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Abstract

Background: Many aspects of biological functions can be modeled by biological networks, such as
protein interaction networks, metabolic networks, and gene coexpression networks. Studying the
statistical properties of these networks in turn allows us to infer biological function. Complex
statistical network models can potentially more accurately describe the networks, but it is not clear
whether such complex models are better suited to find biologically meaningful subnetworks.

Results: Recent studies have shown that the degree distribution of the nodes is not an adequate
statistic in many molecular networks. We sought to extend this statistic with 2nd and 3rd order
degree correlations and developed a pseudo-likelihood approach to estimate the parameters. The
approach was used to analyze the MIPS and BIOGRID yeast protein interaction networks, and two
yeast coexpression networks. We showed that 2nd order degree correlation information gave
better predictions of gene interactions in both protein interaction and gene coexpression
networks. However, in the biologically important task of predicting functionally homogeneous
modules, degree correlation information performs marginally better in the case of the MIPS and
BIOGRID protein interaction networks, but worse in the case of gene coexpression networks.

Conclusion: Our use of dK models showed that incorporation of degree correlations could
increase predictive power in some contexts, albeit sometimes marginally, but, in all contexts, the
use of third-order degree correlations decreased accuracy. However, it is possible that other
parameter estimation methods, such as maximum likelihood, will show the usefulness of
incorporating 2nd and 3rd degree correlations in predicting functionally homogeneous modules.

Background pression network, in which nodes (or vertices) represent
High throughput technologies such as microarrays and  genes and links (or edges) represent coexpression, the
yeast-two-hybrid assays have resulted in an explosion of  similarity of the level of expression of two genes over the
biological data that can be represented as networks. For ~ samples in the study. Similarly, protein interaction data,
example, microarray datasets can be analyzed as a coex-  such as that generated by yeast-two-hybrid assays, can be
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summarized as a network, with nodes representing pro-
teins and edges representing physical interaction between
two proteins.

Genes and their products give rise to biological function
through their interaction with each other and with other
components of the cell. The analysis of the above biolog-
ical networks is therefore the natural way to understand
cellular function on a genome-wide level. In particular, we
need a thorough understanding of the statistical proper-
ties of biological networks if we aim to make inferences,
such as inferring evolutionary relationships between vari-
ous networks, or separating signal from noise in imperfect
network data.

Erdds and Rényi [1] were the first to study the statistical
properties of random graph models. In their models (now
known as ER models), any edge between two vertices
occurred independently of other edges with a constant
probability p. In these graphs, however, the degree of a
vertex (the number of links to other vertices) is a random
variable with an approximately Poisson distribution with
A= (n-1)p, which is grossly at odds with most biological
network observed to date [2,3].

In real biological data, node degrees usually have heavy
tail distributions [2,3]. Accordingly, in most statistical
studies of biological networks, the null model is a random
graph from the set having a degree distribution identical
to that of the data, or a distribution in which the expected
degrees are identical to those observed in the data [4].

These models are themselves limited, because in addition
to their degree distributions, biological networks show
highly clustered connections [5] and transitivity [6].
Indeed, it is difficult to assess which properties of a net-
work would represent sufficient statistics that are biologi-
cally meaningful.

Mahadevan et al. [7] attempted to solve this problem by
devising an increasing series of random network models
they referred as the dK-series. The distributions of the ran-
dom networks are defined as uniform over the set of
graphs having the same distribution of d-sized subgraphs
as the observed network data. Particular cases of the series
reduce to familiar distributions: the OK distribution P, is
identical to the corresponding ER distribution, which
describes the average number of links per node. The 1K
distribution model tells us the expected degree of each
node and assumes that the nodes are randomly connected
conditional on the expected node degrees. The 2K distri-
bution P, describes the interconnectivity of nodes with
given degrees, maintaining the number (m(k, k')) of links
between nodes of degrees k and k'. The 2K distribution
therefore preserves degree-degree correlations between
nodes (known as the assortativity of the network). Includ-
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ing still more connectivity information, the 3K distribu-
tion considers degree correlations among any 3 nodes,
which include the transitivity of the network. Moving
beyond pairs of nodes, various topological structures are
possible. For example, there are 8 different kinds of iso-
morphic structures for the 3K distribution. Increasingly
larger subgraphs can be enumerated for d = 4,5,..., captur-
ing increasingly complex features of a particular graph.

The dK-series is therefore an objective way to progressively
include more features into a random graph model, just as
each term in a Fourier or Taylor series progressively cap-
tures more details of a given function, and thus largely
avoids the arbitrary selection of statistics that may or may
not be sufficient or relevant to a particular process.

