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Abstract

Background: Protein-protein interactions (PPls) are challenging but attractive targets of small
molecule drugs for therapeutic interventions of human diseases. In this era of rapid accumulation
of PPI data, there is great need for a methodology that can efficiently select drug target PPIs by
holistically assessing the druggability of PPls. To address this need, we propose here a novel
approach based on a supervised machine-learning method, support vector machine (SVM).

Results: To assess the druggability of the PPls, 69 attributes were selected to cover a wide range
of structural, drug and chemical, and functional information on the PPIs. These attributes were used
as feature vectors in the SYM-based method. Thirty PPls known to be druggable were carefully
selected from previous studies; these were used as positive instances. Our approach was applied
to 1,295 human PPIs with tertiary structures of their protein complexes already solved. The best
SVM model constructed discriminated the already-known target PPIs from others at an accuracy
of 81% (sensitivity, 82%; specificity, 79%) in cross-validation. Among the attributes, the two with
the greatest discriminative power in the best SYM model were the number of interacting proteins
and the number of pathways.

Conclusion: Using the model, we predicted several promising candidates for druggable PPIs, such
as SMADA4/SKI. As more PPl data are accumulated in the near future, our method will have
increased ability to accelerate the discovery of druggable PPlIs.

Background

Interfering with PPIs by small ligands has been regarded
as challenging mainly due to the flatness and large surface
area of protein-protein interfaces [1]. However, targeting
PPls is a highly attractive strategy for therapeutic interven-
tions, because most proteins function in cells by interact-
ing with other proteins. To date, over 30 PPIs have been
intensively studied as targets for PPI-inhibiting small lig-
ands; these include MDM2/TP53, BCL-X, (BCL-2)/BAK,
and IL2/IL2 receptor a. [[1-7] and references therein]. The

interfaces of these drug target PPIs are characterized by a
concave, rather than flat, surface and so-called 'hot spots',
which is a small area within the interface containing a few
amino acids that contribute a large fraction of binding free
energy of the interaction [1]. Some PPI-inhibiting small
ligands have been proven to have high potency in both in
vitro and in vivo assays on models of human diseases such
as cancer [8,9]. These studies strongly support the concept
that the PPIs can become therapeutic targets of small mol-
ecule drugs.
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Since the completion of the human genome sequencing
projects, various in silico methodologies have been pro-
posed to assess the druggability of all human proteins not
yet targeted by drugs and to discover novel drug target
proteins. These methods use the 'omics' data of func-
tional, ligand-related, and physicochemical properties of
the already-known target proteins [10,11].

In contrast, few methodologies to assess the druggability
of PPIs have been proposed. In this era of rapid discovery
of PPIs and rapid accumulation of various types of omics
data, there is both need and opportunity for development
of a methodology that can efficiently select drug target
PPIs by holistic assessment of the druggability of PPlIs
with the omics data. To address this need, we recently pro-
posed an integrative in silico approach for discovering
druggable PPIs by detecting interacting domains, using
Gene Ontology (GO) terms to evaluate similarities in bio-
logical function between the two interacting proteins, and
finding ligand-binding pockets on the protein surface
[12]. Application of our approach to a large body of PPI
data showed its effectiveness for assessing the druggability
of PPIs and selecting promising candidates for druggable
PPIs [12].

To further develop our methodology, we introduced a
supervised machine-learning method, SVM, to our inte-
grative approach. Supervised machine-learning methods
have been frequently applied to predict the druggability of
single drug target proteins [13-17]. In these studies, single
proteins targeted by drugs approved by the Food and Drug
Administration (FDA) were used as positive instances in
the supervised machine-learning. Physicochemical/struc-
tural properties [15,16] or functional/ligand-related prop-
erties [13,14,17] of these proteins were learned by a
machine to produce a learning model suitable for distin-
guishing single target proteins from other proteins. The
model was then applied to all human proteins to predict
novel drug targets. These studies have predicted poten-
tially druggable single target proteins with high or moder-
ate accuracies, thus establishing the usefulness of the
methods. Here, we apply an SVM-based method to predict
novel drug target PPIs. Because the machine-learning-
based studies described above strongly suggested the util-
ity of both physicochemical/structural properties and
functional/drug-related properties for predicting the drug-
gability of single proteins, we incorporated both types of
properties in our SVM methodology.

Results

Our approach to assess the druggability of PPIs and pre-
dict novel druggable PPIs is schematically represented in
Figure 1. To focus on PPIs that may have relevance to
human diseases, we assessed only PPIs between human
proteins in this study.

http://www.biomedcentral.com/1471-2105/10/263

PPI instances

Unlike the previous studies for the prediction of drugga-
ble single proteins, our study could not define the PPIs
targeted by the FDA-approved drugs as 'druggable' and
use them as positive instances in the development of SVM
model, because of the scarcity of PPIl-inhibiting drugs
approved by the FDA. Instead, we adopted PPIs as the pos-
itive instances when they satisfy both the following crite-
ria. First, a PPI-inhibiting ligand had been identified and
validated by in vitro and/or in vivo assays that used the two
specific partner proteins of the target PPI. Second, a bind-
ing pocket for the PPI-inhibiting small ligand was already
identified, and it overlaps with the protein-protein inter-
face. The PPI was discarded if small ligands were reported
to inhibit the PPI via allosteric effects. Such PPIs were
carefully selected from review articles focusing on drugga-
ble PPIs [1-7].

