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Abstract

Background: We propose an efficient and biologically sensitive algorithm based on repeated
random walks (RRW) for discovering functional modules, e.g., complexes and pathways, within
large-scale protein networks. Compared to existing cluster identification techniques, RRW
implicitly makes use of network topology, edge weights, and long range interactions between
proteins.

Results: We apply the proposed technique on a functional network of yeast genes and accurately
identify statistically significant clusters of proteins. We validate the biological significance of the
results using known complexes in the MIPS complex catalogue database and well-characterized
biological processes. We find that 90% of the created clusters have the majority of their catalogued
proteins belonging to the same MIPS complex, and about 80% have the majority of their proteins
involved in the same biological process. We compare our method to various other clustering
techniques, such as the Markov Clustering Algorithm (MCL), and find a significant improvement in
the RRW clusters' precision and accuracy values.

Conclusion: RRW, which is a technique that exploits the topology of the network, is more precise
and robust in finding local clusters. In addition, it has the added flexibility of being able to find multi-
functional proteins by allowing overlapping clusters.

Complementary to the availability of genome-scale pro-

Background

In recent years, much effort has gone into finding the
complete set of interacting proteins in an organism [1].
Such genome-scale protein networks have been realized
with the help of high throughput methods, like yeast-two-
hybrid (Y2H) [2,3] and affinity purification with mass
spectrometry (APMS) [4,5]. In addition, information inte-
gration techniques that utilize indirect genomic evidence
have provided both increased genome coverage by pre-
dicting new interactions and more accurate associations
with multiple supporting evidence [6-9].

tein networks, various graph analysis techniques have
been proposed to mine these networks for pathway or
molecular complex discovery [10-15], function assign-
ment [16-18], and complex membership prediction
[19,20]. Bader and Hogue [21] propose a clustering algo-
rithm to detect densely connected regions in a protein
interaction network for discovering new molecular com-
plexes. Spirin and Mirny [22] use superparamagnetic clus-
tering (SPC) and a Monte Carlo (MC) algorithm to cluster
a given protein interaction network. These algorithms
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work on undirected unweighted graphs and partition the
network of proteins into non-overlapping clusters. How-
ever, genome-wide networks constructed with multiple
supporting evidence have edges with varying degrees of
confidence. The strength of confidence should be consid-
ered when identifying strongly connected proteins. Also,
it is known that there are many multi-functional proteins
which may play important roles in different functional
modules. Therefore, a biologically more sensitive cluster
identification technique should report clusters that may
sometimes overlap. Several clustering techniques have
since been proposed that take into account the given edge
confidence [23] or overlapping clusters [24,25]. However,
these algorithms all account for the two problems sepa-
rately, and do not both use given biological edge confi-
dences and find overlapping clusters at the same time.

In this paper, we propose a novel algorithm, repeated ran-
dom walk (RRW for short), for molecular complex and
functional module discovery within genome-scale protein
interaction networks. This new algorithm utilizes both
given edge weights and can find overlapping clusters. The
idea is based on expansion of a given cluster to include the
protein with the highest proximity to that cluster. Starting
with a cluster of size one (any protein in the network), this
iterative process is repeated either k times, or until a stop-
ping condition is met, to obtain clusters of size < k. All sig-
nificant overlapping clusters are recorded and post-
processed to remove redundant clusters based on a given
overlap threshold. We use random walks with restarts to
find the closest proteins to a given cluster. To increase the
algorithm's speed, the random walk results from a given
cluster are computed using linear combinations of
precomputed random walk results obtained starting from
single proteins. Unlike other techniques proposed for
pathway discovery, the random walk method implicitly
exploits the global structure of a network by simulating
the behavior of a random walker [26].

We apply RRW on a genome-scale functional network of
yeast genes and accurately identify statistically significant
clusters of proteins. We validate the biological signifi-
cance of the results by comparison to known complexes in
the MIPS complex catalogue database [27]. By compari-
son to an existing clustering technique, we show that
using edge weights in addition to connectivity informa-
tion and allowing certain amounts of overlap between
clusters are the key characteristics of RRW for finding bio-
logically more significant clusters.