Using this series as our starting point, we sought to evalu-
ate the use of ever more inclusive dK distributions in the
study of biological networks. For four different biological
networks, we trained dK models ford = 0, 1, 2, 3. We first
explored the properties of the models by evaluating their
ability to predict in the observed networks the presence or
absence of individual edges, as well as general network
statistics. We showed that the 2K model outperforms
other models in predicting the presence and absence of
the edges for both protein interaction and gene coexpres-
sion networks.

We then evaluated whether statistical significance against
one of the models for subnetworks corresponded to bio-
logical significance. We modeled our approach based on
the scoring scheme used by Tanay et al. [8,9]: they devised
a pseudo-likelihood score for edges in a bipartite graph of
genes and samples, in which edges occur according to a
null model that corresponds to the 1K distribution, or to
an alternative model, representing biological significance,
independently with a high constant probability p = 0.9.
They showed that this score results in improved accuracy
in predicting functional gene groups, when compared
with network density alone (which is equivalent to using
0K as the null model).

We reproduced their score using as the null distribution
one of dK models ford = 0, 1, 2, 3. We aimed to test the
hypothesis that more inclusive distributions would result
in a score for a set of nodes that is more indicative of bio-
logical significance, just as 1K was in the case of bipartite
graphs. We were surprised, however, to find that accuracy
was only slightly increased with each successive dK distri-
bution in the case of yeast protein interaction networks,
while the 0K distribution (equivalent to edge density) had
the best predictive power in coexpression networks.

Results and Discussion
In this section, we first give a brief discussion of the dK
models and the pseudo-likelihood methods for estimat-
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ing the parameters. Next we study the accuracy of the dK
models in predicting edges in the molecular networks.
Then several statistics related to the networks are studied
to evaluate if the random networks can approximate the
observed networks. Finally, we evaluate if the dK models
can be used to identify functionally homogeneous mod-
ules.

Model description and parameter estimation

For each network, we created random graph models
matching the 0K, 1K, 2K, and 3K distributions of the
observed network. For the OK and 1K models, we took the
degree sequence and number of edges as fixed properties
of the network and thus defined the matching models. In
the 0K model, each edge occurs independently with prob-

\%
ability p = E | (' ) | J, |E| being the number of edges and

|V| the number of nodes in the real network. In the 1K
model, each edge occurs independently, conditional on
the degrees k, and k, of its incident nodes, with probabil-
ity p(ky, k,) = min (k,k,/(2 - |E|), 1 - &), for &small (in our
case, 104). For the 2K model, we calculated the probabil-
ity p(k,, k,) that two proteins with degree pairs (k;, k,)
interact. One intuitive approach is to estimate p(k,, k,) by
the fraction of interacting protein pairs among all the pro-
tein pairs with degrees (k,, k,), k, < k,. However, for many
degree pairs (k;, k,), the number of such protein pairs is
small. Thus, the estimated value of p(k;, k,) using this

intuitive approach is not reliable. To overcome this prob-
lem, we modeled p(k,, k,) as a function of (k,, k,) and fit-

ted the function using Matlab. Details of the estimation
method are given in the "Methods" section.

The 3K model describes how protein triplets with degrees
(ky, k,, k;) interact with each other. There are a total of
eight possible interaction patterns among the three pro-
teins as shown in Figure 1. As in the 2K model, directly
estimating the eight probabilities corresponding to the
interacting patterns is difficult due to the small number of
protein triplets for many degree triplets (k;, k,, k;). Thus,
we reparameterized the probabilities to fit a logistic
regression model, which is necessary to improve probabil-
ity estimates for degree triplets for which we only have
one or few examples. Details are given in the "Methods"
section.

The performance of predicting protein interactions using
the dK distribution models

We began by studying the ability of the dK distribution
models in their capacity to predict the presence and
absence of links in the observed biological networks. For
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Possible different triplet topologies. Classification of tri-
plets of nodes into eight different categories based on their
connectivity and degrees.

