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Abstract

Background: Alterations in the number of copies of genomic DNA that are common or recurrent
among diseased individuals are likely to contain disease-critical genes. Unfortunately, defining
common or recurrent copy number alteration (CNA) regions remains a challenge. Moreover, the
heterogeneous nature of many diseases requires that we search for common or recurrent CNA
regions that affect only some subsets of the samples (without knowledge of the regions and subsets
affected), but this is neglected by most methods.

Results: We have developed two methods to define recurrent CNA regions from aCGH data.
Our methods are unique and qualitatively different from existing approaches: they detect regions
over both the complete set of arrays and alterations that are common only to some subsets of the
samples (i.e., alterations that might characterize previously unknown groups); they use probabilities
of alteration as input and return probabilities of being a common region, thus allowing researchers
to modify thresholds as needed; the two parameters of the methods have an immediate,
straightforward, biological interpretation. Using data from previous studies, we show that we can
detect patterns that other methods miss and that researchers can modify, as needed, thresholds of
immediate interpretability and develop custom statistics to answer specific research questions.

Conclusion: These methods represent a qualitative advance in the location of recurrent CNA
regions, highlight the relevance of population heterogeneity for definitions of recurrence, and can
facilitate the clustering of samples with respect to patterns of CNA. Ultimately, the methods
developed can become important tools in the search for genomic regions harboring disease-critical
genes.

Background

Genomic DNA copy number is often variable. Some of
this variability, commonly referred as copy number varia-
tions or CNVs, is naturally present in the germ line and
thus heritable [1-3], whereas somatic, large-scale altera-
tions that often characterize tumor cells are called copy
number alterations or copy number aberrations (CNAs)

[3-6]. These CNAs are often longer than CNVs and have
been linked to other diseases in addition to cancer, such
as HIV acquisition and progression, autoimmune dis-
eases, and Alzheimer and Parkinson's disease [7-10]. The
most popular current approaches for the identification of
DNA copy number differences are chip- or array-based.
These include SNP arrays [11-13] and array-based Com-
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parative Genomic Hybridization (aCGH). aCGH is a
broad term that encompasses oligonucleotide aCGH (Agi-
lent, NimbleGen, and occasionally in-house oligonucle-
otide arrays), BAC and, less frequently nowadays, ROMA
and cDNA arrays [14,15]. In addition to the array-based
technologies, sequencing-based approaches [2,16-18] are
also used to study CNAs. (See [3] for differences on the
identification of CNVs and CNAs, and the specific chal-
lenges associated to the reliable detection of CNAs, that
are due to tissue heterogeneity and contamination and
uncertainty about baseline ploidy). Location of CNAs in
individual samples, however, is only the initial step in the
search for "interesting genes". The regions more likely to
harbor disease-critical genes are those that show altera-
tions that are recurrent among diseased individuals
[15,19-21]. In this context, we can define a recurrent CNA
region as a set of contiguous genes (a region) that shows
a high enough probability (or evidence) of being altered
(e.g., gained) in at least some samples or arrays. Unfortu-
nately, although many methods exist for analyzing a sin-
gle array (e.g., see comparisons and references in [22-25]),
few papers deal with the problem of integrating several
samples and finding CNA regions that are common over
sets of samples. Thus, merging data from several samples
to find recurrent CNA regions remains a challenge [6],
both methodologically and conceptually.