Thirty PPIs were selected satisfying the criteria described
above (Table 1 and Additional file 1: Table S1). Twelve of
these PPIs have tertiary structures of protein/ligand com-
plexes in the PDB database [18]; we used the structures to
detect ligand-binding pockets. The remaining PPIs did not
have tertiary structures of protein/ligand complexes
solved, but their model structures were virtually con-
structed in the original papers. For these PPIs, we used the
structures of protein/protein complexes to detect ligand-
binding pockets (see Methods). Forty-one PDB entries (67
polypeptide chains and 5 chain pairs) were used to detect
ligand-binding pockets. For any PPI that had more than
one similar tertiary structure, all of the structures were
considered. As a consequence, 98 instances were used as
the positive instances (Additional file 2).

To obtain test set for the SVM-based method, we retrieved
28,077 human PPIs from the Entrez Gene database [19].
Because our method takes physicochemical/structural
properties of protein/protein complexes into considera-
tion, we limited the test set to human PPIs with tertiary
structures of their protein complexes already solved.
Among the 28,077 PPIs, 1,324 had their tertiary struc-
tures, or tertiary structures of similar protein/protein com-
plexes, in the PDB database. Twenty-nine PPIs in the
positives were removed (one of the 30 positive set PPIs
had no tertiary structure of the protein/protein complex in
PDB), and the remaining 1,295 PPIs were considered in
this study. These 1,295 PPIs had 6,656 non-redundant
PDB entries (8,750 polypeptide chain pairs) showing
amino acid sequence similarity of >80% to the protein
complexes. For any PPI that had more than one similar
tertiary structure, all of the structures were considered. As
a consequence, we used 10,915 instances as the test
instances in the following studies (Additional file 3). In
addition, randomly chosen subsets of the test instances
were used as negative instances in training data.
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Figure |
Schematic representation of the SVM-based method for
see text.

assessment of the druggability of PPIs. For the details,

Selection of the best SYVM model

For each instance, we calculated 69 attributes encompass-
ing structural, drug and chemical, and functional informa-
tion (Table 2; see Additional file 4: Supplementary
Methods for the definitions and calculation methods for
the attributes) and used them as feature vectors in the
SVM-based method. Attributes of all instances calculated
can be obtained from Additional files 2 and 3.

We first developed multiple SVM models and used cross-
validation to test which model was most suitable for
assessing the druggability of PPIs. The cross-validation
tests were conducted with the four kernel functions (lin-
ear, polynomial, radial basis function (RBF), and sig-
moid) for three types of training data (ratios of positive

instances:negative instances 1:1, 1:2, and 1:3). We created
10,000 random training data sets (composed of randomly
chosen positives and randomly chosen negatives) and cal-
culated average values of accuracy, sensitivity, and specif-
icity (see Methods).

With all three types of the training data, the highest accu-
racies and highest specificities were obtained from SVM
models with the RBF kernel (Table 3). The models with
the linear or polynomial kernel followed those with the
RBF kernel, showing similar but slightly lower accuracies,
and those with the sigmoid kernel had the lowest. When
sensitivities were compared, the highest values with the
training data ratio of 1:1 (positives:negatives) were
obtained by the SVM models with the RBF kernel, and the

Page 3 of 13

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:263

Table I: Positive set PPIs for the SVM-based method. 2

PPI PPI
Protein | Protein 2 Protein | Protein 2
ARF| CYTHI b GRB2 EGFR
ARFI CYTHI b GRB2 MET
ARF| CYTH2 ¢ HOXBI PBXI
ARF| CYTH2 ¢ ILIB ILIRI
BCL2 BAK L2 IL2RA
BCL2LI BAK | MAGI3 PTEN
BIRC4 CASP3 MDM2 TP53
BIRC4 CASP9 PIK3RI PDGFRB
BIRC4 DIABLO RACI TIAMI
BIRC5S BIRC5S RACI TRIO
CALMI CAMKI STAT3 STAT3
CALMI MYLK TCF7LI CTNNBI
CALMI PDEIA TCF7L2 CTNNBI
CD4 HLA-DQBI THRB NCOA2
ESRI NCOA2 TNF TNF
FKBPIA TGFBRI ZAP70 CD247

aFor details, see Additional file I: Table S1.
b <The ligand-binding pockets considered are different from each
other.

highest sensitivities with ratios of 1:2 and 1:3 were
obtained by the models with the linear kernel. Therefore,
on the whole, the models with the RBF kernel seemed to
be more suitable for discriminating between the positive
and negative instances used here. Receiver operating char-
acteristic (ROC) curves by the SVM models supported this
result. Figure 2 clearly shows that area under the curve
(AUC) for the ROC curves was the largest for the model
with the RBF kernel followed by the polynomial and lin-
ear kernels.