each dK (d = 0, 1, 2, 3) distribution model, we predicted
the probability that any pair of proteins interact using the
estimated parameters obtained above. Given a cut-off
threshold, protein pairs with interaction probability
above the threshold were predicted to interact. The pre-
dicted interaction pairs were compared with the observed
protein interactions to study the ability of the dK distribu-
tion model to predict protein interactions. To overcome
the problem of extreme large number of non-interacting
protein pairs over that of the interacting pairs, we ran-
domly chose the same number of non-interacting protein
pairs as the number of interacting pairs for the compari-
sons. Three different evaluation methods were used: the
accuracy, the receiver operation curve (ROC), and the pre-
cision-recall curve. Figure 2 and Figure 3 show the per-
formance of the dK models in predicting protein
interactions using the MIPS [10] protein interaction data
and a gene co-expression network based on GDS1013
[11], respectively. The performance of the 2K distribution
model always outperformed the 1K distribution model,
which in turn outperformed the 0K distribution. The 3K
distribution model performed comparably to the 2K dis-
tribution model in a coexpression network (Figure 3), but
significantly worse in the case of a protein interaction net-
work (Figure 2). Similar results were obtained for the
BIOGRID [12] protein interaction data (Additional file 1:
Figure S1) and other coexpression networks (Additional
file 1: Figures S2-S4).

Comparing statistical features of random networks from
the dK models with that of the observed networks

We next studied if the random networks based on the dK
distribution models approximate the observed interaction
networks. To achieve this objective, we generated 100 ran-
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The performance of the dK distribution models in predicting protein interactions for the MIPS interaction
data. a) The prediction accuracy versus the cut-off threshold for the interaction probability; b) ROC curve; c) Precision-Recall.

dom networks based on the dK distribution models and
calculated several statistical features of the random net-
works (see "Methods" for details). We studied five net-
work statistical features as in [7]:

e J,: average of the smallest eigenvalue of the Lapla-
cian of the graph matrix;

e 1, average of the largest eigenvalue of the Lapla-
cian of the graph matrix;

e d: average shortest distance between the nodes;

¢ g, standard deviation of shortest distance between
the nodes;

e 1. average assortativity coefficients.

The elements of the Laplacian matrix of a network are
defined by I; =1/ /k;k; if node i with degree k;and node

j with degree k; are connected and ;= 0 otherwise fori # ,
and [;= 1 if i =j. Several other important network statistics
[7], e.g. network resilience and performance, are tightly
controlled by the smallest non-zero (4,) and the largest
(4,.1) eigenvalues of the Laplacian matrix. Therefore, we
studied whether the corresponding eigenvalues of the dK
random networks are close to that of the true network. In
addition, the distribution of the shortest distances
between any two nodes provides information on how the
nodes cluster together in the network. We used two quan-
tities, the mean and standard deviation of the shortest dis-
tances, to characterize this distribution. Finally, the
assortativity coefficient of a network provides information
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The performance of the dK distribution models in predicting protein interactions for the GDS1013 expression
data (PCC cut-off threshold 0.89). a) The prediction accuracy versus the cut-off threshold for the interaction probability;

b) ROC curve; c) Precision-Recall.
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on how nodes of different degrees link to each other.
Although these five network statistical measures cannot
fully describe the network of interest, they capture impor-
tant network properties. If the dK distribution models can
approximate the true network well, these quantities in the
dK random networks should be close to the correspond-
ing values of the true network.

Tables 1 and 2 give the average and standard deviation of
the corresponding feature values from the 100 random
networks for each of the dK distribution models based on
the MIPS protein interaction network and GDS1013 coex-
pression network, respectively. For the MIPS protein inter-
action data, the average values of the five network features
for the random networks converge to the corresponding
values of the observed network, indicating that the dK
model converges to the true network as d increases. On
the other hand, for the coexpression network, the average
values of the five network features of the 2K model are
closer to the corresponding features in the true network
than the 1K and 3K models. The poor performance of the
3K model maybe due to the fact that the estimated param-
eters are not accurate due to the relative small number of
the nodes in the coexpression networks. Similar tables for
the other networks are provided in Additional file 2:
Tables S1-S4.

The performance of the dK distribution models for the
identification of functionally homogeneous modules

Our primary motivation of this study is to see if the more
complex models, which can generally more accurately
describe the observed network, are helpful in the identifi-
cation of biologically functionally homogeneous mod-
ules. Statistical deviations from a suitable model would
indicate evolutionary pressure and thus functional signif-
icance. Therefore, we can compare the functional rele-
vance of each model by how well statistical deviations
from the model correlate with the functional homogene-
ity of the corresponding nodes.

http://www.biomedcentral.com/1471-2105/10/277

We designed scores from our models based on an alterna-
tive hypothesis that edges are present in a functional mod-
ule with constant probability p. Generally p should be
close to 1 as most functionally homogeneous modules are
highly clustered. As in [8,9], we chose p = 0.9 in the main
text. To see the validity of our results for different values
of p, we also changed p to p = 0.85 and p = 0.95. Our
approach is similar to that used by Tanay et al [8,9], which
they used a single null model (a graph is chosen at ran-
dom from the set of networks having identical degree
sequence to the original network, equivalent to our 1K
model) in the context of a bipartite graph. With this score
framework, we used a simulated annealing algorithm to
find groups of genes with high scores, retaining every
group encountered during the run of the algorithm and
their scores under each of the null models.

