue()

Additionally the atom information of the alternative con-
former labels, the model number (NMR structures) and
the beta and user value are part of the atom class, e.g.:

>>> atom.x; atom.beta; atom.atype; atom.resid;
atom.chain; atom.model

Since the Atom object inherits its properties form the Vec-
tor object, simple vector operations, such as addition, sub-
traction, length, dot and cross product are possible at the
atom level without any additional overhead, e.g.:

>>> O = pdb.lookUpAtom("chain A & resid 1 & atype O")

>>> N = pdb.lookUpAtom("chain A & resid 2 & atype N")

>>> v = O + N; v = O - N; v = O.dot(N); v.length(); v =
O.cross(N)

The history of vector operations on atoms is stored in the
atom.desc property, thus allowing to keep a record on the
performed transformations. Other implemented vector
operations can be found in the online manual. The vector
class can also be used to define new objects, new points of
interest in space. Those can then be used as part of the
query function. This interchangeability between structural
data and user-defined vectors is unique to p3d. The user
can therefore query protein surroundings by defined coor-
dinates in a simple way, e.g.

>>> v = p3d.vector.Vector(18.00,12.00,-23.4)

>>> atomsAroundv = pdb.query("protein and within 4 of
", v)

The current version of p3d features two additional classes
based on vector operations. These are the Transformation-
Matrix (TM) class and the Plane class. Both are part of the
p3d.geo module. The TM class returns a matrix object
when two sets of three vectors (source and destination)
are given. Vectors or atoms that are multiplied with the
matrix will be transformed from the source space into des-
tination space. This can be used e.g. to align structures
with only a few lines of source code:

>>> alignAtoms = ['N1','C5','N3']

>>> sourceAtoms = []

>>> targetAtoms = []

>>> for atom in alignAtoms:

>>> sourceAtoms.append(pdb1.lookUpAtom('resname
ATP and atom type ', atom))

>>> targetAtoms.append(pdb2.lookUpAtom('resname
ATP and atom type ', atom))

>>> tm = p3d.geo.TransformationMatrix(sourceAtoms,
targetAtoms)

>>> for atom in pdb1.atoms:

>>> print (tm*atom).output()

The complete script can be found on the p3d web site
[13].

The Plane class allows e.g. calculations of dihedral angles,
Page 3 of 5
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:258 http://www.biomedcentral.com/1471-2105/10/258
>>> p3d.geo.dihedral(atom1, atom2, atom3, atom4)

>>> alpha = pdb.lookUpAtom("alpha and resid 1 and
chain A and model 2")

>>> alpha.calcPhiPsi()

Furthermore, the Plane class can for example also be used
to calculate orientations of ligands over flat co-factors if
three atoms of the co-factor are used to define the plane.
This was used to calculated the orientation of histidine
heme ligands relative to the heme by projecting a vector
that represents the ligand orientation, (i.e. v = ND1 - CG)
onto the heme plane, i.e. heme.projectionOfVector(ND1-
CG) [7]. A basic example for this usage is:

>>> a = p3d.vector.Vector(1,0,0)

>>> b = p3d.vector.Vector(0,1,0)

>>> c = p3d.vector.Vector(1,1,0)

>>> plane = p3d.geo.Plane(a,b,c)

>>> k = p3d.vector.Vector(2,2,2)

>>> plane.projectionOfVector(k).info(lvl='coordinates')

[2.000, 2.000, 0.000]

All atom properties can be changed and the altered pro-
tein can be easily saved to a new file, e.g:

>>> for atom in pdb.atoms:

... atom.translateBy(k)

... atom.beta = 3.2

>>> pdb.writeToFile(pdb.fullname+'_changed.pdb')

The implementation of a BSP tree accelerates queries in
space. The query functions allow the combination of spa-
tial, i.e. BSP Tree queries and set theory, thus very complex
queries can be formulated at ease, e.g.:

>>> ATPs = pdb.query("resname ATP")

>>> surrounding = pdb.query("protein & within 3 of ",
ATPs, " and not nitrogens")

Example scripts shown online [13] illustrate furthermore
the simplicity of Python scripts that use the p3d module.
These are for example a script that analyses the distribu-
tion of phi and psi angles in a non-redundant protein set

similar to the work of Hovmöller et al. [17]. By using p3d
this analysis can be performed using only 26 lines of code.
Another example is a script that determines the distances
between different protein chains, which can be written
with 36 lines of code, documentation included. This data
can be used to plot the contact map between different pro-
tein chains.

Overall these features and their intuitive usage highlight
the possibility to develop tools for structural bioinformat-
ics rapidly.

Future development
P3d will be kept updated and user requests might be
implemented into the source code. Overall p3d will be
maintained by the authors and hopefully other program-
mers will join this open source project. Two future aims
will be a) to implement a faster BSPTree, eventually writ-
ten in c/c++ and b) to add the syntax for spatial queries,
e.g. select all "proteins and x-coordinates < 40". Further-
more p3d's website will expand with scripts that are
posted by the users/readers.