Table 3 also shows that the more negative instances were
included in the training data, the higher the accuracies
obtained were in the cross-validation. However, sensitivi-
ties and specificities were unbalanced in the training data
of 1:2 and 1:3 positives:negatives ratio. While specificities
gradually increased in all kernels with the inclusion of
more negative instances, sensitivities drastically
decreased. This indicates that when a SVM model is
trained with more negative instances in the training data,
the model has higher power to correctly judge a novel neg-
ative instance to be negative, but the power to judge a
novel positive instance to be positive rapidly decreases.
Sensitivities and specificities of the SVM model with the
RBF kernel using the training data of 1:1 positives:nega-
tives ratio were balanced with each other, suggesting that
this model had the best combined discriminative power
for both the positive and negative instances. Thus, we
adopted it as the SVM model most suitable for the assess-
ment of the druggability of the PPIs and used it in the fol-
lowing studies.

http://www.biomedcentral.com/1471-2105/10/263

Discriminative power of the attributes

To what degree does each attribute contribute to the dis-
crimination between the positive and negative instances
in the best model? To evaluate discriminative power of
each attribute, we calculated the feature score (F-score)
[16,20] of each PPI attribute. A larger F-score indicates
that the attribute is more likely to be discriminative [16].
F-scores were calculated for all 10,000 random training
data sets. Averages and standard deviations for the
attributes were plotted in Figure 3.

Interestingly, the degrees of discriminative power consid-
erably differed among the three types of attributes. In gen-
eral, although the structural and the drug and chemical
attributes had low to medium F-scores (Figures 3A and
3B), the functional attributes had higher F-scores (Figure
3C). Seven of the top 10 highest F-scores (in descending
order, attribute no. 46, 48, 67, 52, 69, 39, 36, 40, 68, and
50) were functional attributes (Additional file 1: Table
S2). This implies that information on biological function
could be the most discriminative for selecting PPIs as drug
targets.

Another remarkable point is that, among all attributes, the
most discriminative was attribute no. 46 (number of
interacting proteins (L)), followed by no. 48 (number of
pathways in which either protein is involved (L)), both
functional attributes (Figure 3C, Table S2). Frequency dis-
tributions of these two attributes indicate that, on average,
the already-known target PPIs had at least one of the two
proteins with larger numbers of interacting proteins and
with larger numbers of pathways in which the protein is
involved than did other PPIs (Figure 4). PPIs, for which at
least one partner protein interacts with many additional
proteins in the PPI network and exerts versatile functions
in multiple pathways, may be suitable as drug targets (see
Discussion).

The structural attributes with the highest F-scores were
those related to frequencies of certain amino acids (phe-
nylalanine (no. 13), isoleucine (no. 16), leucine (no. 18),
valine (no. 26), and proline (no. 21)) (Figure 3A). The
drug and chemical attributes with the highest F-scores
were no. 36 (number of experimental drugs (S)), 39
(number of nutraceutical drugs (L)), and 40 (number of
nutraceutical drugs (S)).

To evaluate whether selection of the attributes according
to their F-scores can influence the discriminative power of
the best SVM model, we performed cross-validation using
the 10 attributes with the highest F-scores (Table 3). The
training data with 1:1 positives:negatives ratio was used
for the test. Table 3 shows that accuracies, sensitivities,
and specificities were all nearly the same as those from
using all attributes with 1:1 positives:negatives ratio. This
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Table 2: Attributes of the PPIs used in the SVM-based method. 2
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No. Attribute
Structural information
| Pocket volume
2 Accessible surface area of pocket
3 Percentage of accessible surface area of pocket to that of total surface of protein
4 Pocket compactness
5 Pocket planarity
6 d,+d,
7 Pocket narrowness
8 d +ds
9 Ratio of Ala frequency on pocket surface to that on total surface b
10 Ratio of Cys frequency on pocket surface to that on total surface b
I Ratio of Asp frequency on pocket surface to that on total surface b
12 Ratio of Glu frequency on pocket surface to that on total surface b
13 Ratio of Phe frequency on pocket surface to that on total surface b
14 Ratio of Gly frequency on pocket surface to that on total surface ®
15 Ratio of His frequency on pocket surface to that on total surface b
16 Ratio of lle frequency on pocket surface to that on total surface b
17 Ratio of Lys frequency on pocket surface to that on total surface ®
18 Ratio of Leu frequency on pocket surface to that on total surface b
19 Ratio of Met frequency on pocket surface to that on total surface b
20 Ratio of Asn frequency on pocket surface to that on total surface b
21 Ratio of Pro frequency on pocket surface to that on total surface b
22 Ratio of GIn frequency on pocket surface to that on total surface b
23 Ratio of Arg frequency on pocket surface to that on total surface b
24 Ratio of Ser frequency on pocket surface to that on total surface b
25 Ratio of Thr frequency on pocket surface to that on total surface b
26 Ratio of Val frequency on pocket surface to that on total surface b
27 Ratio of Trp frequency on pocket surface to that on total surface ®
28 Ratio of Tyr frequency on pocket surface to that on total surface b
Drug and chemical information
29 Number of small chemical drugs (L) 4
30 Number of small chemical drugs (S) ¢
31 Number of biotech drugs (L) 9
32 Number of biotech drugs (S) ¢
33 Number of approved drugs (L) d
34 Number of approved drugs (S) ©
35 Number of experimental drugs (L) 9
36 Number of experimental drugs (S) ¢
37 Number of investigational drugs (L) d
38 Number of investigational drugs (S) ¢
39 Number of nutraceutical drugs (L) 9
40 Number of nutraceutical drugs (S) ¢
41 Number of withdrawn drugs (L) ¢
42 Number of withdrawn drugs (S) ©
43 Number of illicit drugs (L) d
44 Number of illicit drugs (S) ¢
Functional information
45 Both proteins are related to OMIM-registered diseases () or not (0)
46 Number of interacting proteins (L) d
47 Number of interacting proteins (S) ¢
48 Number of biological pathways in which either protein is involved (L) d
49 Number of biological pathways in which either protein is involved (S) ¢
50 Number of biological pathways in which both interacting proteins are involved
51 Identity scores of the GO terms in the Cellular Component category
52 Identity scores of the GO terms in the Molecular Function category
53 Identity scores of the GO terms in the Biological Process category
54 Number of paralogs in the KEGG (L) 9
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Table 2: Attributes of the PPIs used in the SVM-based method. 2 (Continued)