Finally, we called a gene group functionally homogeneous if
it was enriched in at least one functional category from the
Gene Ontology [13]. We defined module enrichment by
the hypergeometric test p-value, with a threshold of p < 10-
5. These gene groups were taken to be true positives, and
the remaining gene groups were taken to be true negatives.
Again, we varied this threshold from 0.01 to 10-%, and no
qualitative changes in the results were observed, showing
that our approach is robust to the parameter for calling
functional homogeneity (data not shown). We then eval-
uated the four models by comparing how well they can
predict functional homogeneity in the MIPS and BIOG-
RID yeast protein interaction networks, or in two different
yeast gene coexpression networks, GDS1013 and
GDS1103.

Results based on the MIPS protein interaction network

We used the MIPS [10] yeast protein interaction network
to compare the ability of the dK distributions to predict
functional homogeneity in gene groups of size 10. Note
that the size of the gene groups cannot be too small. Oth-
erwise it is very hard to distinguish functionally homoge-
neous modules from random gene groups. The score for

Table I: Comparison of five network features for the dK distribution models with that of the MIPS protein interaction network,

d=1,2,3.
Metric 4 Apel d oy r
MIPS 0.03 1.97 4.42 1.12 -0.14
Ik 0.07(0.018) 1.93(0.018) 3.95(0.0117) 0.9045 -0.07(0.0058)
2k 0.06(0.014) 1.94(0.014) 4.04(0.0097) 0.9679 -0.12(0.0035)
3k 0.04(0.014) 1.96(0.014) 4.26(0.0107) 1.0613 -0.14(0.0014)

A,: average of the smallest eigenvalue of the Laplacian of the graph matrix; 4, ;: average of the largest eigenvalue of the Laplacian of the graph
matrix; d: average shortest distance between the nodes; o, standard deviation of shortest distance between the nodes; r: average assortativity
coefficients. The quantity in the brackets indicate the standard deviation of corresponding metric
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Table 2: Comparison of five network features for the dK distribution models with that of the GDS1013 coexpression network with

PCC cut-off threshold of 0.89,d =1, 2, 3.

Metric 4 Al d o4 r
Coexp 0.09 1.91 327 1.31 0.5
Ik 0.31(0.068) 1.69(0.068) 2.61(0.0053) 0.67 -0.05(0.0052)
2k 0.12(0.038) 1.88(0.038) 2.78(0.0013) 0.83 0.20(0.0037)
3k 0.19(0.059) 1.81(0.059) 2.69(0.0074) 0.74 0.12(0.0042)

Notations are the same as in Table I.

each gene group depends on the null model for the net-
work. We calculated the score for gene groups of size 10
using dK distribution model as the null network model, d
=0, 1, 2, 3. A gene set was predicted to be functional
homogeneous if the score is above a cut-off threshold.
Our objective is to see which score functions can more
accurately predict functional homogeneity. Therefore, we
compare the predicted "functionally homogeneous" gene
groups with the positive groups. We measure the perform-
ance using accuracy, the ROC curve, and the precision-
recall curve as above. Note that the subnetwork scores
defined based on dK models in equation (7) ford = 0, 1,
2 and equation (9) for d = 3 are not on the same scale and
thus the prediction accuracy in Figure 4a is not compara-
ble for the same cut-off value of the subnetwork scores.
However, the maximum prediction accuracy for the dK
models can be compared. Figure 4 shows the results based
on the MIPS interaction data with p = 0.9 and gene group
size 10. The results based on other combinations of p =
0.85, 0.9, 0.95 and gene set size n = 8, 10 are given in
Additional file 1: Figures S5-S7. The corresponding results
based on the BIOGRID [12] protein interaction data are
also given as Additional file 1: Figures S8-S11.

a) b)

