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Abstract
Background: Gene sets are widely used to interpret genome-scale data. Analysis techniques that
make better use of the correlation structure of microarray data while addressing practical "n<p"
concerns could provide a real increase in power. However correlation structure is hard to estimate
with typical genomics sample sizes. In this paper we present an extension of a classical multivariate
procedure that confronts this challenge by the use of a regularized covariance matrix.

Results: We evaluated our testing procedure using both simulated data and a widely analyzed
diabetes data set. We compared our approach to another popular multivariate test for both sets
of data. Our results suggest an increase in power for detecting gene set differences can be obtained
using our approach relative to the popular multivariate test with no increase in the false positive
rate.

Conclusion: Our regularized covariance matrix multivariate approach to gene set testing showed
promise in both real and simulated data comparisons. Our findings are consistent with the recent
literature in gene set methodology.

Background
High-throughput genomic technologies continue to
present both rewarding opportunities and novel chal-
lenges to biologists and medical researchers. DNA micro-
array technologies allow researchers to characterize the
expression profiles for thousands of genes for samples of
interest. However analysis methods for these data are
troubled by the "curse of dimensionality" and by small
sample sizes due to practical and economic constraints.
However because of widespread efforts to arrange genes
into meaningful biological subsystems, gene sets, or path-
ways, have become a widely used unit of analysis. The
Kyoto Encyclopedia of Genes and Genomes (KEGG),
Gene Ontology (GO), and BioCarta are three widely-used
curated resources for warehousing up-to-date gene set

information. As researchers move beyond one-dimen-
sional single gene or SNP comparisons researchers will be
confronted with a need to compare measures efficiently
on functional sets of genes. Subtle differences in expres-
sion and co-regulation not detectable with a series of uni-
variate tests may be recovered with a multivariate test. For
a complex disease such as cancer this enhancement in sta-
tistical power can better equip a researcher to answer the
following, "Do the transcription levels for this suspected
tumorigenic pathway differ between the normal and can-
cerous tissue samples?" A more efficient approach to
answering this question could lead to improvements in
patient treatment regimen or better allow pharmacolo-
gists to target their limited resources in the effort to
develop novel therapeutic compounds.
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Recently a number of tools, either as standalone applica-
tions or integrated into a database platform, have
appeared to aid in the analysis of gene sets on a genome-
wide scale. Tian et al. [1] cite the commonplace use of
Fisher's exact test (based on the hypergeometric distribu-
tion) or its large-sample approximation 2 form in various
software and web tools. PAGE [2], GSEA [3], and GSEA's
subsequent refinement [4] are examples of algorithms
that combine a set of traditional univariate gene measures
into a new composite pathway statistic. One then com-
pares the difference in these composite measures for a
family of pathways for the two or more groups under
study. Khatri et al. [5] and Goeman et al. [6] review several
issues in the analysis of gene sets. However some difficul-
ties attend approaches based on univariate statistics, such
as: if the pathway is formed assuming a set of (at least par-
tially) co-regulated genes then the pathway is intrinsically
a multivariate object, the need to apply a multiple com-
parison correction procedure to the numerous (poten-
tially correlated) single-gene test results to control the
overall false alarm rate for the genes within a single path-
way comparison, and univariate tests that assume gene
independence can lack the power to detect noticeable dif-
ferences should the genes under comparison be co-regu-
lated. Hotelling's T2 is a classical multivariate test statistic
for comparing the difference in multivariate means
between two groups which circumvents these difficulties.
This test was introduced to the gene-set analysis problem
by Kong et al. [7]. Song et al. [8] compared a similar test to
several other popular tests and found that the inclusion of
correlation information could improve test quality in
their comparison of several gene set analysis methods.
Unfortunately the traditional Hotelling's T2 test requires
that the number of samples exceeds the number of genes
in the set, i.e., n>p, and that a weighted average of the two
sample covariance matrices be invertible. In genome-scale
microarray studies it commonly occurs that n<p and the
combined sample covariance matrix is not invertible and
therefore the distribution of the resulting statistic is either
unknown or intractable. To circumvent these concerns we
have developed a regularized covariance matrix multivar-
iate statistical test (RCMAT) to test for a difference in gene
set average transcription levels. In this work we regularize
the weighted average of the two sample covariance matri-
ces to guarantee that the resulting matrix is nonsingular.
Our measured approach to regularization adapts the
familiar Hotelling's T2 test statistic to the ill-posed n<p
case.