55 Number of paralogs in the KEGG (S) ©

56 Number of paralogs in the PIRSF (L) d

57 Number of paralogs in the PIRSF (S) ¢

58 Number of gene-expressing health states (L) 4

59 Number of gene-expressing health states (S) ©

60 Number of health states in which both genes are expressed

6l Number of gene-expressing body sites (L) 4

62 Number of gene-expressing body sites (S) ¢

63 Number of body sites in which both genes are expressed

64 Number of gene-expressing developmental stages (L) 9

65 Number of gene-expressing developmental stages (S) ¢

66 Number of developmental stages in which both genes are expressed

67 Similarity scores of gene expression profiles in the Health State category
68 Similarity scores of gene expression profiles in the Body Sites category
69 Similarity scores of gene expression profiles in the Developmental Stage category

aFor details of the definitions and calculation methods, see Additional file 4: Supplementary Methods.
bAbbreviations: Ala, alanine; Cys, cysteine; Asp, aspartic acid; Glu, glutamic acid; Phe, phenylalanine; Gly, glycine; His, histidine; lle, isoleucine; Lys,
lysine; Leu, leucine; Met, methionine; Asn, asparagine; Pro, proline; GIn, glutamine; Arg, arginine; Ser, serine; Thr, threonine; Val, valine; Trp,

tryptophan; Tyr, tyrosine.

dDefined as the larger one of the two numbers for the two interacting proteins in a PPI.
¢Defined as the smaller one of the two numbers for the two interacting proteins in a PPI.

indicates that limiting the attributes to the top 10 by F-
score had a limited influence on the discrimination
between the positives and negatives, and the SVM model
based on the top 10 attributes had a discriminative power
not inferior to that based on all attributes. Therefore, we
determined to use two types of attribute combinations, all
69 attributes and the top 10 attributes by F-score, to assess
the druggability and predict novel druggable PPIs in the
next section.

Table 3: Summary of the results of the cross-validation tests.

Prediction of novel druggable PPls

To predict novel druggable PPIs, the SVM models trained
by each of the 10,000 random training data sets were
applied to the positive and test instances. We counted the
number of times an instance was judged to be positive in
the 10,000 training-prediction reiterations. This number
is called 'druggability score' hereafter.

Frequency distributions of the druggability scores by the
SVM models indicate that the positive and test instances

Kernel function

Positives:negatives

All attributes

Top 10 attributes by F-score

I:1 1:2 1:3 I:1
Linear Accuracy 72.05 * 6.40 75.37 £ 4.75 79.22 £ 3.78 7491 £ 5.96
Sensitivity 71.54 £ 8.97 65.73 +7.80 60.21 + 848 75.34 £ 8.19
Specificity 72.56 + 831 80.19 + 4.96 85.56 + 3.96 7447 £ 8.14
Polynomial Accuracy 70.86 + 8.83 76.18 + 6.06 81.18 £3.98 71.74+£7.73
Sensitivity 79.85 £ 9.15 53.35+28.74 52.38 +£ 25.58 83.29 + 10.58
Specificity 61.87 + 18.47 87.60 + 8.0l 90.78 + 5.49 60.19 +20.23
Radial basis function Accuracy 80.50 + 4.33 8343 +3.22 86.37 £ 2.36 81.53 £4.36
Sensitivity 81.61 +5.84 65.18 + 9.37 58.67 + 10.09 82.76 * 6.09
Specificity 7940 * 6.64 92.55 + 3.6l 95.61 +2.46 80.29 + 6.51
Sigmoid Accuracy 63.79 + 10.87 69.68 = 7.73 73.30 £ 6.97 63.32 £ 14.62
Sensitivity 62.62 + 16.32 31.69 +23.08 23.51 £ 19.63 61.37 + 18.06
Specificity 64.96 + 16.95 88.67 + 10.62 89.90 + 8.93 65.27 + 17.23
Numbers shown are average percentage * standard deviation.
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Figure 2

ROC curves of the training data with the SVM model
using all 69 PPI attributes (1:] positives:negatives
ratio). ROC curves with the linear (orange), polynomial
(magenta), RBF (green), and sigmoid (blue) kernels were cal-
culated for the 10,000 random training data sets, and average
values of true positive rate at each false positive rate are
plotted. AUCs + standard deviations of the ROC curves with
the linear, polynomial, RBF, and sigmoid kernels are 0.76 *
0.09, 0.67 £ 0.20, 0.78 + 0.13, and 0.64 + 0.17, respectively.

were well separated by the models (Figure 5). Among the
10,915 test instances, 69 instances (42 PPIs) had the drug-
gability scores of >9,000 by the SVM models using all
attributes and >6,500 by the SVM models using the top 10
attributes (Table 4 and Additional file 1: Table S3). The
thresholds of 9,000 and 6,500 were arbitrarily set based
on averages of the frequency distributions of the positive
instances. The complete prediction results are shown in
Additional file 5.

