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Abstract

Background: Uncovering subtypes of disease from microarray samples has important clinical
implications such as survival time and sensitivity of individual patients to specific therapies.
Unsupervised clustering methods have been used to classify this type of data. However, most
existing methods focus on clusters with compact shapes and do not reflect the geometric
complexity of the high dimensional microarray clusters, which limits their performance.

Results: We present a cluster-number-based ensemble clustering algorithm, called MULTI-K, for
microarray sample classification, which demonstrates remarkable accuracy. The method
amalgamates multiple k-means runs by varying the number of clusters and identifies clusters that
manifest the most robust co-memberships of elements. In addition to the original algorithm, we
newly devised the entropy-plot to control the separation of singletons or small clusters. MULTI-K,
unlike the simple k-means or other widely used methods, was able to capture clusters with
complex and high-dimensional structures accurately. MULTI-K outperformed other methods
including a recently developed ensemble clustering algorithm in tests with five simulated and eight
real gene-expression data sets.

Conclusion: The geometric complexity of clusters should be taken into account for accurate
classification of microarray data, and ensemble clustering applied to the number of clusters tackles
the problem very well. The C++ code and the data sets tested are available from the authors.

Background

Groups that exhibit similar patterns in large-scale
genomic data sets have provided primary biological infor-
mation. In this regard, identification of natural clusters
and their membership has excited a great deal of interest
in functional genomics and clinical research. Indeed,
unsupervised clustering methods applied to microarray

data enabled predictions of unknown gene functions (if
applied to genes) [1,2] and suggested the existence of sub-
types of disease (if applied to samples) [3-6]. The task of
cluster identification heavily depends on the property of
clusters that are of interest, e.g., compactness, connected-
ness, and spatial separation. Each clustering algorithm has
pros and cons for different shapes of clusters, which in
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turn informs the choice of an appropriate clustering strat-
egy [7].

We are interested in establishing subclasses among micro-
array samples that might enable specified clinical treat-
ments. In this problem, the data points are distributed in
a very high dimensional (hundreds or thousands) space
and the geometry of their clusters is mostly uncharacter-
ized, which make it difficult to choose an appropriate
clustering method. However, the most widely used clus-
tering methods for this problem have been the hierarchi-
cal agglomerative or k-means clustering algorithms
[4,5,8,9] that mainly focus on clusters with compact
shapes.

When using these methods, various internal measures
that represent compactness and spatial separation of clus-
ters have been developed and compared to identify clus-
ters and their members in data sets [9-12]. Each of the
measures, however, is prone to specific biases [7], and
their tests were mainly focused on the ability to identify
the number of clusters and not on the accuracy of classifi-
cation, which is mainly attributed to the clustering strate-
gies used.

One important line of effort to improve the clustering
strategy is the development of ensemble or consensus
clustering techniques. These methods amalgamate multi-
ple clustering runs to capture robust cluster structures by
using multiple clustering algorithms [13,14], perturbing
data values with noise [15,16], using different gene sub-
sets [17-19], or choosing the number of clusters randomly
[20,21] and then extract consensus cluster structures.
Among them, two of the methods [16,19] have been
tested intensively on microarray sample classification and
were compared favorably with previous methods.

In this article, we firstly apply a cluster-number-based
ensemble technique for microarray sample classification
and compare the performance with previously used meth-
ods. The advantage of this approach over the single clus-
tering or other methods is the ability to capture complex
geometric structures. The rationale is that since some large
cluster numbers are chosen during the clustering process,
co-memberships among detailed local structures are
strengthened. See also [22] for developments of related
algorithms. Specifically, we use the multiple k-means clus-
tering by Ashlock et al. [20], dubbed MULTI-K, that pro-
vides most simple and intuitive procedure for partitioning
data. In addition to the original algorithm, we newly
devised an entropy-based analysis of clusters, called the
entropy-plot, that monitors the distribution of cluster sizes
during the partition process. The entropy-plot helps pre-
vent singletons or very small clusters from forming sepa-
rate clusters, of particular utility when analyzing high-
dimensional and noisy real expression data.

http://www.biomedcentral.com/1471-2105/10/260

MULTI-K, though it is the simplest among existing ensem-
ble clustering methods, exhibited remarkable perform-
ance, surpassing previously used methods in our tests,
which suggests its ability to classify complex geometric
structures is an important factor for microarray sample
classification. In particular, MULTI-K demonstrated per-
fect classification for five (or six) gene expression data sets
out of eight that we tested.