Results and discussion

Problem statement and algorithm

Let G = (V, E) be the graph representing a genome scale
protein interaction network, where V is the set of nodes
(proteins), and E is the set of weighted undirected edges
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between pairs of proteins. The edges are weighted by the
strength of supporting evidence for functional associa-
tion.

Problem definition

Given a physical protein interaction or predicted func-
tional network of an organism, our goal is to find biolog-
ically significant groups of proteins in the network. Here,
the definition of a biologically significant group entails
proteins that function together in a biological pathway or
are members of a protein complex. Moreover, significant
clusters may contain proteins from different complexes,
therefore revealing modular interactions at a higher level.

The problem can be stated formally as follows: Given an
undirected weighted graph G = (V, E), find top-m con-
nected clusters of vertices of size at most k where the rank-
ing is based on statistical significance. (Assessment of
statistical significance is discussed in detail at the end of
this section.) Evaluating all possible sets of proteins for
biological significance is obviously intractable, O(2I1).
Therefore, we propose a heuristic based on random walks
on graphs. The idea is based on expansion of a given clus-
ter to include the protein with the highest proximity to
that cluster. Starting with a cluster of size one, this iterative
process is repeated either k times, or until the next closest
protein's distance is not within a given cutoff. In this way,
clusters of size < k are obtained (all intermediate clusters
are also assessed for biological significance). Table 1 con-
tains a reference of the various notations and symbols
used throughout the paper.

Random walks with restarts

We use random walks with restarts for finding the highest
affinity protein to a given cluster. The random walk tech-
nique exploits the global structure of a network by simu-
lating the behavior of a random walker [26]. The random
walker starts on an initial node (or a set of source nodes
simultaneously), and moves to a neighboring node based
on the probabilities of the connecting edges. The random
walker may also choose to teleport to the start nodes with
a certain probability, called the restart probability, o. The
walking process is repeated at every time tick for a certain
amount of time. At the end, the percentage of time spent
on a node is proportional to its proximity to the starting
nodes. The percentage of time spent is a probability distri-
bution over the set of all nodes and changes in this distri-
bution are modeled as a Markov chain. We refer to the
stationary vector of the Markov chain as the affinity vector.
The restart probability « enforces a restriction on how far
the random walker moves away from the starting nodes.
In other words, if s close to 1, the local structure around
starting nodes is analyzed, and as « gets close to 0, a more
global view is observed. We use a = 0.7 for the results
reported in this paper. A sketch of the random walk algo-
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Table I: List of notations used
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Symbol Definition Symbol Definition
G Undirected, weighted graph a Random walk restart probability
\4 Vertices in graph A Early cutoff value
E Edges in graph k Number of iteractions (maximum cluster size)
P Transition matrix for graph s; Restart vector for a node (or set of nodes) i
C Vector consisting of a cluster of nodes X; Random Walk stationary vector from a node (or set of nodes) i

rithm for finding the closest protein to a single protein is
given in the Methods Section (Figure 1).

Repeated random walk algorithm

The random walk algorithm finds proteins that are in
close proximity to a start node. Below we describe a linear
combination technique to simulate a random walk start-
ing from a set of proteins.

We can add the closest protein to the start set and repeat
the random walk. Successive iterations can be used to
identify clusters of any given size. Repeated random walks
is based on this idea. However, the large number of ran-
dom walks necessary to obtain a cluster in this way greatly
reduces the speed of the algorithm. To lower the compu-
tational costs, the number of random walks performed

Algorithm RandomWalk
Input: similarity network G = (V, E);
starting node n ;
restart probability o;
Output: stationary vector for a Random Walk
starting at n;

(1) let s be the restart vector with all
its entries initialized to 0 except a 1 for the
entry denoted by n

(2) let P be the row normalized adjacency
(transition) matrix defined by G;

(3) initialize x:= s;

(4) while (x has not converged)

(5) x :=as+ (1 — )P Tx;

{(6) Output x;

Figure |
Random walk algorithm. Pseudocode for a random walk
with restarts from a single vertex.

can be reduced and the affinity vectors found using an
alternative method.