An early and illustrative application of regularization is
ridge regression [9]. In standard linear regression the
regression coefficients are estimated using estimate = (X'X)-

1X'Y. When the X'X matrix is ill-conditioned, attributable
to high correlations among the regressors and com-
pounded by small sample sizes, the resulting regression

coefficient estimates are highly variable. Investigators
replace X'X by the quantity X'X + kI where k is a small con-
stant and I is an identity matrix of appropriate dimension.
The constant k is generally determined via some heuristic
mechanism. In practice in exchange for a small estimator
bias a dramatic reduction in estimator variance is often
achieved. James-Stein estimators are another well-known
class of shrinkage estimators that use a biased estimator to
achieve a smaller mean square error for a multidimen-
sional parameter [10]. James-Stein estimators generally
assume a (1 - f(y))*y form; in general, a simple prescrip-
tive form for shrinkage estimators is not trivial.

Friedman [11] states that regularization techniques are
known to be successful in the solution of ill- and poorly-
posed inverse problems. Variations of our approach are
common in the context of classifying observations via dis-
criminant analysis [11-13] but have not been fully
explored for testing the equality of gene sets. A recent
application of regularization has also appeared for use in
cluster analysis [14], another common microarray analy-
sis tool. Kong et al. [7] applied a Hotelling's T2-based test;
they projected the original data onto a reduced subspace
via a singular value decomposition to sidestep the covari-
ance singularity that arises when n<p. Song et al. [8] pro-
vide a Hotelling's T2-based test, PCOT2, which uses a
principal coordinate approach to project the original data
onto a reduced subspace. In the formulation of our statis-
tic we use permutation testing to determine the signifi-
cance level of the test statistic. A closed-form solution for
the null distribution of our proposed statistic does not
exist.

Methods
Regularized Covariance Matrix Approach to Testing
The theoretical basis for the RCMAT statistic is the classi-
cal Hotelling's T2. The standard two-sample form of
Hotelling's T2 can be located in [15]. Hotelling's T2 is a
scaled distance defined via a positive definite quadratic
form, x'Ax, for testing H0: 1 = 2 versus H1: 1  2. For
each phenotype group the expression averages and sam-
ple covariance matrix of the expression levels within that
group is computed for the genes included in the pathway.
The two estimated covariance matrices, one for each phe-
notype group, are combined using the standard pooled
covariance estimator, ((n1 - 1) 1 + (n2 - 1) 2)/(n1 + n2
- 2). In the implementation of RCMAT we allow the
unpooled covariance estimator to be utilized, if desired.
This option can prove useful should the researcher have
cause to suspect that differences exist between the two
phenotype covariance structures. The inversion of the
combined estimate, which is necessary for the test statis-
tic, is ill-posed when n<p. Matrix theory states that the
combined estimate must be positive definite and that the
eigenvalues of this quantity must be strictly positive [16].
Page 2 of 10
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:300 http://www.biomedcentral.com/1471-2105/10/300
This issue may be addressed by the method of Kong et al.
[7].

