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Abstract

Background: MicroRNAs are small endogenously expressed non-coding RNA molecules that regulate target gene expression
through translation repression or messenger RNA degradation. MicroRNA regulation is performed through pairing of the
microRNA to sites in the messenger RNA of protein coding genes. Since experimental identification of miRNA target genes
poses difficulties, computational microRNA target prediction is one of the key means in deciphering the role of microRNAs in
development and disease.

Results: DIANA-microT 3.0 is an algorithm for microRNA target prediction which is based on several parameters calculated
individually for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final
prediction score, which correlates with protein production fold change. Specifically, for each predicted interaction the program
reports a signal to noise ratio and a precision score which can be used as an indication of the false positive rate of the prediction.

Conclusion: Recently, several computational target prediction programs were benchmarked based on a set of microRNA
target genes identified by the pSILAC method. In this assessment DIANA-microT 3.0 was found to achieve the highest precision
among the most widely used microRNA target prediction programs reaching approximately 66%. The DIANA-microT 3.0
prediction results are available online in a user friendly web server at http://www.microrna.gr/microT
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Background

MicroRNAs (miRNAs) are short, endogenously expressed
RNA molecules that regulate gene expression by binding
directly and preferably to the 3' untranslated region
(3'UTR) of protein coding genes [1]. Each miRNA is 19-24
nucleotides in length and is processed from a longer tran-
script which is referred to as the primary transcript (pri-
miRNA). These transcripts are processed in the cell
nucleus to short, 70-nucleotide stem-loop structures
known as pre-miRNAs. Pre-miRNAs are processed to
mature miRNAs in the cytoplasm by interaction with the
endonuclease Dicer which cleaves the pre-miRNA stem-
loop into two complementary short RNA molecules. One
of these molecules is integrated into the RISC (RNA
induced silencing complex) complex and guides the
whole complex to the mRNA, thus inhibiting translation
or inducing mRNA degradation [2]. Since their initial
identification, miRNAs have been found to confer a novel
layer of genetic regulation in a wide range of biological
processes. miRNAs were first identified in 1993 [3] via
classical genetic techniques in C. elegans, but it was not
until 2001 that they were found to be widespread and
abundant in cells [4-6]. This finding served as the primary
impetus for the development of the first computational
miRNA target prediction programs. DIANA-microT [7]
and TargetScan [8] were the first algorithms to predict
miRNA targets in humans, and led to the identification of
an initial set of experimentally supported mammalian tar-
gets. Such targets are now collected and reported in Tar-
Base [9] which contains more than one thousand entries
for human and mouse miRNAs.

In the last years several groups suggested that the first
nucleotides of a miRNA sequence are crucial for recogniz-
ing and binding to the messenger of a protein. Kiriakidou
et al. [7] showed the need for a nearly consecutive binding
of the first 9 miRNA nucleotides (driver sequence) (figure
1b) to the 3'UTR of protein coding genes in order to
repress translation. A statistical approach by Lewis et al.
[10] revealed that complementary motifs to nucleotides 2-
7 of the miRNA driver sequence (miRNA seed region)
remain preferentially conserved in several species. Typi-
cally, it is believed that a binding of at least 7 consecutive
Watson-Crick (WC) base pairing nucleotides between the
miRNA driver sequence and the miRNA Recognition Ele-
ment (MRE) is required for sufficient repression of protein
production. However, experimental evidence [11] show
that weaker bindings, involving only six consecutively
paired nucleotides or including imperfect bindings (e.g.
G:U wobble, bulge) may also confer protein repression
although they might generally be less effective [12]. For
this reason, miRNA target prediction programs mostly
rely on sequence alignment of the miRNA seed region to
the 3'UTR sequences of candidate target genes in order to
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identify putative miRNA binding sites. Their specificity is
usually increased by additionally assessing the commonly
observed binding site evolutionary conservation or by
using additional features such as binding site structural
accessibility [13,14], nucleotide composition flanking the
binding sites [15] or proximity of one binding site to
another within the same 3' UTR [12,15,16].