Precomputed random walk results starting from single
proteins in the set can be linearly combined to obtain the
affinity vector for larger clusters starting from multiple
proteins, as shown below.

Theorem 1 Let P be the row normalized adjacency (transi-
tion) matrix defined by the graph, G.

Let s be the restart vector for a set of nodes, C, that contains a
value of |—(1j| in all entries corresponding to nodes in C, and 0 for

other entries. Then, the stationary vector, X, for a random walk

1 C]

with restarts starting from the set of nodes, C, is [C] 2uict Xi /

where x; is the stationary vector of random walk with restarts
from node i.

Proof The stationary vector x; of a random walk with
restarts beginning from any single vertex, i, by definition,
follows equation [28]:

x; = as; +(1-a)P"x; (1)

Summing the above for all the nodes in C and dividing by
|C|, we obtain,

|| €| |

1 1 1 T
— VY x:=—a ) s;+—(1-a)P X; 2
PRGNS

i=1

Now, the stationary vector x is defined to satisfy the
equation,

IC|

zsi +(1-a)P x (3)

XC =—0Q
S
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Noting the form of Equations 2 and 3, and since the sta-

. . . c
tionary vector is unique, we conclude that ﬁ Z!l X,

A sketch of the repeated random walk (RRW) and Cluster-
RWSimulation algorithms is given in the Methods Section
(Figures 2 and 3). Starting from every node in the net-
work, the RandomWalk method is run, and the resulting
affinity vectors associated with each single node are saved.
Sets of strongly connected proteins are then found by
again starting from every node in the network and
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expanding the clusters repeatedly using the ClusterRWSim-
ulation method. This method utilizes the vectors found in
the RandomWalk method to quickly obtain the random
walk affinity vectors, and the closest protein to the current
cluster is found. This protein is added to the cluster, its
score remembered, and resulting in a new cluster to be
further expanded. This process is continued until either
the next protein to be added's score is not within a given
percentage, A (the early cutoff), of the previously added
protein's score, or we reach the maximum cluster size k.
All clusters created during expansion are saved.

These expanded clusters are afterwards post-processed
based on a given overlap threshold. The less significant of

Algorithm Repeated RandomWalk
Input: similarity network G = (V, E);

restart probability «;

maximum size of clusters k;

early cutoff value A;
overlap threshold;

Output: top p significant clusters in the network;

(1) let m[ ] be the individual start vectors;

(2) foreveryn eV

(8) let mn] = RandomWalk (G, n, a);

(4) end for

(6) ket D be the set of found clusters;

(6) mitialize D = {};
(7) foreveryn €V

@8) let W be a priority queue of clusters to be expanded,;

(9)  initialize W := empty;

(10) let N == {n};

(11) set N.prevWeight := 0,

(10) W .insert(N);

(11)  while (W is not empty)

(12) let C == W.extractMin();

(13) let B := ClusterRWSimulation(G,C,a,m);
(14) let ¢ := B.largestValueNode();

(15) let F:=CU{c};

(16) set F.prevWeight := B,;

17 if (B, > A-CyprevWeight )

(18) D := DUF;

(19) if (|F| < k)

(20) W .insert(F);

(21)  end while
(22) end for

(23) compute the statistical significance of clusters in D
(24) sort the clusters in D based on their significance;
(25) post-process the clusters to remove overlapping clusters for a

given overlap threshold;

Figure 2

Repeated random walk (RRW) algorithm. Pseudocode for the overall RRW algorithm used to create significant clusters

in the network.
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Algorithm ClusterRWSimulation
Input: similarity network G = (V, E);
set of starting nodes C;
restart probability a;
Random Walk results from individual start
proteins, m[ ;
Output: stationary vector for a Random Walk
starting at C;

(1) initialize sum to a vector with 0 for all its
entries;

(2) for every n € C

(3) sum :=sum + m|n];

(4) end for

(5) initialize x := sum;

(6) x = IéT X;

(7} Output x;

Figure 3

Random walk from a cluster algorithm. Pseudocode
for the algorithm used to simulate a random walk with
restarts from a cluster of vertices.

highly overlapping (redundant) clusters are then dis-
carded. The overlap ratio between two clusters, C, and C,,
is given by |C; N C,|/min {|C,|, |C,|} and is between 0.0
and 1.0.