However the estimate of the inverse of the covariance
matrix is very unstable when n is only moderately greater
than p or large correlations are present in the data. This
fact could pose serious problems for the method of Kong
et al. in many realistic situations. We regularize (shrink) or
bias the estimator in the hopes of achieving a more stable
estimator, as in ridge regression. The regularized estimate
is reg =  + (1 - )*I, where  is the combined covariance
estimator obtained with the data and I is an identity
matrix of the same dimension as . Both [10,17] provide
an overview of shrinkage estimation, discuss the counter-
intuitive behaviour of James-Stein estimators, and pro-
vide examples in the normal distribution case. reg could
also be viewed as an empirical Bayes estimator; one hopes
that through the introduction of bias with the inclusion of
I a reduction in the total variance of reg is obtained. Sim-
ilar to the classification procedure of Tai et al. [13] RCMAT
employs a heuristic measure to determine the amount of
regularization to be applied, comparable to ridge regres-
sion. The constant  is incrementally reduced from 1
towards 0, in increments of 0.01, until the smallest posi-
tive eigenvalue is greater than one divided by the number
of genes in the gene set. Controlling the eigenvalues of reg
insures that the resulting matrix is positive definite. Other
approaches to select  are possible. Schäfer et al. [18] pro-
vide an overview of various shrinkage estimation
approaches for use in estimating large-scale covariance
matrices in genomics applications. If  is highly unstable,
e.g., the number of genes in the gene set is markedly
greater than the sample size or the genes within the gene
set are highly co-regulated, then the regularized estimator
reg could be heavily biased towards the identity matrix as
 approached 0. That is, the variables are assumed to be
nearly independent with unit variance; apart from the
biased (co)variance estimates and a reliance on large sam-
ple theory this assumption would lead to a test similar to
PAGE. Once a suitable  is selected the inverse of the reg-
ularized estimate is incorporated into the traditional
Hotelling's T2.

Despite our efforts to form a stable test statistic with the
desired properties we still need the statistic's sampling dis-
tribution. A closed form distribution for this test statistic
does not exist under the null hypothesis of no average sep-
aration between the two phenotypes for the selected gene
set. Traditional n>>p large sample asymptotic theory is
not applicable due to the customary n<p ill-rank estimate
for . Therefore, permutation testing [19] is used for
assessing significance. 10,000 permutations of the obser-
vation phenotype labels were used to determine the sig-
nificance of the regularized covariance multivariate test.
At each permutation step a new  value was selected for

the shuffled data. Despite a two-sided hypothesis the use
of a quadratic form for our test statistic requires a one-
sided rejection region. If one elects to test more than one
pathway, i.e., a set of gene sets, then one can apply a mul-
tiple comparison procedure to attempt to control for the
overall false discovery rate.

Computer Simulation
A total of 50 conditions were simulated. At each condition
100 data sets were generated. Both the method of Kong et
al. [7] and the RCMAT algorithm were applied to the sim-
ulated data. The expression levels within each phenotype
were simulated with a multivariate normal distribution,
MVN(, ), where  is the vector of gene means and  is
the covariance matrix of the genes within the gene set.
With each new data set generation the same random cov-
ariance matrix was used for each of the two phenotypes,
i.e., phenotype 1 X ~MVN(1, ) and phenotype 2 Y
~MVN(2, ). The phenotype gene set variances were set
at one. We did not restrict ourselves to simulating highly
structured covariance matrices since we have observed
pathways where the pathway members do not exhibit
strong pair-wise correlations. Similar observations were
noted in Song et al. [8] for both diabetes and leukemia
data sets. Limited simulation work, not included here, was
also performed under the assumption of unequal covari-
ance matrices with similar results. Simulation conditions
were intended to reflect typical practice in genomics: 10 or
30 genes were assumed to be in the pathway (p = 10, 30),
the within-group phenotype sample size was 10, 20, or 50
(n1 = n2 = 10, 20, or 50), phenotypes were separated on
either the major axis of variation (first eigenvector, e1) or
a minor axis of variation (approximately the p/3rd eigen-
vector, ep/3), and the amount of separation as a multiple
of the axis of variation was either 0.25, 0.5, or 1.0 (cei
where c = 0.25, 0.5, or 1.0). The aforementioned settings
were arranged in a factorial layout. To examine the null
distribution of the statistic for possible Type I error con-
cerns we selected 6 conditions (major axis with both 10
and 30 genes at sample sizes of 10, 20, and 50) where no
separation existed between the two phenotypes, i.e., 1 =
2 = 0. Finally, we selected one interesting condition (a
pathway comprised of 30 genes where the separation
between phenotypes was 0.5 times the major axis) and
allowed the within-phenotype sample size to vary at addi-
tional increments between 15 and 75.