We found almost no difference between the performance
of the different scores, with even the OK model (density)
performing only slightly worse than the rest. Figure 4a
shows that the highest prediction accuracy for the 0K
model is slightly smaller than that of the 1K-3K models,
and the highest prediction accuracy of the 1K-3K models
are similar. Similarly, the ROC curve (Figure 4b) and the
precision-recall curve (Figure 4c) of the 0K model are
slightly lower than the corresponding curves for the 1K-3K
models. This result shows that the added information of
degree correlations and transitivity do not influence the
model enough to have a significant effect on the global
prediction performance of functional homogeneity.
Because the performance of the different dK distribution
models are so similar, we hypothesized that the scores for
the gene groups based on different dK models maybe
highly correlated. We tested this hypothesis by studying
the Spearman's correlation between the scores for the
gene groups using different models. The results are given
in Table 3. It can be seen that they are indeed highly cor-
related. Similar results were obtained based on the BIOG-
RID protein interaction network (Additional 2: Table S5).
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The performance of dK distribution models in predicting functionally homogeneous modules based on MIPS
interaction data. The gene group size was 10, the p-value cut-off was 10-3, and p = 0.9. a) Accuracy; b) ROC curve; c) Preci-

sion-Recall
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Results based on gene coexpression networks

We repeated the above analysis, this time using a yeast
coexpression network built from a yeast microarray data-
set, GDS1013, downloaded from the NCBI Gene Expres-
sion Omnibus [11]. We constructed the network by
calculating the Pearson correlation coefficient (PCC)
between the expression levels of every pair of genes. Then,
each gene was represented as a node in the network, and
we drew a link between two nodes if the PCC exceeded a
certain threshold. To make the network as comparable as
possible to the MIPS network, we selected the threshold
such that the degree of the most highly connected node in
each network was the same (286, which corresponded to
a PCC cut-off threshold of 0.89). We were again surprised
to find that the 2K performance was similar to 1K, while
the 3K model's performance was actually worse than the
1K and 2K models (Figure 5). This observation maybe
explained by the fact that the 3K model does not approx-
imate the observed network well as shown in Table 2. Per-
haps most strikingly, the OK model displayed the best
performance, showing that a simple measure of density is
a very good predictor of function in coexpression net-
works. We also changed the threshold for the PCC
between expression profiles to build the network to 0.93,
the gene group size n = 8, and the parameter p to p = 0.85,
0.95 in defining the score function. The results are pre-
sented in Additional file 1: Figures S12-S18. Same qualita-
tive results were obtained. We also studied the Spearman's
correlation between the gene group scores for different dK
models and the results are given in Table 4. Although the
scores based on 1K, 2K, and 3K models are highly corre-
lated, they do not strongly correlate with the scores based
on the 0K model. Similar results were obtained for differ-
ent PCC cut-off thresholds (Additional file 2: Table S6).

We also performed the same analysis for another gene
expression dataset, GDS1103 [11]. The performance
results for this dataset are presented in Additional file 1:
Figures S19-S26 and Additional file 2: Tables S7-S8. It
should be noted that none of the dK models performed
well in identifying functionally homogeneous modules
based on this gene expression data set. One potential rea-

http://www.biomedcentral.com/1471-2105/10/277

son is that the number of sampling points is only 11,
which is much smaller than that of GDS1013, which has
24 sampling points. Thus the network constructed based
on GDS1103 may not be reliable. Despite the drawbacks
of this dataset, the conclusions from this dataset is quali-
tatively identical to those found for GDS1013. This dem-
onstrates the generality of our conclusions with respect to
gene coexpression networks.

Conclusion

We studied the ability of dK distribution models to predict
individual edges and functionally homogeneous modules
in protein interaction and gene coexpression networks. A
pseudo-likelihood logistic estimation method was pro-
posed to estimate the parameters in the dK distribution
models. We found that the 2K distribution model per-
forms the best in predicting individual edges in both pro-
tein interaction and gene coexpression networks. A
pseudo-likelihood ratio score function was then defined
to evaluate potential functional homogeneity based on
the dK distribution models. For yeast protein interaction
networks, 1K, 2K and 3K models perform similarly and
are slightly better than the 0K model in predicting func-
tionally homogeneous modules. The dK scores were very
highly correlated for different d. This means that, between
two different subgraph topologies, the variation in the
denominator, the dK distribution likelihood, was small
relative to that in the numerator, the constant-p likeli-
hood. In this case, most of the variation in scores between
modules would be accounted for by the numerator. The
different probabilities between 1K, 2K, and 3K may be
similar overall in the networks we studied. For gene coex-
pression networks, the OK model performs significantly
better than the other models in predicting functionally
homogeneous modules. We noted that 0K, or density,
performed remarkably well as a prediction method even
in the yeast protein interaction network, being able to find
extremely functionally homogeneous groups of genes (p <
10-5). This may simply reflect that highly dense subnet-
works in a protein interaction network represent protein
complexes, which are of necessity functionally homoge-
neous.

Table 3: Spearman correlation between the scores of the gene groups for different dK distribution models based on MIPS protein

interaction data.