Results

Algorithm

We begin by describing the MULTI-K algorithm. MULTI-K
is performed by applying the well-known k-means algo-
rithm repeatedly. Euclidean distance is always used to
measure the dissimilarity between two data points unless
stated otherwise. Let S = {x;, x,,..., Xy} be the data set dis-
tributed in R™. The algorithm constructs an edge-weighted
graph from the output of multiple instances of the k-
means algorithm. MULTI-K is largely composed of the fol-
lowing two steps.

Step |

Apply the k-means algorithm on the data M times. In each
instance, we randomly sample a number k;, for the
number of clusters, from a pre-determined distribution D.
On each pair of nodes (edge) that belong to the same clus-
ter, we add one to an edge weight (these weights are ini-
tialized to zero). After we repeat the process M times, we
obtain a weighted graph structure on the data.

Step 2

Now, we go back to the reverse direction by unweighting
the graph M times. In each iteration, we reduce a unit
weight for all the edges with positive weights simultane-
ously. Through this reverse process, the initial graph is
divided into smaller and smaller sub-graphs (clusters). At
any point the connected components of the graph are the
clusters. The plot between the discrete (reverse) time nor-
malized by M and the number of divided sub-graphs, as
we call cut-plot, provides the information on the natural
number of clusters. If a flat region of the cut-plot is long,
we regard the corresponding cluster structure is robust
and hence natural. We choose the longest interval in the
cut-plot for the predicted number of clusters except for the
one-cluster interval. The weighted graph in Step 1 is equiv-
alent to the averaged co-membership matrix used in other
ensemble clustering algorithms [16,19]. The convergence
of MULTI-K (in probability) is addressed in Methods.

Entropy-plot

Entropy can be used as a measure of randomness or infor-
mation in a set of clusters [23] and is defined in terms of
a discrete random event x, with possible states 1,..., k as:
H(x) = -£Plog,P;, where P;=Prob (x =ith state),i=1, 2,...,
k. Let S be a data set with N elements and X = {C,, C,,...
C,} be a set of non-overlapping clusters. The empirical
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probability that C; includes a given data point is |C;|/N,
and so the entropy of the clustering X is

k
H(X) ==Y (Ci|/N)log,( C;|/N)
i=1

This entropy measure informs us how the data points are
distributed as clusters. The cut-plot summarizes the hier-
archical structure of clusters that form as the cut-value
(where-to-cut in the cut-plot) is changed. However, the
cut-plot alone does not distinguish between roughly-
equal and substantially unequal divisions of clusters
within the hierarchy. The entropy-plot is a more informa-
tive plot that better summarizes the cluster structure. This
plot displays the Shannon-entropy of the empirical distri-
bution of points into clusters as a function of the cut-
value. In each position where the cut-plot jumps, the
entropy-plot jumps as well. The difference lies in the size
of the jumps. In the cut-plot, any division of a cluster
yields a jump of height one; the entropy-plot has variable
height jumps which give the relative informativeness of
the partitioning of clusters. An even division of a large
cluster is highly informative while the separation of a sin-
gle point is minimally informative. When working with
clean and low-dimensional data, it is not too difficult to
detect the separation of small clusters consisting of one or
a few points by inspection. When dealing with noisy or
high-dimensional data such as gene expression profiles,
the entropy-plot is of substantial utility in highlighting
the significant divisions within the cluster structure. As a
convenience for the user, the partition of small clusters,
those for which the increase in entropy is less than a
threshold, may be suppressed. This yields a cleaner and
more easily interpreted summary of the hierarchical clus-
ter structure. Users that wish to see the unmodified cluster
structure may reduce the threshold value that triggers sup-
pression. However, we applied a fixed threshold in this
paper to compare the performance of MULTI-K with other
algorithms. See Additional file 1 for further explanation
of entropy-plot.

MULTI-K parameters

Since MULTI-K is an ensemble learning algorithm, it
requires some parameters or thresholds. The following
initial setting is suggested from our rough estimation and
empirical tests, but works well for analyzing real-world
expression data. Although we suggest varying them
around the given values in an explorative study, we used
the following setting for the purpose of comparison
throughout this study.

The distribution for the cluster numbers, D is simply cho-
sen to be uniform on an interval between two integers in
our study. We used the interval (min(5, [N/4]), min(20,
[N/2])) for D, where N is the number of samples and [x]
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represents rounding x to the nearest integer. We applied
the minimum function here because it may be unreason-
able to expect five or more classes for very small number
of samples. The number of clustering runs M is fixed at
200 in this study. This number is sufficiently large for con-
vergence of the algorithm. Lastly, we used a threshold for
the entropy-plot such that if a jump in the entropy-plot is
smaller than 0.1/(increased number of clusters), we sup-
press the separation of the corresponding cluster and
merge the two adjacent intervals in the cut-plot. 'increased
number of clusters' in the denominator accounts for the
case when multiple singleton or small sets are separated
simultaneously from a cluster.