DIANA-microT 3.0, the algorithm described here, utilizes
the above mentioned features and categorizes as putative
MRE:s those sites that have seven, eight or nine nucleotide
long consecutive WC base pairing with the miRNA driver
sequence, starting from position 1 or 2 of the 5'end of the
miRNA. For sites with additional base pairing involving
the 3'end of the miRNA, a single G:U wobble pair or bind-
ing of only 6 consecutive nucleotides to the driver
sequence are allowed. Briefly, the DIANA-microT 3.0
algorithm consists of (figure 1a): a) alignment of the
miRNA driver sequence on the 3'UTR of a protein coding
gene, b) identification of putative MREs based on specific
binding rules, c) scoring of individual MREs according to
their binding type and conservation profile, d) calculation
of an overall miRNA target gene (miTG) score through the
weighted sum of all MRE scores lying on the 3'UTR. The
program is designed to use up to 27 different species to
estimate MRE conservation scores and combines both
conserved and non-conserved MREs in a final miTG score
(figure 1c). The miTG score correlates with fold changes in
protein expression. Additionally, since the algorithm cal-
culates all weights and scores independently for each
miRNA it allows for the calculation of signal to noise ratio
(SNR) at different miTG score cut-offs providing precision
scores which serve as an indication of the false positive
rate of the predicted interactions.

Generally, miRNAs can repress the expression of proteins
in two ways: via mRNA degradation or via repression of
mRNA translation. Until recently, high throughput exper-
iments were only able to measure miRNA-mediated
changes at the mRNA level (degradation), allowing the
characterization of only a subset of direct miRNA targets
[17,18]. However, recently two groups [12,19] have inde-
pendently developed methods to characterize miRNA-
mediated gene expression changes at both the mRNA and
the protein level. Selbach et al. [19] used microarrays and
pulsed stable isotope labeling with amino acids in cell cul-
ture (pSILAC) assays to determine the genes targeted by
each of five over-expressed miRNAs in HelLa cells. Using
this set of experimentally supported targets the authors
performed a comparative assessment of several target pre-
diction programs. The benchmark revealed that the sim-
plest prediction method involving the search for
complementary sequences of the miRNA seed region on
the 3'UTR of genes achieved a precision (the fraction of
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The DIANA-microT 3.0 algorithm. (a) A schematic overview of the algorithm. The miRNA driver sequence is mapped
onto a 9 nt length window that slides along the 3'UTR sequence. The binding category of the driver:MRE interaction is defined
by the number of binding nucleotides between the two sequences. G:U wobble pairs or less than 7 consecutive WC matches
are only allowed if the free binding energy of the miRNA:MRE heteroduplex is under a binding category specific threshold
(lower free binding energy corresponds to stronger binding). MREs are scored according to their binding category and degree
of conservation in other species. The final miTG score is the weighted sum of all MREs on the miTG. (b) The top sequence
(MRE) is part of the 3'UTR of a gene. The nine nucleotide region near the 5'end of the miRNA is called the driver sequence of
the miRNA (shown in red). Sequences on the MRE, corresponding to positions |-6, 2-7 and 3-8 from the miRNA 5'end are
called anti-seed |, anti-seed 2 and anti-seed 3 respectively. (c) An example of the miTG score calculation. The top line repre-
sents the 3'UTR sequence of a human gene containing three MREs with different conservation levels. Individual MRE scores are
calculated depending on the degree of conservation of the MRE, and multiplied by a weight depending on the MRE binding cat-
egory. The sum of all weighted MRE scores defines the final miTG score.

the predicted targets that were actually downregulated) of
44% while only three of the prediction programs (includ-
ing an initial version of DIANA-microT 3.0) achieved sig-
nificantly higher precision. PicTar [20] and TargetScanS
[10] achieved approximately 62% precision compared to
DIANA-microT 3.0 with approximately 66%.

Methods

Identification of putative miRNA binding sites through
sequence alignment

The program identifies the highest scoring alignment
between every nine nucleotide long window of the 3'UTR
with the miRNA driver sequence using a dynamic pro-
gramming algorithm. The alignment is based on the fol-
lowing binding rules. Firstly, a minimum of six

consecutive matches (Watson-Crick (W-C) or G:U) is
required. If the six matches are W-C and the binding starts
at position 1 or 2 of the miRNA driver sequence, then the
MRE is considered a 6mer. A 7mer (8mer, 9mer) has seven
(eight, nine) consecutive W-C matches starting at position
1 or 2 of the miRNA driver. A single G:U wobble pair is
allowed as long as there are at least six W-C pairs, yielding
7mers, 8mers and 9mers, each with a wobble base pair.