The complexity of the Random Walk algorithm is linear in
the size of the graph and maximum cluster size, O (|V|-R
+ |V| -k), where R is the complexity of the RandomWalk
algorithm, and the complexity of post-processing is O(n2)
where n are the number of clusters created. The bottleneck
for the RRW algorithm, in large graphs, are the calls to the
RandomWalk method done in the beginning. On a pro-
tein network with |V | = 4,681 and |E| = 34,000, the ran-
dom walk calls take about fifteen minutes in total (using
a machine with a 3.2 GHz Intel Xeon CPU and 8 GB of
RAM running the Ubuntu 8.04 operating system), versus
less than a minute spent computing the clusters using the
linear combination method after the Random Walk affin-
ity vectors have been computed and stored.

In order to reduce this complexity, one can skip using the
RandomWalk and simply use the best neighbors based
solely on edge weights. However, this naive nearest neigh-
bor approach does not capture the structure of the net-
work around starting nodes. Our experiments show that
this is indeed the case.

Statistical significance of a cluster

Given a set of proteins that form a cluster in a genome-
scale protein network, we assign a statistical significance
to that set. To create a quantitative representation of a
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cluster, we compute a score which is the average value of
the random walk distance between all nodes in the clus-
ter. (Since the affinity vectors from each node in the graph
are already precomputed and stored during the RRW com-
putations, this can be done quickly and efficiently.) Since
the "distances" are the stationary probabilities, the aver-
age score value will range from 0 to 1.

The computation of significance of a score requires esti-
mating the cdf of scores and computing p-value(s) = 1 -
cdf(s). Score distributions can be computed empirically
by sampling clusters of different sizes. However, we found
that the typical scores we worked with had very small tail
probabilities. For example, for a cluster size of 10, the
mean was 3.27 - 10-5, the standard deviation was 1.28 - 10
4, and the tail probability had to be computed for a score
of .0359, which is about 280 times the standard deviation
removed from the mean. It is difficult to apply sampling
to compute these small tail probabilities.

For our purposes, we assumed a simple relationship
between the cdf, scores, and cluster sizes. Clearly, the cdf
value of a score is monotonic in score. It is also monot-
onic in cluster size since the probability of a cluster having
an average score less than a threshold increases with clus-
ter size. We attempted a number of different estimates of

|C|), (score:- /|C]|), and
(score- |C|). Both (score- ,/|C|) and (score-|C|) were
correlated significantly with biological significance in
MIPS clusters (the percent of proteins in the cluster that
belong to the same MIPS complex). For a sample size of

1,855 clusters, the Pearson Correlation Coefficient
between the biological significance and (score-log |C|),

(score- /| C| ), and (score-|C|) was 0.00787, 0.158 and

0.229, respectively. Since the critical value of the correla-
tion coefficient p for 1,855 items is 0.0763 at 0.001 prob-

ability, it can be seen that (score- /| C| ) and (score- |C|)

are both significantly correlated to biological significance.

cdf-values:  (score-log

In our experiments, a slower growing function of |C|
(such as m ) led to better precision and worse recall
than a faster growing function of |C| (such as |C|). Choos-
ing clusters with higher precision over recall, we adopted
the m function and present results for p-value = 1 -

(score- m ).