Experiments

We compare the performance of four kinds of clustering
algorithms: MULTI-K, hierarchical clustering (average
linkage), k-means, and GCC, a gene-subset based ensem-
ble clustering [19] for classifying data points on various
simulated and real expression data sets. We used code
from the R package for hierarchical and k-means methods
as well as for computing Silhuette Width and gap statistic.
We tested the two versions GCC algorithms and denote
them GCCc and GCCk that employ correlation and k-
means clustering, respectively. These are all distance-
based clustering methods. Another important class of
algorithms that we did not consider is model-based clus-
tering [24-26]. Most model-based methods, however, are
designed mainly for gene clustering and may not be relia-
ble for sample clustering because in most cases, the
number of samples is not sufficiently high to fit very high-
dimensional models. For example, EMMIX-GENE [25]
reduces the number of genes when clustering samples,
which suffers from significant information loss, and the
class prediction is highly affected by the genes chosen.

We predict the number of classes in a data set as well as the
cluster-membership of the data points in each algorithm,
and then assess the agreement between the predicted and
the known partitions using the adjusted Rand index (ARI)
[27,28]. Let P;= {P,,, Ps.,..., P} and P;= {P,}, P,,,..., P, }
be two partitions of a data set D. Let N;, and N.; be the
number of elements in P, and P, respectively and [N;],
be a I x m matrix where Nj; represents the number of ele-
ments in P, N P, then the ARI is computed as follows:

Nij Nie \o (Nej ) /(N
5P
1| « (Nis |« [Nej (Nis ) (Nej ) /(NY
2[21( 2 }21[ 2 H_zl( 2 )27( 2 2
where N is the number of data points, i.e. the sum of [N;].

This index addresses the degree of agreement between two
partitions with possibly different numbers of clusters. ARI
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has a value between 0 and 1, which mean a random
matching and the perfect agreement between the two par-
titions, respectively. The index is said to be 'adjusted’
because its formulation compensates for the fact that,
when there are more than two members of a partition, a
majority of the pairs of data items are in distinct classes.
We applied the gap statistic and Silhouette Width to hier-
archical and k-means algorithms to predict the number of
clusters, and used the inherent indicators for MULTI-K
and GCC, the cut & entropy plot and the modified Rand
index, respectively.

Most existing clustering algorithms are good at finding
compact clusters, but not those interwoven among others.
Combining multiple k-means runs, MULTI-K aims to find
connected components in a data set that are spatially sep-
arated among others. Intuitive examples that characterize
MULTI-K follow.

Comparison for geometrically complicated clusters

We considered three data sets composed of clusters with
geometrically complicated structures and named them
Donut & Ball, Horse Shoe, and Spiral, respectively. Their
shapes and the corresponding cut-plots are shown in Fig-
ure 1. All the three data sets have 1,000 data points.
Although these data sets seem to have little relevance with
gene expression data, they may abstract the geometric
complexity of microarray data sets and clearly reveal the
advantage of MULTI-K algorithm. The test results are
shown in Table 1. The optimal number of clusters by
MULTI-K is determined at the longest interval of the cut-
plot (except k = 1 case), and then the corresponding parti-
tions are naturally derived from Step 2. MULTI-K correctly
predicted the number of clusters and classified the clusters
accurately with ARI value 1 in all the three examples,

Table I: The ARI values for the geometric data sets.
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while the other methods yielded poor predictions. Since
most existing clustering algorithms and indicators for the
optimal number of clusters are focused on compactness of
clusters, they could not identify complicated structures
that focused on connectedness and spatial separation of
clusters as the above examples.

The ability of MULTI-K to trace the complex geometric
structure is reminiscent of the nonlinear dimension
reduction technique, called ISOMAP [29], which uses the
shortest paths between data points to approximate the
geodesic distances between points, and may suggest the
applicability of MULTI-K in nonlinear dimension reduc-
tion problem.

Comparison for high dimensional and noisy clusters

Now, we compare the clustering algorithms on high
dimensional and noisy synthetic data sets that imitate
microarray samples. In the first model, called H2, we con-
sidered two clusters in 100 dimensions. Each cluster is
chosen to have 25 or 50 observations that were independ-
ently drawn from normal distributions N(0,q, I,0) and
N(0.5190, I1¢0), respectively, where , denotes the 1 by p
vector of 's and I, denotes the p by p identity (covariance)
matrix. The two clusters may overlap in each dimension.
In the second model, called H3, we considered three clus-
ters in 300 dimensions (genes). Each cluster had 50 obser-
vations. We divided the 300 genes into ten groups each of
which equally had 30 genes. In each block (a gene group
in a cluster), all the 30 dimensional samples were com-
monly drawn from a normal distribution N( a5, I5,) inde-
pendently where & is randomly chosen from {-0.5, 0, 0.5}
in each block. The block structures represent gene sets
with co-expression patterns that are commonly up or
down regulated under specific experimental conditions.