GSEA Diabetes Data Sets
We evaluated RCMAT with the human diabetic muscle
microarray data found in [3]. Both the transcription data
and the gene set data sets from the original GSEA study
were obtained from the authors' website (available on-
line at http://.www.broad.mit.edu/publications/
broad991s). The microarray data included transcriptional
profiles obtained from 17 normal and 17 diabetic muscle
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biopsies. The authors selected 113 of the gene sets for
analysis based on their involvement in metabolic path-
ways with the remainder representing gene clusters based
on co-regulated genes from a mouse expression atlas.
22,283 genes were analyzed. Zeros were removed from
these data and the logarithm base two transformation was
applied to all entries. A median plus/minus three times
the median absolute deviation winsorization algorithm
was applied to the expression levels of each gene for each
phenotype to mitigate the effect of potential outliers. This
compares to the "mean plus/minus three standard devia-
tions" recommendation of Draghici [20]. The website
contains the 150 gene sets analyzed in the original study.
Two gene sets contained a single gene and were removed
from the analysis.

Implementation of RCMAT
RCMAT was written using the freely available language R
[21]. R is available for most computing platforms includ-
ing Windows, MacOS, Linux, and Solaris. The code for
RCMAT and generating the simulated data can be found
at the author's website (available on-line at http://
www.people.vcu.edu/~mreimers/RCMATCode.r).

Results
Simulated Data Comparison
We evaluated the performance of RCMAT with both sim-
ulated data and the data from the original GSEA paper [3].
Due to the lack of a benchmark standard for comparing
n<p test procedures we chose to compare the performance
of our statistic with the approach of Kong et al. [7] via sim-
ulation. Apart from RCMAT's use of a regularized covari-
ance estimate the method of Kong et al. is a close
Hotelling's T2 parallel to RCMAT. The Kong et al. method
was independently presented as PCOT2 in [8]. We first
examine the distribution of p-values when no difference
exists between the groups in the averages of expression
measures of genes in the pathway, i.e., the null hypothesis
case. In a two-group null comparison each p-value
between 0 and 1 is equally likely. Figure 1 depicts the dis-
tribution of p-values for both RCMAT and the procedure
of Kong et al. when no difference is present between the
two groups. Each plot graphs the 100 ranked p-values for
each of the six settings in a uniform QQ-plot. The number
of genes in a pathway was either 10 or 30 and the within-
group sample size was 10, 20, or 50 for both groups. Both
methods exhibit a somewhat conservative bias relative to
the expected p-value.

We now turn our attention to the power of the RCMAT
approach. Figure 2 illustrates the cumulative distribution
function of the RCMAT nominal p-values under select
simulation conditions; Figure 3 provides a paired compar-
ison of the RCMAT p-value with the corresponding p-
value produced by the method of Kong et al. Summary sta-

tistics for the 36 non-null simulated conditions can be
found in Additional file 1. To facilitate the paired compar-
ison a logarithm base ten ratio (i.e., log10(RCMAT p-
value/Kong et al. p-value) is graphed. Permutation p-val-
ues of zero, the only allowable value less than 0.0001,
were replaced with 0.00009 in the computation of the
ratio.

Figure 2 reveals that our simulation study spans both
highly significant to clearly insignificant separations as
determined by the median nominal p-value. For presenta-
tion we included only those conditions where the within-
phenotype sample size was 20. As expected, the real differ-
ences between the phenotypes were more easily detected
with fewer genes in the gene set (and with larger sample
size). See Additional file 1 for complete details. Further-
more the deviations in the minor axis were less easily
detected; this may be expected because the regularization
modulates the estimate of smaller variances. Figure 2
shows that the median p-value increased from 0.02585 to
0.13425 as the simulation shifted from the major to a
minor axis of variation for the p = 10, n1 = n2 = 20, and
c= 0.5 condition. The median p-value shifted from
0.13425 to 0.34065 as we increased the number of genes
p from 10 to 30 for the same conditions along a minor
axis of variation. The first case highlights the difficulty in
locating a moderate-sized effect along a non-dominant
subspace; the second case highlights the penalty incurred
when p is mildly greater than n, p > n.