Filter of putative miRNA binding sites depending on
binding energy

For sites with less than 7 consecutive W-C matches (6mer,
7mer with wobble, 8mer with wobble, 9mer with wob-
ble) an additional energy filter is applied. Using RNAhy-
brid [21] the algorithm estimates the free binding energy
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between the miRNA sequence and the 3'UTR sequence
flanking the identified putative binding site and compares
it to the perfect complement energy of the miRNA. As
"perfect complement energy" we denote the hypothetical
energy of the perfect binding between the miRNA
sequence and its reverse complement sequence. Therefore
an imperfect site, in terms of alignment, is considered as
MRE only if the ratio of the free binding energy to the per-
fect complement energy is higher than a binding-category
specific threshold. A threshold of 0.6 is used for 9mers
and 8mers containing a G:U wobble pair, and a threshold
of 0.74 is used for 7mers with a G:U wobble pair and
6mers. The energy thresholds have been calculated by
comparing the predicted binding sites of the real miRNA
sequence versus the predicted binding sites of several
shuffled miRNA sequences. The shuffled miRNA
sequences are designed to have the same driver as the real
miRNA but a shuffled 3' end with the same nucleotide
composition as the real miRNA. The free binding energy
ratio ¢; is defined as the ratio of the free binding energy
between the miRNA sequence and the 3'UTR sequence
flanking the identified putative binding site over the
miRNA perfect complement energy. Additionally, N,(e;) is
defined as the number of binding sites of the real miRNAs
that have energy ratios greater than e; and as Ng(e;) the
number of binding sites of the shuffled miRNAs that have
energy ratios greater than e;. The ratio R(¢;) = N,(e;)/Ns(e;)
indicates how much more prevalent the free binding
energy e;for real binding sites compared to the shuffled
ones is. An example of the way this ratio R(e;) fluctuates is
provided in figure 2. For each binding category the energy
thresholds have been chosen at the point where the ratio

ratio R(e;)

0o 01 02 03 04 0s 06 07 08 09 10

energy ratio e;

Figure 2

Hybridization energy ratio. Ratio R(e;) (vertical axis) is
plotted against the energy ratio e; (horizontal axis). The curve
corresponds to the binding category which consists of seven
WC pairs and a single G:U wobble pair.
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R(e;) becomes greater than 2 indicating that at this energy
value one can generally find two times more real binding
sites than random binding sites.

Mock miRNAs

Mock miRNAs are artificially produced miRNA sequences
which are independently created for each real miRNA.
These artificial miRNA sequences are designed to have
approximately the same number of predicted MREs as the
corresponding real miRNA and are generated through the
following procedure. Initially, all 3'UTR sequences are
scanned for sites perfectly complementary to each possi-
ble 6 nucleotide long motif (hexamer) excluding those
motifs corresponding to positions 1-6, 2-7 and 3-8 of real
miRNAs. The 60 hexamers having the closest number of
complementary sites to those of the seed of the real
miRNA are chosen. These hexamers are then used as the
seed of each artificially created mock miRNA. The remain-
ing sequence of the mock miRNAs is then produced by
randomly shuffling the remaining nucleotides of the real
miRNA.

miRNA Recognition Elements score (MRE score)

The identified MREs are checked for sequence conserva-
tion in several species based on the sequence alignment of
ortholog UTRs. An MRE X is considered conserved in spe-
cies A if X can also be identified at the exact same position
on the ortholog 3'UTR sequence of species A. The conser-
vation score cof an MRE is defined as the number of spe-
cies in which the MRE is conserved. The MRE score is
calculated individually for each real miRNA r, each bind-
ing category b and each conservation score c. Analytically,
for each binding category the number of MREs N, ,(c) of
the real miRNA and the number of MREs M, ,, ,(c) of the
corresponding mock miRNAs with conservation score
equal or greater than ¢ are counted and the ratio of the two
defines the MRE score (of binding category b at conserva-
tion score c¢). The equation defining this procedure is