Data set Donut & Ball (2) Horse-Shoe (2) Spiral (3)
MULTI-K 1.0000 (2) 1.0000 (2) 1.0000 (3)
Cut & Entropy)
GCCc 0.6018 (2) 0(2) 0.0510 (2)
GCCk 0.2553 (6) 0.1219 (5) 0.1487 (6)
Hier. gap 0.2893 (10) 0.2596 (11) 0.2303 (20)
Silhuette 0.4895 (2) 0.3434 (6) 0.1532 (29)
k-means gap 0.1752 (12) 0.3080 (7) 0.2072 (18)
Silhuette 0.7019 (2) 0.3326 (6) 0.1460 (29)

In each parenthesis is shown the known (top header) and the predicted number of clusters. Those ARI values that exceed 0.7 are shown in bold.
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The data sets with complicated clusters: (a) Donut & Ball, (b) Horse Shoe, and (c) Spiral and their cut-plots.

Table 2: Test results for high dimensional synthetic data sets.

Data set H2 H3

MULTI-K (Cut & Entropy)  0.9210 (9/10)  0.8695 (7/10)

GCCk 0.5367 (5/10) 0.7456 (8/10)
GCCc 0.0993 (0/10)  0.7799 (10/10)

Hier. gap 0 (1710) 0.2277 (1/10)
Silhuette 0.0839 (9/10) 0.3444 (4/10)

k-means gap 0.7138 (5/10)  0.8433 (7/10)
Silhuette 0.8445 (9/10) 0.3715 (1/10)

The adjusted Rand indexes are shown averaged over ten randomly
generated data sets. In each parenthesis is shown the number of cases
out of ten that correctly identified the number of clusters. ARI values
that exceed 0.7 are shown in bold.

In each model, we tested the algorithms on randomly gen-
erated ten data sets and averaged the ARI values. The test
results are summarized in Table 2. In both models,
MULTI-K showed the highest accuracy. The GCC methods
yielded rather good predictions for the H3 model, but per-
formed very poorly for the H2 model. Hierarchical meth-
ods performed very poorly for all the cases, which is
mostly attributed to the failure in predicting the correct
number of clusters. k-means algorithm demonstrated the
second best accuracy except for the case of the Silhuette
indicator applied to the H3 model.

Classification tests for real expression data sets

We tested the clustering algorithms on eight microarray
data sets as summarized in Table 3. All the mRNA samples
in each data set are assigned class labels from laboratory
analyses of the tumor samples. These labels establish the
known (gold-standard) partitions on the data points. We
chose 300 genes with higher variances in each data set for
data clustering (or partitioning). For randomized algo-
rithms, MULTI-K, GCC and k-means clustering, we
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Table 3: Description of microarray data sets tested
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Data set Acquisition Description of known subclasses DNA Chip

Leukemia http://www.broadinstitute.org/cgi-bin/ ALL B-cell (38), ALL T-cell (9), AML (25) Affymetrix HuFL
cancer/datasets.cgi

Lymphoma GEO (GSE60) B-CLL (12), FL (9), DLBCL (68) cDNA

Colon tumor
Thyroid tumor |
Thyroid tumor Il
St. Jude

GEO (GSE5206)
GEO (GSE3467)
GEO (GSE3678)
http://www.stjuderesearch.org/data/ALL |

Colon tumor (100), Normal colon (5)
Thyroid tumor (9), Normal thyroid (9)
Thyroid tumor (7), Normal thyroid (7)
BCR-ABL (I5), E2A-PBX]1 (27), Hyperdip-50 (64),

Affymetrix U133 Plus 2.0
Affymetrix U133 Plus 2.0
Affymetrix U133 Plus 2.0
Affymetrix U95A

MLL (20), T-ALL (43), TEL-AMLI (79)

Normal tissue |  GEO (GDS422)

Bone (2), Liver (2), Heart (2), Spleen (2),

Affymetrix U95A

Lung (2), Kidney (2), Skeletal (2), Thymus (2), Brain
(2), Spinal (2), Prostate (2), Pancreas (2)

Normal tissue Il http://www.broadinstitute.org/cgi-bin/

cancer/datasets.cgi

Bladder (7), Breast (5), Cerebellum (3), Colon (I1),
Germinal Center (6), Kidney (12), Lung (7), Ovary (4),

Affymetrix HuFL

Pancreas (10), PBM (5), Prostate (9), Uterus (6),
Whole Brain (5)

repeated running the algorithms five times and used the
median ARI and the corresponding clusters.