Experimental results

In this section, we report our experimental results con-
ducted on different variants of a S. cerevisiae protein inter-
action network, setting A to be 0.6, k to be 11, and the
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Table 2: Precision, recall, & accuracy on pre-selected MIPS clusters with various MCL inflation parameter values

Network Precision Recall Accuracy
2.0/2.5/3.0 2.0/2.5/3.0 2.0/2.5/3.0
WI-PHI 0.471/0.512/0.524 0.858/0.832/0.780 0.636/0.657/0.639
FP40 0.469/0.538/0.605 0.859/0.768/0.837 0.635/0.643/0.711
FN40 0.400/0.423/0.432 0.719/0.670/0.628 0.537/0.532/0.521
Rewire40 0.455/0.480/0.550 0.666/0.565/0.46 0.550/0.520/0.504

overlap threshold to be 0.2. Varying the overlap threshold
between 0.01 to 0.4 was found experimentally to affect
the reported results only slightly, and so a value of 0.2
(one overlapping protein allowed in a cluster of size 5)
was chosen. The values for 1 and k were found to not sig-
nificantly alter the majority of returned results as well, as
the returned clusters tended to favor smaller sizes (on
average 5-6 proteins). These values, however, were chosen
after evaluating various parameter settings. For the model
organism S. cerevisiae, we used the WI-PHI network by
Kiemer et al. [29]. WI-PHI is a weighted undirected pro-
tein interaction network encompassing a large majority of
yeast proteins. It is constructed by integration of various
heterogeneous data sources such as application of tandem
affinity purification coupled to MS (TAP-MS), large-scale
yeast two-hybrid studies, and results of small-scale exper-
iments stored in dedicated databases. The network con-
tains 50,000 interactions for 5,955 yeast proteins. The
weights, included in the original file, are determined by
assessing each data source's performance in reproducing
the results of a high confidence benchmark interactome.
We also created noisy versions of these networks to dem-
onstrate the robustness of RRW under noise.

Comparison to known MIPS complexes
In order to evaluate the performance of RRW, we use pro-
tein complexes from the MIPS complex catalog [27]. All

Table 3: Results for the WI-PHI network

% in same MIPS category RRW MCL Naive
90+% 50% 17% 7.8%
80+% 71% 30% 19%
70+% 72% 42% 31%
60+% 86% 57% 44%
50+% 91% 77% 70%
25+% 98% 99% 98%

proteins belonging to the same MIPS complex are deter-
mined to be interacting with each other. Two statistical
results are obtained. First, the quality of a cluster is
assessed by finding the percentage of proteins belonging
to the same MIPS complex within that cluster. If multiple
complex annotations are mapped to the same cluster, the
annotation with the highest number of proteins con-
tained in the cluster is chosen. In addition, benchmark
protein complexes from the MIPS catalog were used to
obtain precision, recall, and accuracy measures. The MIPS
benchmark contains 49 protein complexes each of which
contains 5 to 10 proteins. The goal was to find clusters as
close as possible to the actual complex or pathway, as
measured by: precision = number of true positives/local cluster
size, recall = number of true positives/size of complex or path-

way, and accuracy = \/recall - precision where true positives

are proteins in the same benchmark complex which are
found in the local cluster.

We compare our results to MCL [30] (using an inflation
value of 2.5), as well as a naive cluster expansion method
we implemented. MCL has been identified as currently
being the strongest graph clustering technique in two
recent clustering survey papers [31,32], and so we focus
our comparisons to this technique. The MCL inflation

Table 5: Results for the FN40 network

% in same MIPS category RRW MCL Naive
90+% 47% 10% 7.7%
80+% 67% 23% 19%
70+% 68% 32% 26%
60+% 87% 49% 44%
50+% 91% 79% 63%
25+% 99% 98% 95%
Page 6 of 10
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Table 4: Results for the FP40 network
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Table 6: Results for the Rewire40 network

% in same MIPS category RRW MCL Naive % in same MIPS category RRW MCL Naive
90+% 52% 20% 6.3% 90+% 43% 17% 4.8%
80+% 72% 34% 17% 80+% 64% 32% 13%
70+% 74% 50% 26% 70+% 64% 46% 21%
60+% 84% 63% 37% 60+% 77% 65% 33%
50+% 87% 82% 63% 50+% 80% 81% 57%
25+% 99% 99% 96% 25+% 97% 98% 93%

parameter was chosen after evaluating various parameter
settings, as shown in Table 2. In the naive expansion
method, clusters are expanded by including the neighbors
that are connected to the cluster with the largest weight
edges. The main difference between this approach and the
repeated random walk is that the naive method chooses
the closest neighbors based on local similarity, whereas
RRW chooses the closest neighbors based on the global
structure of the network.