50
R, (¢)=60-N,,(c)/ > M,,;,(c) in which r is the
m=1

index of the real miRNA, b corresponds to the binding cat-
egory, ¢ defines the conservation score and m defines the
index of the mock miRNA from the set of mock miRNAs
corresponding to the real miRNA r. In the described pro-
cedure the ratio is kept constant if N, (c) or M, ,, ,(c)/60
become less than 20. Figure 3 shows an example of R, for

2 binding categories at different MRE conservation scores.

miRNA target gene score
The scores of the MREs identified on the same 3'UTR are
combined through a weighted sum to produce the final
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Figure 3
miRNA recognition element score. The MRE score
(vertical axis) is plotted against the MRE conservation score
(horizontal axis) for two different binding categories.

miTG score. The weights w, for each binding category b are
calculated using 75 miRNAs conserved in human, chim-
panzee, mouse, rat, dog and chicken, by comparing them
to 375 mock sequences (5 mock miRNAs for each
miRNA). The analysis is similar to the calculation of the
MRE score explained previously but in this case the 75
miRNAs are not treated independently but as a total. The

ratio R}, (¢ ) for binding category b and conservation score

c is calculated as
, r=75 75 5 )
Ry(c)=5-3 N, (c)/ D D M, ., (c) where N,(c) is

=0 r=1 m=1

the number of MREs of the r real miRNA categorized to
binding category b and having a conservation score greater
than ¢, M, ,, ,(c) represents the number of MREs of the m
mock miRNA categorized to binding category b succeed-
ing a conservation score greater than ¢ and corresponding
to real miRNA r. As shown in figure 4 the weights for each
binding category are estimated based on the slope of a fit-

Table I: Binding category weights
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ted line. Fitting is performed based on linear least squares
approximation. For each binding category the weight is
defined as w(bindingcategory) = slope(bindingcategory)/
slope(9mer). For example, the weight for category "8mer"
would be wg... = 0.31/0.39 = 0.79. Except for "9mer",

"8mer" and "7mer" the remaining categories do not differ
significantly from the mock background and conse-
quently in this analysis no specific weights are calculated
for these categories. In order to approximate the estimated
weights Dw;, based on the above analysis, each MRE score

is multiplied by a specific weight mw, which depends on
the binding category of the MRE (table 1).

miTG score threshold assessment

A common challenge among miRNA target prediction
programs is the decision on a score threshold that will
reduce the number of misclassifications. Here a set of 100
experimentally supported targets for 43 different human
miRNAs, provided by TarBase 5.0 [9], has been used in
order to determine a biologically meaningful score thresh-
old. Based on this dataset, an analysis was performed to
test the capability of the algorithm to identify supported
targets when increasing the miTG score threshold. As
expected, the algorithm's capability reduces as the miTG
score increases (figure 5). However, there are two distinct
miTG scores (7.3 and 19.0) with significantly higher per-
formance reduction. For this reason, these miTG score val-
ues have been chosen as a loose and strict miTG score
threshold respectively. However, users are still allowed to
adjust the threshold at will to exchange between specifi-
city and sensitivity levels.

Precision

The precision of a prediction is defined as the ratio of cor-
rect positive predictions over all positive predictions [pre-
cision = truepositive [(truepositive + falsepositive)]. In the case
of DIANA-microT 3.0, the average number of miTGs for
mock miRNAs provides an estimation of the number of
false positive targets predicted. Therefore, the number of

Category Estimated Weights (w,) Multiplication weights (mw,) Overall Diana weights Dw, = mw,/mwy,...
9mer I 4 1.00 = 4/4
8mer 0.79 3 0.75 = 3/4
7mer 0.41 2 0.50 =2/4
other - I 025=1/4

The binding weights estimated for each binding category and the weights used in DIANA-microT 3.0.
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Figure 4
Binding categories differ from the mock background.
Ratio Rj, (vertical axis) versus the conservation score (hori-

zontal axis) for the set consisting of 75 miRNAs conserved in
human, chimp, mouse, rat, dog, chicken. This diagram indi-
cates how each binding category may be differentiated as the
conservation score increases (more conserved MREs). It may
be seen that 9mers tend to differentiate more than 8mers
and 8mers more than 7mers. Except for categories "9Imer",
"8mer" and "7mer" the remaining categories do not seem to
differ significantly from the background.