Spearman corrleation 0K-1K 0K-2K 0K-3K 1K-2K 1K-3K 2K-3K
p=09¢g=10 0.9856 0.9833 0.9879 0.9994 0.9992 0.9992
p=09g=8 0.9767 0.9729 0.9787 0.9990 0.9989 0.9988
p=085gs=10 0.9867 0.9839 0.9882 0.9994 0.9994 0.9993
p=095gs=10 0.9835 0.9801 0.9851 0.9995 0.9996 0.9992
gs: group size
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Table 4: Spearman correlation between the scores of the gene groups for different dK distribution models based on the GDS1013

coexpression network with PCC cut-off threshold of 0.89,d = 1, 2, 3.

Spearman corrleation 0K-1K 0K-2K 0K-3K 1K-2K 1K-3K 2K-3K
p=09,gs=10 0.2310 0.1759 0.0170 0.9489 0.8350 0.9247
p=09g=8 0.4419 0.4448 0.2920 0.9823 0.9073 0.9415
p=0.85g=10 0.3683 0.3491 0.1953 0.9606 0.8310 0.9149
p=0.95g=10 0.4433 04318 0.2637 0.9707 0.8490 09111

gs: group size

One future avenue of research could be to remove this
type of functionally homogeneous modules from the
data, since they are relatively uninteresting examples of
functional homogeneity. It may be that the subtle differ-
ences between the various dK distributions are useful to
pick out homogeneous modules of more specific func-
tions.

Methods

Data Sources

We downloaded yeast protein interaction data from two
different data sources: MIPS [10] and BIOGRID [12]. The
MIPS (Munich Information Center for Protein Sequences)
dataset (version: PPI_18052006.tab) contains 12,319
protein physical interactions involving 4,546 proteins.
The BIOGRID dataset (version 2.0.51) contains 91,364
protein physical interactions involving 5,563 proteins.

We also studied two gene expression datasets GDS1013
and GDS1103 downloaded from the NCBI Gene Expres-

sion Omnibus [11]. The GDS1013 expression data con-
tains the expression profiles of about 6400 yeast genes
and open reading frames by over-expressing the essential
ribosomal protein activator IFH1. Twenty four samples of
2 growth protocols, 2 strains, and 5 time points were stud-
ied. Two genes are referred as linked if the Pearson corre-
lation coefficient between the expression levels of every
pair of genes is at least 0.89. The GDS1103 expression
data studied the gene expression profiles of 6400 genes of
leu3 mutant grown in either limited ethanol or limited
ammonium media. Twelve samples involving 2 geno-
types and 2 growth protocols were studied. To study the
effect of different thresholds for coexpression in defining
the networks, we used two threshold values 0.89 and 0.93
for the PCC between the gene expression profiles. In the
main text, we provide our results based on the MIPS pro-
tein interaction data and the GDS1013 co-expression net-
work with PCC cut-off threshold of 0.89. The results for
the other networks are presented in the additional files.

a) o b) o ¢ o
o - S
@ @ @
=} 8 o =}
e
o c ~
75 2 3 : S
§ © §_ g § g
< e 3 — 0K(0.9371) e — 0K
i £ 1K(0.8676) 0 1K
o = -+ 2K(0.8355) < - 2K
. o -=-- 3K(0.7267) « | = 3K
(=} o o
-100 =50 0 50 100 150 0.0 0.2 04 0.6 0.8 1.0 0.85 0.90 0.95 1.00
Cutoff False positive rate Recall
Figure 5

The performance of dK distribution models in predicting functionally homogeneous modules based on
GDSI1013 coexpression data (PCC cut-off threshold 0.89). The gene group size was |0, the p-value cut-off threshold
was 10-3, and p = 0.9. a) Accuracy; b) ROC curve; c) Precision-Recall. Note that the curve for the 0K model is truncated near
(0.80,0.89); this is due to an abundance of modules having the maximum density, and no way to distinguish between them in the
OK measure. Therefore, the minimum recall computable is that shown in the graph.
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Model fitting for the dK models
. \%
The 0K model simply assigns a probability p =| E | (' ) | J

to each edge independently. In the 1K model, edge occur-
rence is also independent of other edges, but only condi-
tional on the degrees of their incident nodes. The
probability is then given by

Pr(u,v | deg(u), deg(v)) = min(deg(uz)éeg(u) 11— e).
(1)

In this paper, we choose = 104

In the 2K model, we parameterized as follows the proba-
bility

p(ky, ky) = P ((u, v)|deg(u) = k,, deg(v) = k,), that two
nodes of degrees k, and k, (k, < k,) interact:

log(p(ky,ky) /(1= p(ky1, k3))) = loga + B logky +y logke,.
()

Based on the observed interaction network, we used logis-
tic regression in Matlab to estimate the parameters (¢, £,

7)-

Finally, to fit the 3K model, we again reparameterized as
follows. We classified each triplet of nodes according to
their topology in the network. The topology definitions
are shown in Figure 1, where the nodes 1, 2, 3 are in
increasing order of degree (k; < k, < k;). We modeled the
distribution of the triplet topology as a function of Z =
(log ky, log k,, log k).