Figure 2 shows the cut-plots and the entropy-plots for the
tested data sets demonstrating how entropy-plots can
amend the predictions of cut-plots. Both plots are repre-
sented by monotonically increasing step functions and
share the jumping points. Each jump in the plots repre-
sents separation of a cluster from the former cluster struc-
ture (a partition of data points). If a jump in the entropy-
plot is smaller than a threshold (0.1/increased number of
clusters), we regard the separation of a cluster is negligibly
small and suppress the separation. Accordingly, we merge
the corresponding adjacent intervals in the cut-plot. The
cut-plots shown in Figure 2 are those before such modifi-
cations. After modifying the separation of small clusters,
the final cluster number and memberships are uniquely
determined at the longest cut-plot interval (except k = 1).
This criterion is commonly applied in comparing the per-
formance of MULTI-K with other algorithms. However, in
an explorative study, we recommend investigating the
next long cut-plot intervals and the associated cluster
structures as well.

The test results are summarized in Table 4. The ARI values
in this table represent the agreements between the pre-
dicted and the gold standard partitions. MULTI-K overall
performed best in both predicting the number of clusters
and the accuracy of classification. To our surprise, MULTI-
K perfectly classified five of them. The cut-plot of the
leukemia data [6] (Fig. 2(a)) had intermediately long flat
intervals at two, three, and four clusters. However, at the
second jump, the entropy-plot showed a very small
increase (0.09), which was caused by the separation of a
singleton set. Therefore, we suppressed the partitioning of
the singleton set, which merged the second and third
intervals. This consequently indicated two major sub-

classes, which perfectly matched to the two known leuke-
mia classes, ALL(47) and AML(25). By the third jump in
the cut-plot, the ALL class was again clearly divided into
two known subtypes, ALL-B(38) and ALL-T(9). Although
the modified cut-plot indicated two major subclasses,
MULTI-K was able to unveil further known subtypes
clearly.

We then tested MULTI-K on a randomized data set. We
randomly permuted each gene's profile of the leukemia
data independently. The resulting cut-plot and entropy-
plot are shown in Figure 3, where no meaningful intervals
or jumps are found. This permutation test demonstrates
the existence of cluster structure in the real data.

In analyzing the lymphoma data set [30], the cut-plot had
the longest interval at three clusters (except for the one
cluster interval) (Fig. 2(b)). The first jump caused a major
increase in the entropy value (0.79) and the second jump
a minor increase (0.21), both of which were meaningful
values (>0.1/increased number of clusters). In the first
jump, the 89 samples were clearly divided into two
classes, DLBCL(68) and CLL(12)-FL(9) groups. In the sec-
ond jump, the latter group was again clearly divided into
CLL and FL groups. The split of the small subgroup FL
caused a relatively small increase in the entropy-plot.

While the entropy-plot modified the predictions of the
number of clusters for the leukemia, St. Jude (Fig. 2(f))
[31], and the normal II data sets (Fig. 2(h)) [32], the cut-
plot alone correctly identified the number of classes for
the other data sets. However, the entropy-plot still pro-
vides important information on the impacts of new sub-
divisions in the clusters. For example, the cut-plot of the
thyroid I data [33] had two similarly long intervals at two
and three clusters (even though the former is slightly
longer) (Fig. 2(d)). Between them, however, the entropy-
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Cut and entropy-plots for the eight microarray gene expression data sets: (a) Leukemia, (b) Lymphoma, (c) Colon

cancer, (d) Tyroid |, (e) Tyroid I, (f) St. Jude, (g) Normal |, and (h) Normal Il. Upper figures represent cut-plots and lower fig-
ures, entropy-plots for each data set. Cut-intervals in three cut-plots (a), (f), and (h) were merged as indicated by arrows. The
dotted intervals indicate the finalized numbers of clusters. The negligible entropy jumps were also indicated by vertical arrows

in entropy-plots.

plot indicated much higher impact of the former subdivi-
sion, and hence two major subclasses. Nevertheless, in the
second jump, the cancer class was divided into two sub-
sets with six and three elements so that the latter interval
might indicate cancer subtypes.