The PPIs predicted to be potentially druggable are highly
varied with respect to their biological function and cellu-
lar location: membrane receptor/signaling adapter
(CD247/SHC1) and calmodulin/ion channel (CALM1/
KCNN2 and CALMI1/RYR1) located on membrane,
GTPases/their regulators (CDC42/ARHGDIA, HRAS/RAL-
GDS, etc) and kinase/its regulator (GSK3B/AXIN1) in
cytoplasm, and histone acetyltransferases/transcriptional
regulators (CREBBP/HIF1A, CREBBP/IRF3, EP300/
HIF1A, etc) and transcription factors/their regulators
(MAX/MYC, S100B/TP53, TP53/TP53BP1, etc) in the
nucleus (Table 4 and Additional file 1: Table S3). Among
the PPIs listed, in approximately, neither interacting pro-
tein was included in the positives, while in the remaining
half, one of the interacting proteins was included in the
positives. Therefore, the SVM models used here are not
over-trained by the positives and have a predictive power

http://www.biomedcentral.com/1471-2105/10/263
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F-scores of the (A) structural, (B) drug and chemical,
and (C) functional attributes. Average values (black
squares) and standard deviations (vertical lines passing
through the squares) are shown. For descriptions of the
attributes, see Table 2.

adequate to discover novel druggable PPIs. Interestingly,
for some of the PPIs predicted to be druggable, such as
MYC/MAX and EP300/HIF1A, small ligands inhibiting
the PPIs have been already discovered [3,6], but they were
not included in the positives because tertiary structures of
the protein/ligand complexes had not yet been solved.
This result strongly suggests that our approach is very
effective in predicting druggable PPIs.

Discussion

Comparison with other studies

In this study, we applied a supervised machine-learning
method, SVM, to assess the druggability of human PPIs.
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Frequency distributions of (A) the number of inter-
acting proteins (L) (attribute no. 46) and (B) the
number of pathways in which either protein is
involved (L) (attribute no. 48). For both attributes, the
difference between the frequency distributions of the posi-
tive and test instances is statistically significant (P < 10-!5) by
the two-sample Kolmogorov-Smirnov test.

Because of lack of information on what attributes are most
responsible for PPI druggability, our approach adopted
PPI attributes representing various types of information
on the structures of the PPIs and their constituent pro-
teins, drugs/chemicals related to the PPIs, and biological
function. The best SVM model constructed here can dis-
tinguish the already-known target PPIs (positive
instances) from others (test instances) with an accuracy of
81%. This value is comparable to the accuracies (75-
85%) obtained in the previous studies on the druggabili-
ties of single proteins [13-17]. The accuracies obtained
here imply that the set of attributes adopted have a dis-
criminative and predictive power not inferior to the
attribute sets used in the previous studies.

In our previous study, we have proposed an integrative
method for discovering druggable PPIs by using only the
three attributes; the presence/absence of interacting
domains, the identity scores of GO terms, and the pres-
ence/absence of ligand-binding pocket(s) on the surface
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Figure 5

Frequency distributions of the druggability scores
(the number of times an instance was judged to be
positive) by the SVM models using (A) all attributes
and (B) the top 10 attributes by F-score.

of either of the two interacting proteins (not limited to
PPI interface) [12]. We applied this method to our origi-
nal PPI data obtained from the high-throughput yeast
two-hybrid experiments [12]. The SVM-based method
proposed here was not applied to the PPI data set used in
our previous study, because most of these PPIs had no ter-
tiary structure of protein/protein complex satisfying the
threshold of sequence similarities of =80%. Several PPIs,
similar to the 6 PPIs (RXRA/NRIP1, PPARA/RXRA, RXRB/
PPARD, STAT1/STAT6, CDK2/CDKN1A, and STAT3/DST)
considered as potentially-druggable in [12], were
included in the PPI data set used here. Some PPIs showed
moderate or high druggability scores. For example, RXRA/
NCOA1, RXRA/PPARBP, and RXRA/NCOA2 similar to
RXRA/NRIP1 had the druggability scores of 4,618~9,155
by the SVM model using all attributes (Additional file 5).
The druggability scores of PPARG/RXRA, similar to
PPARA/RXRA and RXRB/PPARD, were 4,428~6,227. In
contrast, other PPIs showed low druggability scores. These
are CDK2/CDKNI1B (2,769; similar to CDK2/CDKN1A)
and STAT1/STAT1 (839; similar to STAT1/STAT6). Among
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Table 4: Potentially-druggable PPIs predicted by the SVM-based