true positive predicted miTGs can be calculated by sub-
tracting the average number of predicted miTGs for the
mock miRNAs from the total number of predicted miTGs
for the real miRNA. In detail, the precision for miRNA r at
miTG score s is calculated by

precision, (s) = [Wr(s)—V_VT,m(s)]/Wr(s) where W, is
the number of miTGs of the r real miRNA having miTG
scores from s to s + As, W, is the average number of

miTGs of the mock miRNAs corresponding to miRNA r
having miTG scores from s to s + As and As is a specified
miTG score window (As = 3).

miRNA sequences

The human and mouse miRNA sequences used by
DIANA-microT 3.0 have been downloaded from miRBase
Build 10.0 [22].

3'UTR sequences

The gene 3'UTR sequences have been downloaded from
Ensemb], release 48 [23]. Those 3'UTR sequences that cor-
respond to the same gene but to different gene transcripts

http://www.biomedcentral.com/1471-2105/10/295
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Number of predicted miTGs per miRNA

Figure 5

Define biologically meaningful score threshold. Exper-
imentally validated targets correctly predicted by DIANA-
microT 3.0 versus the average number of predicted miTGs
per miRNA. The slope of this curve corresponds to the rate
in which correct validated targets are discovered as more
miTGs are predicted. There are two distinct points in which
the slope changes. These points correspond to miTG score
values of 19 and 7.3 which are proposed as the strict and
loose miTG score thresholds respectively. As a control, the
order of miTGs with scores lower than each threshold was
shuffled. The discovery rate of these controls is shown with
dotted lines. The red line shows all miTGs in random order,
the blue line those with miTG score under |19 and the green
line those with miTG score under 7.3. The difference in
slope between the solid line and each dotted line shows the
improvement on the discovery rate achieved by the DIANA-
microT scoring scheme. Two other target prediction pro-
grams (Pictar and TargetScan 4.2) have been compared to
DIANA-microT 3.0 on the same dataset achieving similar
precision levels (figure 9).

have been filtered to keep only the longest 3'UTR
sequence.

Multiple Alignment Files (MAFs)

The multiple genome alignment files have been down-
loaded from the UCSC Genome Browser [24]. The file
used for human (hg18) is the alignment to 16 vertebrate
genomes while for mouse (mm9) 29 vertebrate genomes
are used.

Results
Signal to Noise Ratio (SNR) assessment

The signal to noise ratio for a prediction algorithm is typ-
ically used for the evaluation of its specificity. For DIANA-
microT 3.0 the overall SNR is defined as the average signal
to noise ratio calculated individually for each miRNA. The
individual miRNA signal to noise ratio calculation is per-
formed by dividing the number of predicted miTGs of a
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real miRNA by the number of predicted miTGs for the set
of corresponding mock miRNAs. It is assumed that the
predicted miTGs for the mock miRNA sequences provide
an unbiased estimate of the number of miTGs predicted
by chance alone. Analytically, the SNR value of miRNA r
at miTG score s is calculated as

60
SNR, (s)=60-NG,(s)/Y MG, (s). In this formula
1

NG,(s) refers to the number of miTGs of the real miRNA r
having miTG scores greater than s while MG, , (s) refers to
the number of miTGs of the mock miRNA m correspond-
ing to the real miRNA r having miTG score greater than s.
Figure 6 presents a graph of the SNR for seven different
miRNAs. The overall SNR calculation for DIANA-microT
3.0 is performed on two different sets of miRNAs. The first
set consists of 75 miRNAs conserved in 6 vertebrate spe-
cies while the second set consists of 227 unique miRNAs
each one representing a miRNA family with varying con-
servation levels. Figure 7 shows the diagram for the
number of predicted miTGs versus the miTG score. For an
miTG score threshold that yields an average of approxi-
mately 100 predicted target genes per miRNA, DIANA-
microT 3.0 achieves an overall SNR of 3.9 for the first
dataset and an overall SNR of 2.2 for the second dataset
which indicates that conserved miRNAs tend to achieve
higher SNR values.
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Signal to Noise Ratio (SNR)
Figure 6