The colon data had a large difference in the sizes of the
two classes such that the cancer class had 100 samples
while the normal class had only five samples. Even in such

a case, MULTI-K clearly separated the two classes. The
hierarchical clustering algorithm showed a good perform-
ance but the other methods yielded very poor classifica-
tion rates. The thyroid II data was the most clearly
separated so that MULTI-K and k-means algorithm as well
as the hierarchical-Silhuette methods clearly separated the
classes. However, GCC methods failed to indicate the cor-
rect numbers and hence yielded low classification rates.
On the other hand, for the St. Jude data set, GCC methods
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Table 4: Test results for real expression data sets.
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Data set MULTI-K GCCk GCCc
Leukemia (3) 0.7364 (2) 0.7284 (4) 0.7040 (2)
Lymphoma (3) 1.0000 (3) 03016 (5) 0.9414 (2)

Colon (2) 1.0000 (2) 0.0349 (5) 0.0386 (4)
Thyroid | (2) 1.0000 (2) 02396 (5) 0.1351 (4)
Thyroid I (2) 1.0000 (2) 0.4468 (4) 0.3986 (5)

St. Jude (6) 0.8015 (5) 0.7490 (5) 0.6697 (4)
Normal 1 (12) 1.0000 (12) 1.0000 (12)  0.4964 (I1)
Normal Il (13) 0.7977 (10) 0.7629 (11) 0.2476 (13)

k-means Hier.
gap Sil gap Sil
0.4604 (6) 0.6930 (2) 0.7521 (4) 0.4881 (2)
0.1454 (6) 0.8943 (2) 0.9414 (2) 0.9414 (2)
0.0540 (6) 0.0088 (25) 0.8944 (2) 0.8944 (2)
0.7335 (3) 0.7772 (2) 0.3462 (3) 0.4183 (2)
1.0000 (2) 1.0000 (2) 0.5895 (4) 1.0000 (2)
0.5579 (9) 0.1985 (2) 0.1985 (2) 0.1985 (2)
0.9546 (13) 0.7356 (10) ol 1.0000 (12)
0.7650 (15) 0.6875 (10) 0.1985 (2) 0.6830 (16)

In each parenthesis is shown the known (left header) and the predicted number of clusters. ARI values that exceed 0.7 are shown in bold.

performed the second best, while the usual clustering
methods performed very poorly. The cut-plot of St. Jude
initially indicated six classes but was modified to five after
suppressing the separation of a singleton set, though the
corresponding jump is too small to be recognized in the
entropy graph.

For the last two examples, we chose two data sets with
many classes. The normal I data [34] had twelve classes
sampled from normal human tissues each of which
equally had two samples. The twelve classes in this data
set were relatively clearly separated among others so that
MULTI-K, GCCk, and hierarchical-Silhuette method
clearly identified the known twelve classes, and k-means
also exhibited good classification rates. The normal II data
had thirteen classes, and MULTI-K and GCCk showed
similarly good performances.

Tests for real expression data with fixed known number of
classes

As seen in the leukemia example, the 'known' classes also
had a hierarchical structure so that it is rather controver-
sial to define 'gold standard sub-classes' because they are
merely representing the current level of our knowledge.
Moreover, since most algorithms other than MULTI-K
failed to indicate the correct number of clusters in many
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Figure 3
The cut-plot (left) and entropy-plot (right) for a ran-
domized leukemia data set.

data sets, it is not clear at this point to address the accuracy
of the clustering strategies themselves. In other words, the
tested algorithms could have yielded better performance
combined with other possible indicators for the number
of clusters. For these reasons, we investigate the perform-
ance of the clustering strategies themselves by specifying
the 'known' number of clusters in each algorithm. The test
results are shown in Table 5. In this analysis, most cluster-
ing strategies improved the ARI values for some data sets,
but MULTI-K still was the best method for all the data sets
so that it perfectly classified six data sets. As we have ana-
lyzed for the leukemia data, MULTI-K perfectly classified
the three known sub-classes, while the other methods still
misclassified some samples. The thyroid II data set was
most clearly classified so that all the algorithms identified
the underlying two classes precisely.

The hierarchical method, if not perfect, has been known
to classify the leukemia data quite well [7], but the ARI
value was poor (0.4723) in this test. This was caused by
the separation of a singleton set, and hence we tried four
clusters and assigned the singleton set to the nearest clus-
ter among the other three clusters. This post-processing
yielded a much better classification rate of 0.7680 for the
leukemia data set. This also illustrates why data processing
such as entropy-plot is required. Some other data sets
were also better classified by this process so that the lym-
phoma and normal II data sets had improved ARI values
1.0000 and 0.6653, respectively. However, the modified
hierarchical clustering did not outperform MULTI-K in
any data set.

Analysis of breast cancer data without gold-standard
known subtypes

Breast cancer has been frequently investigated of its sub-
types using gene expression profiles. Different subtypes
predicted from hierarchical clustering of expression pro-
files exhibited different clinical prognoses, which suggests
breast cancer is separable into distinct disease. Sorlie et al.
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Table 5: Test results for known number of classes.