method. 2
PPI PPI

Protein | Protein 2 Protein | Protein 2
APC CTNNBI CTNNBI CTNNBIPI
ARHGAPI CDC42 E2F2 RBI
ARHGDIA CDC42 EGFR ERRFII
ARHGDIA RACI EP300 CITED2
ARHGDIA RAC2 EP300 HIFIA
BCL2LI BECNI EP300 MYB
BCL9 CTNNBI GSK3B AXINI
CALMI KCNN2 HRAS RALGDS
CALMI RYRI HRAS RASAI
CALM2 MARCKS MAX MYC
CD247 SHCI NCF2 RACI
CDC42 ITSNI NFKBI TXN
CDC42 MCF2L NFKBIB RELA
CDC42 WAS RACI ARFIP2
CDHI CTNNBI RAFI RAPIA
CREBBP CITED2 RPAI TP53
CREBBP HIFTA S100B TP53
CREBBP IRF3 SMAD2 ZFYVE9
CREBBP MYB SMAD4 SKI
CTNNAI JUP TP53 TP53BPI
CTNNBI BTRC TP53 TP53BP2

aFor details, see Additional file |: Table S3. PPIs were listed if an
instance of the PPls had the druggability scores of >9,000 by the SVM
model using all attributes and >6,500 by the model using the top 10
attributes by F-score.

the attributes used in [12], only the identity score of GO
terms in the Molecular Function category has high F-score,
and the numbers of interacting proteins and pathways
showing highest F-scores were not used in the previous
study. The disagreement between the results in [12] and in
the present study may be ascribed to the PPI attributes not
used in [12]. To realize consistent assessment of the drug-
gability, it will be needed to discover an attribute or a
combination of attributes that are most ideal for the
assessment.

Contribution of the attributes to the discrimination

Based on the F-scores calculated, the most discriminative
attributes by which a PPI is judged to be positive are the
number of interacting proteins and the number of path-
ways (for the larger one of the two numbers for the two
interacting proteins in a PPI). This is partially in agree-
ment with the results in [17,21,22], which showed that
drug target proteins are 'more highly connected in PPI net-
works and biological pathways (but far from being the
most highly connected)'. One possible explanation is that
these characteristics are simply a result of the intensive
study that proteins or PPIs have received in the course of
development of drugs targeting them. Intensively studied
proteins and PPIs may have more interacting proteins and
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be involved in more pathways discovered than do pro-
teins and PPIs that have received less study. However, we
favor the hypothesis that large numbers of interacting pro-
teins and pathways are characteristics intrinsic to good
drug targets. From studies on the topology of scale-free
networks, including PPI networks and biological path-
ways, it is well known that disrupting highly-connected
nodes is most detrimental to those networks [23,24].
Highly-connected proteins therefore make good targets
for the purpose of repressing biological pathways related
to disease. Thus, the PPIs selected as targets tend to be
those that have versatile biological functions via addi-
tional interactions with various other proteins and partic-
ipation in various pathways in the cell.

Other top 10 attributes by F-score include the similarity
scores of gene expression profiles, the identity score of GO
terms, and the numbers of drugs in some drug categories
(Table S2). Frequency distributions of these attributes
show that the positive instances tend to have lower simi-
larity scores of gene expression profiles in the three Uni-
Gene categories, lower identity scores of GO terms in the
Molecular Function category, and the smaller numbers of
nutraceutical and experimental drugs (data not shown).
Lower similarity scores and identity scores of the positive
instances should be due to higher frequency of het-
erodimers in the positives. As shown in Table 1, most of
the already-known target PPIs are heterodimers. In con-
trast, the test instances contain the large number of
homodimers (53.9%; 5,880/10,915 instances). It is natu-
ral that homodimers tend to have higher similarity scores
of gene expression profiles and higher identity scores of
GO terms than do heterodimers, because gene expression
profiles and GO terms are perfectly identical between the
same proteins. This result implies that heterodimers have
been more preferred as drug targets. As for the smaller
numbers of nutraceutical and experimental drugs, this
might simply reflect the fact that the interacting proteins
of the already-known target PPIs have not been targeted
for these drugs so far.

Unexpectedly, the contribution of most structural
attributes to the discrimination between the positive and
negative instances is smaller than that of the functional
attributes and drug and chemical ones. There is no struc-
tural attribute in the top 10 by F-score. Because tertiary
structures of target proteins are essential to computation-
ally design small molecule drugs based on the structures,
this result seems to be not compatible with intuition of
researchers studying in silico drug design. The contribution
of structural information may be hidden by the large con-
tribution of the functional attributes such as the numbers
of interacting proteins and pathways. Among the struc-
tural attributes, however, those related to frequencies of
hydrophobic amino acids (phenylalanine, isoleucine, leu-
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cine, and valine) show relatively higher F-scores. Fre-
quency distributions of the attributes indicate that the
frequency ratios of these hydrophobic amino acids in the
surface of the ligand-binding pockets tend to be higher in
the already-known target PPIs than in the non-target PPIs
(data not shown). This implies that, when the two groups
of the pockets are compared with each other, hydropho-
bic amino acids more preferentially occur on the surfaces
of the former pockets than the latter. This is in good agree-
ment with the results in previous studies [25,26] suggest-
ing that druggable pockets are generally composed of
hydrophobic amino acids. It is likely that the interfaces
composed of more hydrophobic amino acids than other
types of amino acids are particularly amenable targets for
PPI-inhibiting small chemicals.