Ignoring uncharacterized proteins and clusters less than 5
characterized proteins in size, 50% of all the reported clus-
ters from RRW on the original network had at least 90%
of their members from the same MIPS complex, signifi-
cantly higher compared to the 17% in MCL or 7.8% in
naive, as can be seen from Table 3. In addition, three types
of noisy networks were generated to observe the effect of
false negatives (FN40), false positives (FP40), and edge
shuffling (Rewire40) separately. FN40 network was
obtained by randomly removing 40% of the edges in the
original network. The FP40 network was obtained by add-
ing 40% new random edges to the original network. And
the Rewire40 network was obtained by shuffling 40%
edges of the original network so that the degree distribu-
tion of the original network was preserved. Among these
noisy networks as well, the quality of the majority of clus-
ters remains significantly higher in RRW, proving its

robustness against network noise, as seen from Tables 4,
5, and 6.

Table 7 shows the precision, recall, and accuracy values for
the local clusters found in the S. cerevisiae network. The
precision of RRW is again confirmed to be much higher
than the other methods, emphasizing the quality of the
clusters found. This precision in clustering is especially
important in biological domains such as protein net-
works, as it enables more accurate predictions for proteins
with unknown cellular function. The recall for RRW, how-
ever, is found to be low compared to both MCL and naive.
This means that, though the clusters found by RRW are
highly precise, they may not find all proteins within a cat-
egory, or may split single categories into multiple separate
clusters. Comparing the average created cluster size of
5.72 for RRW, 9.82 for MCL, and 10.9 for the naive
method, it can indeed be seen that RRW created smaller
clusters, leading to a lower recall rate. However, despite
this, the overall accuracy measure of the RRW clusters are
still higher than those found in both the MCL and naive
methods across all the networks.

Comparison to known biological processes

In addition to MIPS complexes, proteins that are known
to function in the same biological process were also used
as a separate gold standard to further confirm that found

Table 7: Precision, recall, and accuracy on pre-selected MIPS clusters

Network Precision Recall Accuracy
RRW/MCL/Naive RRW/MCL/Naive RRW/MCL/Naive
WI-PHI 0.765/0.512/0.363 0.734/0.832/0.791 0.749/0.657/0.535
FP40 0.788/0.538/0.362 0.724/0.768/0.795 0.755/0.643/0.537
FN40 0.708/0.423/0.326 0.595/0.670/0.699 0.649/0.532/0.477
Rewire40 0.667/0.480/0.370 0.545/0.565/0.706 0.603/0.520/0.51 1
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Table 8: Results for the WI-PHI network
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Table 9: Results for the FP40 network

% same GO annotation RRW MCL Naive % same GO annotation RRW MCL Naive
90+% 39% 6% 13% 90+% 42% 18% 10%
80+% 60% 22% 26% 80+% 60% 43% 21%
70+% 62% 32% 35% 70+% 62% 58% 28%
60+% 76% 49% 57% 60+% 76% 75% 46%
50+% 79% 67% 69% 50+% 79% 85% 57%
25+% 96% 97% 98% 25+% 95% 99% 95%

clusters relate to biologically functional modules. A list of
295 significant GO biological process terms was used as
given by Myers et al. [33] to specify the biological proc-
esses in a cell. We used the GO annotations [34] for yeast
(May 23, 2009 version) to identify sets of proteins anno-
tated with the same GO biological process term. 158 of
the significant biological process terms were found to be
annotated to at least 5 proteins. Hierarchical information
was accounted for in this step by allowing proteins with
an annotation lower in the tree to match with a parent
annotation. These 158 terms, and the sets of proteins
annotated with these terms, were then used as a gold
standard. All proteins matching the same term were
assumed to function together. Comparing the returned
clusters in a manner similar to that used with the MIPS
standard, it can be seen from Tables 8, 9, 10, and 11 that
again the quality of clusters reported by RRW were signif-
icantly higher than most of those reported by MCL or the
naive method.