Data set MULTI-K  GCCk GCCc  k-means Hier.
Lymphoma 1.0000 04027 0.9893 0.9207 0.9058
Colon 1.0000 0.0252  0.0342 0.0390 0.8944
Thyroid | 1.0000 0.7772 05815 04138 0.7772
Thyroid Il 1.0000 1.0000 1.0000 1.0000 1.0000
St. Jude 0.8570 0.7490 0.6352 0.7598  0.1958
Normal | 1.0000 1.0000 0.4544 0.8054 1.0000

Normal Il 0.7830 0.7210 0.4590 0.7364 0.4934

ARl values that exceed 0.7 are shown in bold

[35] compiled 122 breast tissue samples as well as ~500
genes intrinsic to the disease to predict five cancer sub-
types. They also extracted five core sample groups that are
most highly correlated in each subgroup. We re-analyzed
the breast cancer data set from Sorlie et al. [35]. Because
the previous subtypes had been inferred over the 'intrin-
sic' genes, we used the core sample groups in each subtype
as the 'silver' standard. Because many kinds of disease are
un-informative of such 'intrinsic genes', it is important to
reproduce the previous result without functional informa-
tion of genes. Therefore, we chose 300 high-variance
genes in a fully unsupervised manner and compared the
performance of the hierarchical clustering and MULTI-K.
To compare with the previous prediction, we chose four
large entropy jumps to partition the data into five clusters.
Four of the previous subtypes largely agreed with the
MULTI-K clusters but two of them (Luminal A and ERBB)
were merged into one cluster with overall ARI = 0.3704.
On the other hand, the hierarchical clustering completely
failed to reproduce the previous subtypes and yielded ARI
= 0.0803 at maximum (when we chose 25 clusters). In
this case, very small clusters were continuously separated
from large one cluster as we lower the tree-cut value of the
hierarchical clustering. See Additional file 2 for related
data.

Detecting outliers in MULTI-K

MULTI-K basically assigns every point to a cluster. How-
ever, outliers in each cluster can be identified by comput-
ing the average distance of each data point to other points
in the cluster. For a cluster C;= {x;, x,,..., x.}, letd; j=1,..,
¢, be the average distance of x; to other points in the clus-
ter, and mean; and std; be their mean and standard devia-
tion. We regard a data point x;as an outlier if |d; - mean,|>
a-std; where « is a positive constant. Using this scheme,
we analyzed the clusters for the St. Jude data set that
showed a relatively low ARI (0.8015) in our test. When we
set o = 2 and 1.5, we identified nine and 22 outliers in
total, respectively. Excluding those data points, we
obtained increased ARI values of 0.8398 and 0.8670,
respectively. This implies class assignment by MULTI-K
can be improved by removing outliers.

http://www.biomedcentral.com/1471-2105/10/260

Overall, MULTI-K exhibited consistently good perform-
ance, while the performance of the other methods varied
much depending on the data set, the clustering algorithm
employed, or the indicator function chosen.

Discussion

Identifying subclasses of diseases using microarray data is
a clinically important and computationally challenging
problem. The basic assumption of the problem is that dis-
tinct subtypes, if any, are separated among others in a
high dimensional sample space, and hence can be identi-
fied through computational methods: Although the dif-
ferences in each dimension may be small, they will
achieve clear separations if accumulated in a very high
dimensional space: The simulation tests for H2 and H3
have been designed in this perspective. Indeed, as shown
in the test examples, the ordinary clustering methods suc-
cessfully identified the known subclasses in some data
sets. To improve the performance, ensemble or re-sam-
pling based clustering techniques have been developed
[16,18,20,21,36]. Ensemble learning techniques have
been widely used in genomic data analysis such as predic-
tion of protein-protein interactions, alpha-membrane
proteins [37], protein fold pattern recognition [38], learn-
ing the structure of genetic networks from time-series
expression data [39] as well as microarray data classifica-
tion [36,40].

In this article, we presented a cluster-number-based
ensemble clustering algorithm, MULTI-K, and suggested
using it for unsupervised classification of microarray sam-
ples. Unlike other widely used clustering methods,
MULTI-K was able to identify clusters with complicated
geometric structures as well as high dimensional and
noisy clusters. It demonstrated outstanding performance
in various simulated and real expression data sets for sub-
type classification. We note that the Gustafson-Kessel (G-
K) clustering algorithm [41] also targets clusters with non-
compact shapes, but G-K method mainly focuses on lin-
ear cluster structures and tends to cause a numerical prob-
lem in computing the eigen-structure of covariance
matrices for high-dimensional data. Moreover, G-K
method itself does not suggest the optimal number of
clusters.