Signal to noise ratio for 7 miRNAs. Curves showing the
number of predicted miTGs versus the SNR for 7 miRNAs.
The loose and strict thresholds have been marked in the fig-
ure with the symbols "N" and "S" respectively.
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| —— 227 miRNA families
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Signal to Noise
////H,/Rano

Average number of predicted miTGs
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miTG score

Figure 7

Overall signal to noise ratio. The mean number of pre-
dicted miTGs per miRNA for different miTG score cutoffs.
The red curve corresponds to a set of 75 miRNAs conserved
in at least six species (human, chimp, mouse, rat, dog,
chicken), whereas the blue curve corresponds to a set of 227
miRNAs which represent the miRNA families (with varying
conservation levels). The values next to the curves indicate
the overall SNR. Higher miTG score leads to fewer pre-
dicted miTGs with higher overall SNR, which suggests a
lower number of false positive predicted miTGs. The sug-
gested strict (red bars) and loose (green bar) miTG score
thresholds are marked on the curves. For the strict miTG
score threshold (miTG score = 19), the estimated overall
SNR for the set of 227 miRNAs (blue line) is 3, meaning that
approximately one in three predicted miTGs might be a false
positive. In comparison, at the loose suggested threshold
(miTG score = 7.3), approximately one in two predicted
miTGs might be a false positive.

Receiver Operating Characteristics (ROC) analysis on
proteomics data

Until recently a common difficulty in assessing the per-
formance of a prediction algorithm was that the available
experimental data could not easily distinguish between
true and false targets. However, the recent study of Sel-
bach et al. provides both classes of targets allowing for the
estimation of both the true positive rate as well as the false
positive rate of a prediction. Using a log, fold change cut-
off of -0.2 to distinguish between targeted and non-tar-
geted genes, the performance of DIANA-microT 3.0 is
assessed and presented as a ROC curve (figure 8).

Correlation of miTG score to the repression of protein
production

In the study by Selbach et al[19], it was observed that there
is a correlation between the log,-fold change of protein
production with the number of occurrences of the hex-
amer corresponding to the seed of a miRNA in the 3'UTR

Page 7 of 10

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:295 http://www.biomedcentral.com/1471-2105/10/295

04 of downregulated genes. When investigating the same
data using DIANA-microT 3.0, a similar correlation
035 between the level of protein down-regulation and the pre-
dicted miTG scores, SNR, and precision values is observed
03 (figure 9a). Interestingly, a linear regression analysis
shows that the combination of miTG score, precision,
@ 035 SNR, and the number of anti-seeds (regions on the gene
4 3'UTR complementary to the motifs 1-6, 2-7, 3-8 of the
2 o2 miRNA) as regressors provides the best accuracy in
§ attempting to predict such fold changes in protein expres-
AL sion. Figure 9b demonstrates the relationship between the
= protein expression fold change versus the number of
0.1 occurrences of the miRNA anti-seed 2 (adjusted R2=0.12)
as well as the protein expression fold change versus the
005 combined regressor (adjusted R2=0.15).
o - * = 4 Discussion and conclusion
' ' - In the last five years more than two dozen miRNA target
el rediction programs for mammalian genomes have been
p prog 8
Figure 8 published [25]. Using data from a high throughput exper-
DIANA-microT 3.0 ROC curve. The ROC curve for iment on five miRNAs [19] as a true-positive set of targets,
DIANA-microT 3.0 calculated on the pSILAC data [19]. The it has been shown that DIANA-microT 3.0 achieves com-
suggested loose threshold of DIANA-microT 3.0 has been parable precision to two other leading target prediction
marked on the diagram with a red dot. programs, TargetScan$ [8] and PicTar [20]. Additionally,
DIANA-microT 3.0 provides prediction scores which cor-
a " ] g b o3
;‘: ol f‘( - - combined regression
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Figure 9