Comparison between the two SVM models

To predict novel druggable PPIs, we used two types of
attribute combinations, all 69 attributes and the top 10
attributes by F-score, having nearly the same degree of dis-
criminative power with respect to accuracies, sensitivities,
and specificities. This seems to be redundant on the sur-
face, but the SVM models using the two combination
types yield prediction results different from each other. As
shown in Figure 5, the SVM model using all attributes sep-
arates the positive instances from the test instances better
than the model using the top 10 attributes does. In addi-
tion, there is low correlation (correlation coefficient 0.57)
between the druggability scores by the SVM model using
all attributes and the scores by the model using the top 10
attributes. The number of test instances is 163 that have
the druggability scores of 29,000 by the former model but
<6,500 by the latter model. On the one hand, 145 test
instances have the druggability scores of <9,000 by the
former model but >6,500 by the latter model. These
results imply that using both models to predict druggable
PPIs is necessary not to miss PPIs for which one model
predicts to be druggable but other model does not.

Prospects of our approach

Finally, to validate that our approach is really useful for in
silico drug design, we performed a pharmacophore analy-
sis to one of the PPIs predicted as potentially-druggable by
our method (Table 4). By searching small ligands that
have chemical structure similar to the hot spots of the pro-
tein-protein interface, one could find candidate ligands
that might interfere with the PPI [27]. As an example, we
focused on the SMAD4/SKI PPI [PDB:1MR1_BC] (Addi-
tional file 6: Figure S3). This PPI had the druggability
scores of 9,526 and 6,899 by the SVM models using all
attributes and the top 10 attributes, respectively (Addi-
tional file 1: Table S3). To our knowledge, no small ligand
that inhibits this PPI has yet been reported. In in silico drug
design, pharmacophore analysis has been frequently used
as the first step to search candidates for drug seeds, when
no small ligand to a drug target was known. Using a phar-
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macophore model of the hot spots of the SMAD4/SKI
interface (Figure S3D), we searched for small ligands
against a subset of drug-like chemicals in the ZINC data-
base [28]. We found 9 small chemicals showing similari-
ties to the hot spots (Additional file 1: Table S4). SKI is an
oncoprotein that is frequently overexpressed in some
types of cancer such as melanoma [29,30]. It functions as
a suppressor of the TGFJ signaling pathway via interfer-
ence with interactions between SMAD family proteins
that act as TGFB-signal mediators [31]. By suppressing the
TGFp signaling pathway, SKI protein could play an essen-
tial role in preventing a cancer cell from differentiating to
a defined cell type. If the small chemicals and their deriv-
atives found here have the potential to inhibit SMAD4/
SKI interaction by binding to the interface pocket located
on SKI, these chemicals may serve as drug seeds for the
development of anticancer drugs inhibiting the PPI. As
the next step, experimental assays will be needed to vali-
date the potential of these chemicals to inhibit SMAD4/
SKI.

Although, in this study, we concentrated on PPIs between
human proteins, PPIs of human proteins with parasite,
bacterial, or viral proteins and those among the latter pro-
teins may also be crucial drug targets. Indeed, many such
PPIs, including Nef/Fyn, FtsZ/ZipA, CD4/HIV-gp120,
HPV E1/E2, and CRM1/NES, have been intensively stud-
ied as drug targets [1-7]. Because several attributes used
here cannot be directly applied to PPIs involving patho-
gen proteins, we did not study these PPIs. However, intro-
ducing attributes suited to PPIs involving pathogen
proteins can make our approach fully applicable to these
PPIs.

Conclusion

The size of human interactome has been predicted as
approximately 150,000-370,000 PPIs [32]. In contrast,
the number of human PPIs in a public database is limited
to only about ~40,000 [33]. It is highly probable that PPIs
yet to be detected include many druggable PPIs. The
approach proposed here will accelerate discovery of the
promising candidates for druggable PPIs. A limitation of
the approach is that it requires tertiary structures of the
protein complexes. The number of the human PPIs with
tertiary structures of their protein complexes already
solved is only about 1,300. With the accumulation of
additional tertiary structures of the protein complexes and
the advancement of computer technologies to simulate
protein-protein docking, our approach will have
increased ability to find novel druggable PPIs.

Methods

Positive instances

For the 30 PPIs selected from review articles on druggable
PPIs (see Results), we investigated whether tertiary struc-
ture of a protein/ligand complex had been already solved
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or model structure of a protein/ligand complex had been
constructed and represented in the original papers. If a ter-
tiary structure of a protein/ligand complex had been
already solved, we detected the ligand-binding pocket by
the computational program Alpha Site Finder imple-
mented in the software package Molecular Operating
Environment [34]. If the tertiary structure of the protein/
ligand complex had not been solved but that of the pro-
tein/protein complex had been solved, we detected the
ligand-binding pocket based on the tertiary structure of
the protein/protein complex. Then, we carefully checked
by visual inspection whether the pocket detected was
located at nearly the same position as described in the
protein/ligand model structure in the original paper. The
pocket detection was done for all polypeptide chains of
the protein/ligand or protein/protein complexes. If any
ligand-binding pocket was not found on a polypeptide
chain, then the chain was discarded. When one large lig-
and-binding pocket was detected as two or more small
pockets, the two pockets were merged if 50% or more
amino acid residues constituting one pocket were shared
with those constituting another pocket. When a ligand-
binding pocket described in the original paper was identi-
fied as two distinct, non-overlapping pockets, both pock-
ets were considered separately as 'pocket 1' and 'pocket 2'
(see Additional file 2). Coordinate data of the ligand-
binding pockets are shown in Additional file 7. For these
pockets, the attributes of structural information were cal-
culated as described in Additional file 4: Supplementary
Methods, which also describes the calculation methods of
the attributes of the drug and chemical and the functional
information.