The average linkage hierarchical and k-means clustering
methods are designed to capture compact or relatively
simple clusters. However, the geometric features of the
microarray clusters are hardly characterized because they
reside in a very high dimensional space and are affected by
various sources of noise as well as potential gene interac-
tions. Our tests showed that previous clustering methods
that focused on compact clusters yielded poor predictions
in many data sets. On the other hand, the suggested
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method exhibited significant superiority and perfectly
classified five (or six) real expression data sets out of eight,
while the other methods perfectly classified at most two.
We infer the flexibility of MULTI-K in both geometric
complexity and high-dimensionality enabled the accurate
cclassification of gene expression data.

MULTI-K provides two forms of useful exposition of clus-
ter structure, the cut-plot and the entropy-plot, that
inform the hierarchical structure and the natural number
of clusters. This pair of indicators is much more informa-
tive than other internal indicators most of which suggest
only the number of clusters. As shown in the above exam-
ples, the cut-plot and entropy-plot give a portrait of the
overall cluster organization in a complementary manner,
which provides researchers with a rich source of informa-
tion to decide what the appropriate clusters are. Indeed,
use of this pair of indicators outperformed other widely
used indicators in various tests.

One possible weak point with MULTI-K is the existence of
the free parameter relative to D, the distribution on the
number of clusters. However, the algorithm showed relia-
ble performances with the rule suggested in this study. To
the authors' knowledge, most ensemble learning methods
include free parameters, whose basic principle is that the
ensemble methodologies improve the performance for a
wide range of the free parameters.

An important related topic about sample classification is
the gene selection problem. The performance of clustering
usually varies more or less depending on the gene subsets
chosen. We have commonly used same number of genes
with high variance. One possible method in our ensemble
context is simultaneously randomizing the number of
high variance genes as well as the number of clusters in
constructing the weighted graph. However, this approach
has not facilitated some meaningful improvements in our
experiments (data not shown). Further extensive tests and
investigation on gene selection problem is required.

Conclusion

We found the geometric complexity is most important
feature of clusters for accurate classification of microarray
samples, which has been often overlooked by other clus-
tering methods. MULTI-K exploits the geometric informa-
tion of clusters very well since it applies ensemble
clustering by varying the number of clusters. With its high
performance and simplicity, we expect MULTI-K will
become a useful method to uncover the subtypes of dis-
ease from expression profiles.

Methods
Formal statement of the MULTI-K algorithm

http://www.biomedcentral.com/1471-2105/10/260

Inputs:

1) A set S of N points in R»

2) A number M of clustering runs to perform.
3) A distribution D of numbers of clusters.
Outputs:

1) A category function CAT: S — Z.

2) A cut-plotf,: [0, 1] > Z

Details:

Initialize an N x N matrix W of pair-wise connection
strengths to contain all zeros.

Repeat M times
Select an integer d from D
k-means cluster S with d clusters.
For each {i,j € S x S with i, j in the same cluster.
Increment W [i] [j]
end For
end Repeat

Normalize W [i] [j] by dividing each entry of W [i] [j] by
M

For [ equals 0 to M

Construct graph G with V(G) = S, E(G) pairs of
points for which W [i] [j] >I/M

Compute number of connected components ¢ of G
Add the point (I/M, ¢) to [,

Compute

= (Cil o [Ci
it/ s =- Kil1og, il
Z‘N N

end For
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For x with I/M <x <(I+1)/M, f(x) = f(I/M) and H(x) = H(l/
M)

Build a new graph on S with edges where W [i] [j] >C

Cis chosen such that f=f(c) # 1} {f = f(C) # 1} has the
longest length.

Enumerate the connected components of this graph.

CAT [i] is the number of the connected component
containing i.

Convergence of the MULTI-K algorithm

MULTI-K is a stochastic algorithm and the cut-plot is its ad
hoc outcome. We show here the convergence of the algo-
rithm and cut-plot. Suppose that i, j € S. Let p; be the
probability that i and j will be in the same cluster if we
pick a number of clusters d from the distribution D and
then cluster S using d clusters. Since D is a distribution on
a finite set (more clusters than data items is nonsensical)
and the number of possible outcomes of MULTI-K is also
finite, there is no problem with the existence of p;, which
is a well-defined probability. Let W* be the graph on ver-
tex set S with the edge weight p; between i and j. All the
zero-weight edges are removed. Let f*(x) be the cut-plot
derived from W* as a standard cut-plot is derived from W.
Using the un-normalized version of WJ[i]|j|, we obtain
WIil1

M

MULTI-K creates graph W that are successively better
approximations to W*. Likewise, cut-plot f(x) approxi-
mates to f*(x).

lim,, ,, lim,, .., = p;; - Therefore, as we increase M,
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