¢%itBiy log(k1)+Bi, log(ka)+Pig (k3)

- , 1<i<7,
7 ety 198(1)+ B Tog(k2) B )

p;

1
- 1+z]7:1eai+ﬁj1 IOg(k1)+ﬁj2 IOg(k2)+ﬁj3(k3)/

Ps

3)
where p; = P(topo(X) = i). We estimated the parameters by
maximizing the pseudo-likelihood of the data. The
pseudo-likelihood Q = Q(ay,- @ B fB;) & € R, B €
R3, 1 <i <7 is defined by multiplying the probability of
the observed categories across all the triplets.

Calculate 2K distribution from 3K distribution

When we evaluate the ability of the 3K distribution model
for predicting protein interactions in the next subsection,
we need an equation linking the probability for two nodes
to be connected based on the probabilities of the seven

http://www.biomedcentral.com/1471-2105/10/277

topologies given in Figure 1. The equation is given as fol-
lows.

Given degree pairs (k;, k,), with k; < k,. We can get 2K dis-
tribution from 3K distribution as follows:

1
plky k) = {z n(ky, ey, k) [py(Ry ey 1) +py Ry Ry R) + p3(key, Ry R) + p7 Ry Ry R
>k

n(leyky)

+ 2 n(ky ke ley)[py(Ry T fey) + py(fey ke by ) + palley o ley) + P (Rey Ryl )]

<<k,

+Zn(k,k],kz)[p](k,kl,kz)+p3(k,k],k2)+p4(k,k],kz)+p5(k,k,,kz)]},

ke<k,
(4)
where

n(lky, ky) =Y n(lkey kg k) + Y, n(lkey ko ley)+ Y n(le,key, ky) -

k>k, Iy <k<k, k<k,

Evaluation of the dK models for predicting protein
interactions

Based on the estimated parameters for the dK distribution
models, the probability for each protein pair to interact
can be predicted based on the above equations. Two pro-
teins are referred as interacting if the predicted probability
is above a cut-off threshold. We then compare the pre-
dicted interactions with the observed interactions. Since
the number of non-interaction pairs is much larger than
the number of interacting pairs, we randomly choose the
same number of noninteracting pairs as that of the inter-
acting pairs in this analysis. The comparisons between the
observed and the predicted interactions are summarized
as true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN). The accuracy, true positive
rate, false positive rate, precision, and recall are defined as

TP+TN
Accuracy = ———————,
TP+FP+TN+FN
Precision = mw , Recall = P ,
TP+FP TP+FN
.. .. FP
True Positive Rate = , False Positive Rate = ———.
TP+EN FP+TN

We studied the relationship between the accuracy and the
cut-off threshold for the predicted probability of interac-
tions, between the false positive rate and the true rate (the
ROC curve), and between precision and recall.

Random network simulation with dK distribution models

We generated 100 random networks based on the dK dis-
tribution models using the estimated parameters to see if
the random networks approximate the observed network
well. For each network, we calculate five statistics: the
smallest eigenvalue of the Laplacian of the graph matrix,
the largest eigenvalue of the Laplacian of the graph matrix,
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the shortest distance between the nodes, the standard
deviation of shortest distance between the nodes, and the
average assortativity coefficients as in [7]. These statistics
give approximate description of the networks of interest.
If the random networks approximate the true network
well, these statistics should be close to the corresponding
values of the true networks. The simulation steps were car-
ried out as follows.