Figure 3 shows the cumulative distribution functions of
the ratio of the RCMAT p-values to the Kong et al. p-values
for the same data under several different conditions. The
12 non-null conditions included both 10- and 30-gene
pathways with 20 observations for each phenotype, the
amount of nonzero separation as a multiple of an eigen-
vector representing the covariance/correlation structure
within the gene set was 0.25, 0.5 or 1.0, and the pheno-
type separation occurs on either the major or a minor axis
of variation. The results depend strongly on the number of
genes in the gene set; therefore there are separate plots for
conditions with 10 and 30 genes in the gene set. For pres-
entation we included only those conditions where the
within-phenotype sample size was 20. This illustrates
both n>p and n<p cases and comparable results were
obtained with other sample sizes. These figures compare
the relative power of the two statistics to detect actual sep-
arations between two phenotypes without regard to the
significance of the p-value/the size of the test. Figure 3
clearly illustrates that the RCMAT p-values can be an order
of magnitude or more less than the p-value of Kong et al.
under several non-null situations. For example, in the 10-
gene pathway case approximately one-fifth of the RCMAT
p-values were at least one-tenth of the corresponding
Kong et al. p-value for both a separation of one along a
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Null distribution p-valuesFigure 1
Null distribution p-values. Null distribution p-values for 
both the RCMAT and the method of Kong et al. under the 
null hypothesis (no average difference). P-values for 100 sim-
ulated data sets within each of six conditions are given. Along 
the vertical axis is the expected p-value under the assump-
tion of no difference between the two phenotypes; on the 
horizontal axis is the corresponding actual p-value obtained 
from the simulation.

minor axis of variation and a separation of 0.5 along a
major axis of variation. Regularization may be necessary
in these cases to stabilize the covariance estimator. In the
case of 30 genes and a one-unit separation along a major
axis, approximately one-half of the RCMAT p-values were
at least one hundred times smaller than the correspond-
ing Kong et al. p-value. Given the instability of the covari-
ance estimator for the small-sample p ~n ill-rank case the
biased estimator was clearly required. The cumulative dis-
tribution plots also capture the comparability of the two
procedures in some of the less-than-full-rank cases.

RCMAT is a computationally intensive procedure. Com-
puting time is strongly influenced by the number of per-
mutations, the number of genes in the gene set analyzed,
the amount of regularization required, and the increment
used in selecting the regularization constant . On a
standard single CPU personal computer with a 2.8 GHz
microprocessor and 3 GB of computer memory comput-
ing times ranged from 2 to 3 hours to process 100 10-gene
gene sets using 10,000 permutations and an  increment
of 0.01. On the order of 4 to 5 hours of CPU time were
necessary to process 100 30-gene gene sets.

Cumulative distribution function of RCMAT nominal p-values under several simulated non-null conditionsFigure 2
Cumulative distribution function of RCMAT nominal 
p-values under several simulated non-null conditions. 
Under each of 12 selected conditions 100 simulation experi-
ments were performed and permutation p-values obtained. 
The vertical axis is the cumulative distribution function, the 
proportion of values less than the observed p-value, for the 
100 simulated data sets within a condition. A vertical line cor-
responding to a 0.05 nominal p-value is also provided.
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Comparison Using Diabetes Data
Table 1 lists the 50 gene sets (out of 148 tested) with a
RCMAT nominal p-value less than 0.05. To facilitate a
comparison the p-values determined by the procedure of
Kong et al. are also listed. Both procedures use permuta-
tion testing with 10,000 permutations; hence p-values less
than 0.0001 are not attainable. The number of genes in
the gene set, which directly affects the quality of the cov-
ariance estimator, is also listed. Total computing time for
the 148 gene sets was approximately one day. As expected
gene sets that contain a large number of genes, roughly

one-third of the gene sets analyzed here contained more
than 100 genes, took longer to analyze.