Conclusion
The p3d package extends the Python scripting language
with a robust and powerful interface to investigate and
manipulate protein structure files. The object oriented
approach of p3d, the treatment of atoms as vectors, the
usage of sets, the implementation of a BSP tree and the
combination of all these factors into a query interface that
uses human readable language make p3d a very fast and
versatile module that allows rapid development of high
throughput tools for structural bioinformatics.

Availability and requirements
Project name: p3d

Project home page: http://p3d.fufezan.net

Operating systems(s): Platform independent

Programming language: Python 2.6+ and 3.0 ready

Other requirements: none

License: GNU GPL V2

Any restrictions to use by non-academics: none

Authors' contributions
CF, concept, design, manuscript, coding of the protein,
atom, vector, geo, protein, library and tree submodules
and online manual. MS important contributions to the
code design and coding of the query and geo module. All
authors read and approved the final manuscript.
Page 4 of 5
(page number not for citation purposes)

http://p3d.fufezan.net

BMC Bioinformatics 2009, 10:258 http://www.biomedcentral.com/1471-2105/10/258
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Acknowledgements
The funding by the Alexander von Humboldt Foundation to CF is gratefully
acknowledged.

References
1. Berman HM, Henrick K, Nakamura H: Announcing the worldwide

Protein Data Bank. Nature Structural Biology 2003, 10:980.
2. Grzybowski BA, Ishchenko AV, DeWitte RS, Whitesides GM, Sha-

khnovich EI: Development of a Knowledge-Based Potential for
Crystals of Small Organic Molecules: Calculation of Energy
Surfaces for C = 0•••H-N Hydrogen Bonds. J Phys Chem B 2000,
104:7293-7298.

3. McDonald IK, Thornton JM: Satisfying hydrogen bonding poten-
tial in proteins. J Mol Biol 1994, 238:777-793.

4. Morozov AV, Kortemme T, Tsemekhman K, Baker D: Close agree-
ment between the orientation dependence of hydrogen
bonds observed in protein structures and quantum mechan-
ical calculations. Proc Natl Acad Sci USA 2004, 101:6946-6951.

5. Wang G, Dunbrack RL Jr: PISCES: recent improvements to a
PDB sequence culling server. Nucleic Acids Res 2005, 33:W94-8.

6. Ghose AK, Herbertz T, Pippin DA, Salvino JM, Mallamo JP: Knowl-
edge based prediction of ligand binding modes and rational
inhibitor design for kinase drug discovery. J Med Chem 2008,
51:5149-5171.

7. Fufezan C, Zhang J, Gunner MR: Ligand preference and orienta-
tion in b- and c-type heme-binding proteins. Proteins 2008,
73:690-704.

8. Negron C, Fufezan C, Koder RL: Geometric constraints for por-
phyrin binding in helical protein binding sites. Proteins 2009,
74:400-416.

9. Hamelryck T, Manderick B: PDB file parser and structure class
implemented in Python. Bioinformatics 2003, 19:2308-2310.

10. Grunberg R, Nilges M, Leckner J: Biskit – a software platform for
structural bioinformatics. Bioinformatics 2007, 23:769-770.

11. Henry F, Zvi MK, Bruce FN: On visible surface generation by a
priori tree structures. SIGGRAPH Comput Graph 1980, 14:124-133.

12. Savage DF, Egea PF, Robles-Colmenares Y, O'Connell JDr, Stroud
RM: Architecture and selectivity in aquaporins: 2.5 a X-ray
structure of aquaporin Z. PLoS Biol 2003, 1:E72.

13. p3d – Python module for structural bioinformatics [http://
p3d.fufezan.net]

14. Starich MR, Wikstrom M, Schumacher S, Arst HNJ, Gronenborn AM,
Clore GM: The solution structure of the Leu22-->Val mutant
AREA DNA binding domain complexed with a TGATAG
core element defines a role for hydrophobic packing in the
determination of specificity. J Mol Biol 1998, 277:621-634.

15. Gursky O, Badger J, Li Y, Caspar DL: Conformational changes in
cubic insulin crystals in the pH range 7–11. Biophys J 1992,
63:1210-1220.

16. Perona JJ, Tsu CA, Craik CS, Fletterick RJ: Crystal structure of an
ecotin-collagenase complex suggests a model for recogni-
tion and cleavage of the collagen triple helix. Biochemistry 1997,
36:5381-5392.

17. Hovmoller S, Zhou T, Ohlson T: Conformations of amino acids
in proteins. Acta Crystallogr D Biol Crystallogr 2002, 58:768-776.
Page 5 of 5
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14634627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14634627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8182748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8182748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15118103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15118103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15118103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18710211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18710211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18710211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18491383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18491383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18636480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18636480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14630660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14630660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17237072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17237072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14691544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14691544
http://p3d.fufezan.net
http://p3d.fufezan.net
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9533884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9533884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9533884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1477273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1477273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9154920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9154920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9154920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11976487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11976487
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Results and Discussion
	Future development
	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