Analysis of select clusters for biological significance

To further validate the biological significance of the clus-
ters discovered by RRW, we next discuss several statisti-
cally significant clusters discovered by our technique that
are also biologically meaningful. One high scoring cluster

Table 10: Results for the FN40 network

% same GO annotation RRW MCL Naive
90+% 41% 4.5% 18%
80+% 60% 19% 32%
70+% 61% 31% 40%
60+% 81% 50% 61%
50+% 83% 68% 71%
25+% 97% 98% 99%

found by RRW, and not created by either MCL or the naive
method, consisted of the proteins YML049¢, YMR240c,
YMR288w, YOR319w, and YPR094w. Though not all
listed within the same MIPS complex, these 5 proteins
were among the 7 found to interact in the yeast SF3b U2
snRNP subunits that associate with the pre-mRNA
branchpoint region [35]. Another cluster found consisted
of 5 proteins: YBL0O97w, YDR325w, YFR031c, YLRO86w,
and YLR272c. The MIPS complex catalogue did not list
any of these five together in the same physical complex.
However, their corresponding genes exactly match the 5
subunit S. cerevisiae condensin complex [36], essential for
chromosome segregation during mitosis, demonstrating
the ability of RRW to discover significant functional com-
plexes as well as physical. Another 5 protein cluster dis-
covered contained YDR200c, YFROO8w, YLR238w,
YMR029¢, and YMRO52w. Again, though not all con-
tained within the same MIPS complex, these proteins have
all been found to be part of a six-member group of inter-
acting proteins that prevent recovery from pheremone
arrest in yeast [37].

Conclusion

In this paper, we proposed a novel algorithm based on
repeated random walks on graphs for discovering func-
tional modules within genome-scale protein networks.

Table | I: Results for the Rewire40 network

% same GO annotation RRW MCL Naive
90+% 30% 13% 7.8%
80+% 49% 29% 21%
70+% 49% 35% 25%
60+% 64% 57% 40%
50+% 67% 70% 52%
25+% 92% 98% 91%
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We applied the RRW on an interaction network of yeast
genes by Kiemer et al. [29] and efficiently identified statis-
tically significant clusters of proteins. We validated the
biological significance of the results by comparison to
known complexes in both the MIPS complex catalogue
database [27] and GO functional annotations [34], as well
as to existing clustering techniques. The repeated random
walk technique offers significant improvements in preci-
sion over existing clustering techniques by making use of
the strength of functional associations as well as the net-
work topology and providing clusters of desired overlap
ratio. Overlapping clusters proved a more accurate model
of real biological networks with multifunctional proteins.
In summary, our technique discovers biologically more
significant clusters in a genome-wide protein interaction
network using global connectivity and supporting evi-
dence information accurately and efficiently.

Methods

The Random Walk and the Repeated Random Walk
algorithms

Figure 1 gives the algorithm for finding the stationary vec-
tor of a Random Walk with restarts from a single starting
node. The complexity of the algorithm is O(w-|V]2),
where w is the number of iterations to converge. The value
of w is determined by the structure of the network and the
restart probability «. In general, the ratio of the first two
eigenvalues of a transition matrix specifies the rate of con-
vergence to the stationary probability [38].

The Repeated Random Walk (RRW) and Random Walk
starting from a cluster (ClusterRWSimulation) algorithms
are given in Figures 2 and 3. For the RRW algorithm, start-
ing from every node in the network, sets of strongly con-
nected proteins are found by expanding the clusters
repeatedly using the ClusterRWSimulation method. Clus-
ters of size < k are inserted into a priority queue ordered
by their statistical significance. For expanding a cluster C,
the ClusterRWSimulation method is run and the closest
protein in its stationary vector recorded. This neighbor
protein is added to C, as long as its weight is within the
early cutoff, 4, of the previously added protein to the clus-
ter, resulting in one new cluster to be further expanded.
The complexity is linear with the maximum cluster size, O
(IVI-R).

An implementation of the RRW algorithm is available for
download at http://cs.ucsb.edu/~kpm/RRW/
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