In the tabled comparison 46 of the 50 ranked RCMAT p-
values were less than the p-value produced by the Kong et
al. method. A direct relationship between RCMAT p-val-
ues, obtained through the use of a (potentially strongly)
biased covariance estimator, and p-values obtained with a
method utilizing subspace projections is complicated by
the nature of the test and the features of the data. Across
all 148 comparisons the Kong et al. algorithm produced
49 p-values less than the corresponding RCMAT p-value.
The complete comparison data are listed in Additional file
2. Our approach recovered the oxidative phosphorylation
gene set originally found in [3]. Song et al. [8] did a
detailed comparative analysis of these same data using the
sigPathway, GSEA-Category, GSEA-limma, SAFE, Global-
Test, and PCOT2 algorithms. They obtained the largest
number of significant gene sets with the GSEA-limma
algorithm, using a nominal unadjusted p-value of 0.05.
But, the top ranked gene set results varied across the 6
methods tested. Apart from 2 or 3 exceptions, all of the
gene sets identified under the various algorithms with a
nominal unadjusted p-value of 0.05, including the 10
gene sets determined by GSEA-limma, are a subset of the
50 gene sets located with RCMAT. These results also
largely encompass the results obtained with the PAGE [2]
approach and the method of [1]. Interestingly enough,
applying the Benjamini-Yekutieli false discovery rate pro-
cedure with an overall  level of 0.05 indicated that a sin-
gle pathway, C25_U133_probes, would be declared
significant. These results are in broad agreement with the
FDR adjusted p-values found in [8] where only one path-
way met this cut-off across the 6 gene set analysis algo-
rithms tested.

Discussion
In traditional n>p two sample multivariate testing prob-
lems Hotelling's T2 statistic is commonly used to compare
two multivariate means [15]. Two features of this multi-
variate test are that: 1) the test statistic incorporates the co-
regulation or correlation among the features and may pro-
vide an improved ability to detect a separation between
two multivariate groups that are not distinguishable with
any single feature, and 2) all of the mean comparisons are
integrated into a single statistical test, which simplifies the
problem of multiple comparisons; i.e., there is no need to
appeal to a multiple comparison correction procedure
within a gene set. Hotelling's T2 has already been used to
investigate differentially expressed genes in the two sam-
ple case [22]. The multivariable gene set approaches
found in [22,23] attempt to resolve the n<p problem
through the use of a gene selection procedure. Feature/
subset selection approaches often involve intermediate
statistical tests and can vary in their use of the researcher's

Cumulative distribution function of a ratio of RCMAT and Kong et al. p-values under several simulated non-null condi-tionsFigure 3
Cumulative distribution function of a ratio of 
RCMAT and Kong et al. p-values under several simu-
lated non-null conditions. For 12 non-null conditions 100 
simulation experiments were performed and permutation p-
values obtained for both the RCMAT and the method of 
Kong et al. The logarithm base ten of the RCMAT p-value/
Kong et al. p-value ratio is listed on the horizontal axis. The 
vertical axis is the cumulative distribution function, the pro-
portion of values less than the observed ratio, for the 100 
simulated data sets within a condition.
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Table 1: Comparison of RCMAT with the procedure of Kong et al.