Two recent reviews [4,26] highlight the main features and
difficulties of existing methods. Most methods [19,20,27-
30] try to find recurrent CNA regions using, as starting
point, the discrete output from an aCGH segmentation
algorithm in the form of the classification of every probe
into gained, normal or lost. Because these methods use
discretized output, they discard any available estimate of
the uncertainty of these estimates; as a consequence, a
gain for which there is strong evidence will have the same
weight in subsequent calculations as another gain for
which there is less certainty. Moreover, the majority of
these methods ignore within- and among-array variability
in aCGH ratios as they use a common threshold for all
probes and arrays. A few other methods perform the seg-
mentation and search for recurrent CNA regions in the
same step [31-33]. The method in [33], which does not
use nor returns probabilities, employs elaborate and heu-
ristic approaches to search over possible thresholds and
adjustments for multiple testing. Another two methods,
[34,35], intertwine, in a complex way, biological assump-
tions and statistical procedures, leading to convoluted,
heuristically based methods, with critical assumptions
and parameters of difficult interpretation and assessment
(see also [4] for a critique of the attempts to differentiate
between "driver" and "passenger” mutations). In [31]
copy numbers of contiguous probes as treated as inde-
pendent, which is clearly biologically unrealistic. Hidden
Markov Models are used by [32], but this method seems
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to locate recurrent probes, not recurrent regions, and the
number of states is restricted to four; therefore, all the
gains are grouped into a single state with a common
mean, which is biologically unreasonable, and makes it
impossible to differentiate between samples with moder-
ate amplitude changes and large-amplitude changes.

In addition to the above difficulties, one the most serious
problems of existing methods is the inability to find com-
mon regions over subset of samples. The majority of
approaches [27,28,31,32,34-37] try to find regions that
are common to all the arrays in the sample. Thus, these
methods presuppose that a disease is homogeneous with
respect to the pattern of CNAs. It is known, however, that
for many complex diseases, such as cancer or autism [38-
40], molecular subphenotypes are common. It follows
that heterogeneity should be appropriately addressed [4]
in studies of recurrent CNA regions. Two methods [19,33]
(see also reviews in [4,26]) try to find recurrent regions
defined over a subset of the samples but, in addition to
not using probabilities, they depend on a resolution (or
number of bins) parameter that controls the number of
probes considered within region, so that, given this
parameter, the method, by construction, will regard either
all or none of the probes as jointly altered. But the point
of searching for regions is, precisely, to identify regions for
which we do not know in advance location, number of
subjects, or length. Moreover, there are concerns [36]
about the permutation strategy used by the above two
methods to assess the statistical significance of the pat-
terns found, as it precludes locating large aberrations.
Therefore, there are currently no satisfactory approaches
for addressing among-sample heterogeneity.

To further clarify and understand this problem, we can
differentiate between two different scenarios. In one sce-
nario, we consider all the samples (subjects or arrays) in
the study as a homogeneous set of individuals, so we want
to focus on the major, salient, patterns in the data and
thus we will try to locate regions of the genome that
present a constant alteration over all (or most of) the sam-
ples. This is what most existing methods for the study of
recurrent CNA regions try to do. In a second scenario, we
suspect that the subjects are a heterogeneous group. What
we really want here is to identify clusters or subgroups of
samples that share regions of the genome that present a
constant alteration. In other words, we want to detect
recurrent alterations in subtypes of samples when we do
not know in advance which are these recurrent alterations
nor the subtypes of samples. This second scenario is argu-
ably much more common than the first one in many of
the diseases where CNA studies are being conducted. In
this second scenario, using an algorithm appropriate for
the first scenario (one that, by construction, tries to find
alterations common to most arrays) is clearly inappropri-
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ate: it does not answer the underlying biological question,
risks missing relevant signals, and leads to conceptual
confusion.

Existing methods, therefore, have serious limitations and
it is necessary to develop new approaches that fulfill the
following three major requirements. First, we want to
explicitly differentiate between the two scenarios in the
last paragraph. As a consequence, we want to be able to
locate either regions common to most of the arrays or
regions common to only a subset of the arrays. Second, we
want to preserve the uncertainty in the state of a probe
(probability of alteration), and we want to return proba-
bilities, as a probability is the single most direct answer to
the question "is this region altered over this set of arrays?"
(a p-value does not directly answer this question, but
rather provides support against a specific null hypothe-
sis). Third, we want that the biological meaning of the
regions found be immediate, which we can try to achieve
by using methods that depend on few parameters of
straightforward interpretation. We have developed two
approaches that fulfill these criteria.