For the 1K distribution, we randomly rewired the edges of
the observed network 50,000 times while preserving the
degree distribution. To generate random instances of the
2K and 3K distributions, we used a simulated annealing
approach to generate random networks. For the 2K
model, the energy function is:

Fyx = z K{n(i, j) > 0} [AG)=i] (5)

e A (0, (L )

where k.. is the maximum degree, n(i, j) the number of
edges between pairs of nodes with degrees i and j in the
observed network, 7i(i, j) is the predicted number of edges
between pairs of nodes with degrees i and j, and # (i, j) is
the number of such edges in the randomized network. For
the 3K model, the score function is:

S tnij i > oy IR
Fix = I j.k) >0}
" 2 M Oy

1<i, j,k<k

(6)
where (i, j, k) is the number of occurrences of topology !
(Figure 1) between triples of nodes with degrees i, j and k
in the observed network, (i, j, k) is the predicted number
of occurrences of topology I between triples of nodes with
degrees i, j and k, and n,(i, j, k) is the corresponding
observed number in the randomized network. The
detailed simulated annealing procedure is as follows.

Each state is a network. We find an initial state by rewiring
the original network 10,000 times (preserving only the
degree distribution). We then continue rewiring, but now
we accept only resulting networks with lower energy
scores, or with higher energy scores with probability

FaK inje —FdK pext
g=e T , where d = 2 or 3, and T is the tem-
perature, which we decrease as T}, = oTj,;, with T, = 1 and

a=0.995. We ran the simulated annealing for 50,000 iter-
ations.

http://www.biomedcentral.com/1471-2105/10/277

Evaluation of model performance in identifying
functionally homogeneous modules

We designed a pseudo-log-likelihood score function mod-
eled after that used by Tanay et al. in the context of biclus-
tering [8,9]. For a given module M, the denominator is the
likelihood of the network topology in the subnetwork
defined by the module, and the numerator is the likeli-
hood under a high but constant probability p = 0.9 of each
edge being present. For d = 0, 1, 2, the score is given by:

p 1=p
S= I log| ———— |+1 log| -~
Z{ (o og(PdK(u/U) J+ (et Og(l—PdK () H

u,veM
(7)
where E is the edge set of the network, and
p=E|/IVI(V]|-1) ford=0,
Puc(u,v)=4kik, /(2| E|) ford =1,
pk]/kg for d=2.
(8)

where p; , is estimated by fitting the 2K model as

described in equation (2)(k, and k, are the degrees of u
and v.). For d = 3, we make use of the 8 cases defined in
Figure 1, to which we refer as ¢, t,,..., t5. The nodes 1, 2,
and 3 in the figure are sorted by degrees. We denote
topo(u, v, w) the topology of a node triplet (u, v, w), being
one of t,,..., tg. (If one or more degrees are the same, some
of the topologies will be interchangeable. We ignore this
problem in the following formulation.)

3
1
° (|M|—iZ J 2 Liopo(u,v,w)=t, 108 p

u,v,we M Plkl,kz,k3 (,v,w)

(1-p)p?
szllkzlks (u,v,w)

+I log

topo(u,v,w)=t,
+...

(1-p)°
P8k11k2:k3 (u,v,w)

+1

log

topo(u,v,w)=tg

)

Again, P is a function of the degrees of u, v, and w,

ey ko ks
and their topology ¢; that we determined by fitting our
model to the observed network.
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Having defined a score function, we searched for modules
of constant size and high score using a simulated anneal-
ing approach.

Evaluation by functional homogeneity prediction

Given a set of gene modules (groups of genes) and their
score in a network obtained by each of the four models,
we measured model performance as follows. We tested
the genes for enrichment in one or more functions in the
"biological process" category of the Gene Ontology [13].
If the gene module showed a hypergeometric test p-value
of less than 10-> (as we previously mentioned, the exact
value is not critical to the results), we declared it "func-
tionally homogeneous". This gave us True Positive and
True Negative sets. We then tested how well a particular
score could predict these categories by comparing Accu-
racy, ROC and Precision-Recall curves for each model.

Simulated annealing search for high-scoring modules

We used the simulated annealing technique, described by
Kirkpatrick [14], with the following definitions: A state is
a subset of nodes from the network of fixed size n. The
state space is therefore the set of all n-sized subsets of
nodes from the full set of nodes of the network. The
energy of a state is the negative of the pseudo-log-likeli-
hood score described in equation (7) for 0K-2K models
and equation (9) for the 3K model. A neighboring state is
a subset that differs in exactly one member.

We ran the algorithm as follows:
¢ Set the initial temperature for the algorithm.

® Select a random set of n nodes, S, to be the current
state.

e While the temperature is less than a specified mini-
mum temperature, perform the following steps:

- Select a putative next state by uniformly removing
one node from the current module and uniformly
adding a new one.

- Compute the energy of both the current state and

the putative next state, E(S,) and E( S, ,, ).

- Accept the next state with probability:

P, accept

— 1/ 1+ exp{ E(S:1+}3F—E(Sn) }

- Update the temperature: T, = T,/log(n).
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