Gene Set No. of Genes in Set RCMAT
p-value

Kong et al.
p-value

c25_U133_probes 64 0.0003 0.0039
MAP00600_Sphingoglycolipid_metabolism 18 0.0018 0.0036
MAP00300_Lysine_biosynthesis 5 0.002 0.0089
MAP00561_Glycerolipid_metabolism 84 0.0028 0.7803
c29_U133_probes 202 0.0033 0.0672
c33_U133_probes 362 0.0034 0.1201
c23_U133_probes 109 0.0035 0.1581
MAP00360_Phenylalanine_metabolism 23 0.0036 0.0723
MAP00531_Glycosaminoglycan_degradation 18 0.0043 0.0005
MAP00511_N_Glycan_degradation 9 0.0072 0.0066
GLUCO_HG-U133A_probes 46 0.0084 0.4585
GLYCOL_HG-U133A_probes 31 0.0088 0.5699
MAP00910_Nitrogen_metabolism 31 0.0094 0.0385
MAP00430_Taurine_and_hypotaurine_metabolism 12 0.01 0.0888
mitochondr_HG-U133A_probes 615 0.0107 0.05
MAP00650_Butanoate_metabolism 38 0.0109 0.3458
human_mitoDB_6_2002_HG-U133A_probes 594 0.0113 0.0381
c28_U133_probes 288 0.0123 0.1947
MAP00252_Alanine_and_aspartate_metabolism 35 0.0131 0.0472
c20_U133_probes 270 0.0139 0.1125
MAP00190_Oxidative_phosphorylation 75 0.0141 0.2173
c22_U133_probes 194 0.0152 0.016
MAP00710_Carbon_fixation 27 0.0152 0.0297
MAP00340_Histidine_metabolism 32 0.0154 0.2045
MAP00330_Arginine_and_proline_metabolism 63 0.0168 0.0062
c31_U133_probes 346 0.0172 0.3197
MAP00380_Tryptophan_metabolism 88 0.018 0.7238
MAP00380_Tryptophan_metabolism~ 88 0.0195 0.7156
c7_U133_probes 349 0.0207 0.1292
c15_U133_probes 264 0.0232 0.4323
MAP00512_O_Glycans_biosynthesis 15 0.0236 0.0322
MAP00970_Aminoacyl_tRNA_biosynthesis 34 0.024 0.1054
c27_U133_probes 266 0.0253 0.1722
MAP00251_Glutamate_metabolism 35 0.0256 0.0259
c12_U133_probes 251 0.0263 0.087
MAP00031_Inositol_metabolism 7 0.0265 0.0677
MAP00410_beta_Alanine_metabolism 27 0.0291 0.5854
c34_U133_probes 452 0.0311 0.2366
c11_U133_probes 192 0.0334 0.4341
c18_U133_probes 248 0.0335 0.0167
MAP00590_Prostaglandin_and_leukotriene_metabolism 34 0.0348 0.1956
c14_U133_probes 302 0.0361 0.1327
c35_U133_probes 470 0.0419 0.2794
OXPHOS_HG-U133A_probes 114 0.0441 0.1705
ROS_HG-U133A_probes 9 0.0446 0.1523
c3_U133_probes 267 0.0455 0.5362
c30_U133_probes 239 0.0462 0.1006
GO_0005739_HG-U133A_probes 227 0.0467 0.3106
MAP00310_Lysine_degradation 35 0.0477 0.4446
FA_HG-U133A_probes 34 0.0485 0.1047

For each of the gene sets from Mootha et al. [3] both the RCMAT and the method of Kong et al. were applied. Nominal (unadjusted) permutation 
p-values for each of the two procedures are given. The number of genes in the pathway is also provided.
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available data. Tomfohr et al. [24] use the single largest
metagene, obtained with a singular value decomposition
of expression values of genes in the group, to compare two
phenotype groups. In a related extension Kong et al. [7]
use a singular value decomposition to locate a reduced
gene subspace defined by the eigenvectors whose corre-
sponding eigenvalues exceed a small positive number.
However the directions of the subspace corresponding to
smaller eigenvalues of  can be poorly estimated. We con-
jecture that RCMAT is more powerful relative to the pro-
cedure of Kong et al. since RCMAT does not restrict the
magnitude of the phenotypic transcription differences
included and it reduces the noise in the estimate of the
covariance matrix, which is inverted. A degree of caution
is still advised - highly unstable or p > >n gene set covari-
ance estimators may be heavily biased by RCMAT due to
the need for a large amount of regularization.

Both Song et al. [8] and Ackermann et al. [25] offer a com-
parison of existing methods for analyzing gene sets via
one-dimensional gene enrichment procedures and multi-
variate comparisons. Song et al. [8] found that PCOT2, a
Hotelling's T2-based test statistic which projects the origi-
nal data onto a reduced subset via a limited number of
principal coordinates, could provide an increased ability
to detect altered gene sets through the inclusion of the cor-
relation structure relative to the other gene set methods.
They also suggested that including the co-regulation struc-
ture can outperform the one-dimensional measures con-
tingent on the features of the data. Large FDR-adjusted p-
values were also commonplace in the gene set compari-
sons. Ackermann et al. [25] focused primarily on one-
dimensional enrichment procedures although the
method of Kong et al. was also included in their compari-
son. In the small sample case they advocated the use of
regularization procedures for the tests based on one-
dimensional measures. They also noted that the strength
of the procedure was impacted by the extent of the corre-
lation structure present in the data. Data comprised of
mostly independent features did not appear to benefit
from a multivariate procedure relative to the best univari-
ate approaches. Ackermann et al. also found that the trans-
formation applied to the one-dimensional measures was
critical in the performance of the enrichment procedures.
The most accurate transformation tested, a squared trans-
formation, essentially corresponds to a Hotelling's T2-test
with a diagonal covariance matrix. If co-regulation is a
negligible concern in a gene set's definition or is weakly
present in experimental data the choice between either a
multivariate or an enrichment procedure for testing a gene
set's significance is moot.