Test instances

Human PPI data were downloaded from the Entrez Gene
database. To retrieve PPIs with tertiary structures of their
protein complexes already solved, we performed
sequence-similarity searches of the PDB database using
the BLASTP program [35] with the default program
parameters except for '-F F' (no mask for low complexity
regions). If both the two interacting proteins of a PPI
showed amino acid sequence similarities of >80% to dis-
tinct polypeptide chains in the same PDB entry and the
two chains physically contact with each other in the terti-
ary structure of the protein/protein complex, the PPI and
the protein/protein complex was included in the test
instances. Protein/protein complexes used are not limited
to human proteins when those complexes satisfy the crite-
rion above, because, even if those complexes are not from
human, it is highly probable that tertiary structures of
those complexes have nearly identical to the tertiary struc-
tures of the complexes of human proteins. After all pock-
ets were detected for all polypeptide chains in a PDB
entry, only one pocket per every polypeptide chain pairs,
having the largest area overlapped with protein-protein
interface, was considered in the present study.
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Cross-validation tests

Ten-fold cross-validation tests were performed using the
program package Libsvm (version 2.86) [20]. For training
data, we created 10,000 random data sets composed of
randomly chosen positive instances and randomly chosen
negative instances. To avoid over-training of the SVM due
to the redundancy of similar instances in the positives,
only one instance for each PPI in the positive set was ran-
domly chosen and included as positive instance in the
training data. When the randomly chosen positive
instance was the only instance representing a PPI (9PPIs
(CALM1/PDE1A, CD4/HLA-DQB1, HOXB1/PBX1, IL1B/
IL1R1, MAGI3/PTEN, PIK3R1/PDGFRB, RACI1/TRIO,
STAT3/STAT3, THRB/NCOA2); see Additional file 2), that
instance was always included in the training data. If a pos-
itive instance was one of several instances representing a
PPl (21PPIs including BCL2/BAK1, ESR1/NCOA2,
FKBP1A/TGFBR1, etc; see Additional file 2) because of
multiple similar tertiary structures, we randomly chose a
single instance from those instances to include in the
training data. Because we had no knowledge on which
PPIs cannot be targeted by small ligands at this time, the
negative instances were randomly chosen from the 10,915
test instances. To create positives:negatives ratios of 1:1,
1:2, and 1:3, we included 30, 60, and 90 test instances in
each training data.

To construct an SVM model most suitable for predicting
druggable PPIs, all four kernel functions (linear, polyno-
mial, RBF, and sigmoid) implemented in the Libsvm
package were tested with each of the three positives:nega-
tives ratios in the training data. For every random training
data set, the best parameters C and y in the kernel func-
tions were estimated by the parameter selection program
in the Libsvm package, and then cross-validation tests
were performed. We calculated accuracies, sensitivities,
and specificities based on the results of cross-validation.
Accuracy was defined as (TP+TN)/(TP+TN+FP+FN), sensi-
tivity as TP/(TP+FN), and specificity as TN/(TN+FP),
where TP, TN, FP, and FN are the numbers of true posi-
tives, true negatives, false positives, and false negatives,
respectively. Averages of sensitivities, specificities, and
accuracies of the 10,000 cross-validation were calculated.

List of abbreviations

AUC: area under the curve; FDA: Food and Drug Admin-
istration; GO: Gene Ontology; PPI: protein-protein inter-
action; RBF: radial basis function; ROC: receiver operating
characteristic; SVM: support vector machine.
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Additional material

Additional file 1

Supplementary tables. Table S1 lists the positive set PPs in more details
than Table 1 in the text. Table S2 lists the top 10 attributes by F-score.
Table S3 lists the potentially-druggable PPIs predicted by the SVM-based
method in more details than Table 4 in the text. The 69 instances (42
PPIs) listed have the druggability scores of >9,000 by the SVM models
using all attributes and >6,500 by the models using the top 10 attributes.
Table $4 lists 9 small chemicals showing similarities to the hot spots of the
SMAD4/SKI complex. File format, PDF.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-263-S1.pdf]

Additional file 2

Positive instances. The 98 instances are listed with their attributes.
Attribute numbers correspond to those in Table 2.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-263-S2 xls]

Additional file 3

Test instances. The 10,915 instances are listed with their attributes.
Attribute numbers correspond to those in Table 2.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-263-S3 xls]

Additional file 4

Supplementary methods. Definition and calculation methods of the PPI
attributes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-263-84.pdf]

Additional file 5

Assessment of the druggability of the PPIs. For each positive or test
instance, the druggability is assessed by the druggability scores (the num-
bers of times an instance was judged to be positive more than 9,000 times
with the SVM models using all attributes and more than 6,500 times with
the SVM models using the top 10 attributes).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-263-85.xls]

Additional file 6

Figure S3. Discovery of small ligands showing similarities to the hot spots
of the SMAD4/SKI complex.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-263-86.pdf]

Additional file 7

Ligand-binding pockets of the positive PPIs. Coordinate data of the lig-
and-binding pockets of the positive PPIs.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-263-S7.txt]
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