Correlation of DIANA-microT 3.0 prediction measures to protein repression. Fold changes are calculated for
approximately 5,000 proteins after overexpression of a miRNA. The results for five miRNAs, as provided by Selbach et al., are
used. The fold change and the miTG score is averaged in groups of 150 proteins sorted by fold change. (a) The correlation of
several miRNA target prediction measures with protein production fold change induced by the same miRNAs. It may be
observed that there is a trend for values of all the measures to increase as the level of downregulation increases. (b) The red
line indicates the correlation between the anti-seed 2 occurrences on the 3'UTRs of downregulated genes with the protein
production fold change of the corresponding genes using a linear regression. The blue line shows the corresponding correla-
tion for a linear regressor based on a combination of the miTG score, the precision, the SNR and the anti-seed 2 frequency.
The combined linear regressor correlates better with the protein production fold change than the regressor based solely on
the anti-seed 2 frequency.
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Table 2: Number of miTGs predicted in common by programs

Diana-microT  PicTar TargetScan 4.2
Diana-microT 22391 8882 10651
PicTar 17135 12902
TargetScan 4.2 19299

The table diagonal corresponds to the total number of miTGs
predicted by each program for all the miRNAs which are included in
the set of experimentally verified targets. The number of miTGs
predicted in common by each two target prediction programs is
shown in the table. For example, TargetScan and PicTar have 12902
predicted targets in common while DIANA-microT and PicTar have
8882.

relate with protein production fold change and may be
used as an indication of the expected fold change in pro-
tein production. The performance of the algorithm has
been analyzed further by using a different set of supported
miRNA targets which has been extracted by the database
of experimentally supported targets [9]. The results also
indicate that the three programs (DIANA-microT 3.0, Pic-
Tar and TargetScan 4.2) achieve similar precision levels
(figure 10). However, as shown in table 2 and 3 there are
significant differences among the miTGs predicted by
DIANA-microT 3.0 and those predicted by each of the
other programs. Table 3 indicates that only 40% of the
miTGs predicted by DIANA-microT 3.0 are also predicted
by PicTar, and only 48% are predicted by TargetScan 4.2.
This leaves in either case approximately 50% of the targets
predicted only by DIANA-microT 3.0.

Recently, the rapid growth in the discovery rate of novel
miRNA sequences due to extensive usage of deep sequenc-
ing technology [14], and the fact that miRNAs have been
shown to undergo A-to-I RNA editing [15] have under-
lined the need for a web based program which would
allow for miRNA target predictions based on user defined
miRNA sequences. DIANA-microT 3.0 is one of the few
programs offering such a service, supporting the scientific

Table 3: Percentage of common predictions among programs

Diana-microT  PicTar TargetScan 4.2
Diana-microT 100% 39.67% 47.57%
PicTar 51.84% 100% 75.30%
TargetScan 4.2 55.19% 66.85% 100%

The percentage of each program's predicted targets (rows) which are
also predicted by another program (columns) for all the miRNAs
which are included in the set of experimentally verified targets. For
example, from the miTGs predicted by DIANA-microT 3.0, 39.67%
are also predicted by PicTar and 47.57% by TargetScan 4.2.

http://www.biomedcentral.com/1471-2105/10/295
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Figure 10

Comparison on experimentally supported targets.
Comparison of three target prediction programs (DIANA-
microT 3.0, Pictar and TargetScan 4.2) on the experimentally
supported dataset. The average number of predicted miTGs
per miRNA is presented on the horizontal axis. The total
number of correctly predicted experimentally validated tar-
gets is shown on the vertical axis. All three programs tested
perform similarly.

community with a tool which in total can be extensively
used for the analysis of miRNA dependent processes. This
tool can be accessed thought the DIANA-microT [26] web
server at http://www.microrna.gr/microT which includes
an optimized prediction algorithm that provides several
features, combined with a user friendly interface which
assists in the identification of interactions of interest.

As already mentioned, DIANA-microT 3.0 takes into
account both conserved and not conserved MREs. This
attribute provides the algorithm with a highly important
capability to predict targets of viral miRNA sequences.
Generally, targets of viral miRNAs are not expected to be
conserved and this limits the ability of algorithms
dependent on conservation to identify them. However,
since DIANA-microT 3.0 algorithm accepts non conserved
MREs it can successfully cope with viral miRNA
sequences.
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