The regularization methodology employed here is related
to the shrinkage methods commonly applied to univari-
ate gene analyses. Shrinkage techniques appear in the Bio-

conductor package limma [26], SAM [27,28], and its gene
set extension SAM-GS [29]. Whereas typical shrinkage
methods borrow information from other genes to
improve estimates for a single gene our approach shrinks
the pooled covariance estimate towards a fixed diagonal
covariance matrix. Cui et al. [30] and Schäfer et al. [18]
outline some of the theoretical properties of univariate
and multivariate shrinkage estimators, respectively, in the
context of microarray studies. Not surprisingly, the use of
other forms of regularized covariance estimators is possi-
ble. In recent work Tsai et al. [31] provide a multivariate
analysis of variance test based on Wilks'  that makes use
of a shrinkage covariance matrix estimator for gene set
comparisons. This method applies to the comparison of
two or more phenotypes. Regularization towards a diago-
nal covariance matrix has the benefit of transforming the
multivariate distance from the traditional Mahalanobis
distance to a Euclidean distance. RCMAT shifts, to the
extent necessary, from an explicit and complete use of the
co-regulation among the gene set constituents to an inde-
pendent-genes framework. Should large differences exist
between the two phenotype covariance structures the tra-
ditional combined estimator can begin to resemble the
independent-gene scenario. These points bear mention in
addition to the usual comments regarding the numerical
stability associated with regularization procedures. Bickel
and Levina [32] offer the intriguing finding that a naïve
Bayes classifier, which assumes that each pair of genes are
conditionally independent, can outperform the classical
Fisher's linear discriminant rule in the context of p > n
classification problems.

Bickel and Levina [33] provide a related theoretical work
outlining the benefits of tapered or banded matrices when
the number of variables exceeds the number of observa-
tions. Restricting the complexity of the covariance estima-
tor can allow for a more stable estimator. This creates a
dilemma for the proposed method between ease-of-use
and accuracy for a researcher - restricting the number of
unknowns improves accuracy but requires that the gene
set structure be precisely defined. Theoretical work on p >
n problems, such as [33], often assume that the ratio of
the number of variables monitored and the sample size
obey a fixed relationship. Definitive guidance for address-
ing p > >n problems for small-yet-realistic samples, e.g.,
the GSEA diabetes data presented here investigated gene
sets consisting of hundreds of genes with only 34 samples,
is still lacking.

Conclusion
As the era of integrative or systems biology expands
researchers' concerns will shift from analyzing single
genes to analyzing shifts in coherent sub-systems within
the cell. Powerful and well-understood analysis tools will
need to be developed to address these challenges. Meth-
Page 8 of 10
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:300 http://www.biomedcentral.com/1471-2105/10/300
ods that rely on sophisticated corrections to individual
test p-values to screen genes or disregard the correlation
structure for a gene set known to consist of co-regulated
genes carry risks. In this paper we have outlined a multi-
variate test statistic that bridges the classical Hotelling's T2

to the current "many genes are measured with a minimal
number of samples" environment. Our multivariate sta-
tistic parallels the one-dimensional gene shrinkage/
enrichment methods currently enjoyed in the microarray
analytic lexicon. Despite the simplicity of RCMAT it
enjoys favorable limiting traits, resembles a classical
"diagonalized" pooled estimator in the event of unequal
covariances, and offers greater power relative to a method
that reduces the dimensionality of the data using the
observed data. The merits of RCMAT have been illustrated
via a simulated comparison and verified with the GSEA
data. We offer RCMAT as a microarray platform-inde-
pendent analytical tool for use in the analysis of gene sets.
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