Results

Two different approaches for finding recurrent CNA
regions

Here we provide an intuitive understanding of our two
different approaches. Further details are provided below.

Our first method, pREC-A (probabilistic recurrent copy
number regions, common threshold over all arrays), finds
those regions that, over the complete set of arrays, show
an average (over arrays) probability of being altered that
is above a predefined threshold. When using pREC-A we
only need to provide one threshold, p,, the minimal prob-
ability of alteration of a region over a set of arrays. p, is
chosen by the researcher, but generally cannot be too
stringent (e.g., will rarely be larger than 0.80) because
even with a large number of arrays, only a few arrays with-
out that alteration will prevent finding the region (as we
are averaging over arrays).

Our second method, pREC-S (probabilistic recurrent
copy number regions, subsets of arrays), identifies all
common regions over subsets of arrays; alternatively, we
can think of this algorithm as identifying subsets of arrays
that share regions of alteration. The regions of alteration
found might not be common to most arrays, but within
each array in the identified subset, the regions of altera-
tion will have a probability of being altered above a
threshold (p,,). When using pREC-S, therefore, the user
needs to provide two thresholds, p,, the minimal proba-
bility of alteration of a region in every array in the selected
subset, and freq.array, the smallest number of arrays (i.e.,
the smallest size of the subset of arrays) that share a com-

http://www.biomedcentral.com/1471-2105/10/308

mon region. Here we will often use more stringent thresh-
olds for probability (e.g., p,, = 0.90), because those high
probabilities might be attained over a highly homogene-
ous and small subset of arrays. We can use the output of
PREC-S as the basis for clustering and to display patterns
of groupings of arrays; an example is shown below (see
"Simple numerical example: pREC-S").

For both methods, we will use probabilities of alteration
as returned, for example, by RJaCGH [24]. RJaCGH is a
Hidden Markov Model-based approach that returns prob-
abilities of alteration of probes and segments; no hard
thresholds are imposed, and thus the user decides what
constituted sufficient evidence (in terms of probability of
alteration) to call a probe gained (or lost). We have shown
[24,25] that RJaCGH performs as well as, or better than,
competing methods in terms of calling gains and losses,
and the relative advantage of the method increases as the
variability in distance between probes increases. It is
essential to understand that the probabilities that we use
are not the marginal probabilities of alteration but the
joint probabilities of alteration of a region of probes (see
details in "Computation of the joint probability of an
arbitrary sequence of probes in an array"). Our approach
incorporates both within-and among-array variability (as
it is based on the hidden process of alterations and uses
the probability of every probe in every array): we use the
information on the certainty of each call of gain/loss (i.e.,
the probability) in all computations of recurrent CNA
regions. Therefore, our approach is qualitatively different
from using the same threshold over all probes and arrays.
See further details below. Moreover, using probabilities of
alteration (instead of magnitude of change), in addition
to differentiating between evidence of alteration and esti-
mated fold change, prevents inter-array differences in
range of log, ratios and tissue mixture to get confounded
with evidence of alteration. Finally, note that we use at
most two parameters and that their biological meaning is
immediate: probability of alteration, and number of sam-
ples that share an alteration (the later only needed for
PREC-S).

Algorithms

Before we can develop algorithms for the two approaches,
PREC-A and pREC-S, we will need to develop methodol-
ogy that will allow us to: 1) compute the joint probability
of alteration of an arbitrary sequence of probes; 2) com-
bine that probability over arrays. The first two parts of this
section detail this machinery before showing the details of
the algorithms. For the rest of this section, please bear in
mind that we are always referring to probabilities of alter-
ation, and never to p-values. We are working on a Baye-
sian framework and are estimating posterior probabilities;
we are not conducting hypothesis tests.
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Computation of the joint probability of an arbitrary sequence of
probes in an array

To find altered regions, that is, sets of contiguous probes,
we have to compute the joint probability of alteration for
a sequence of probes. In other words, we need to com-
pute, for each array i = 1,... 1, the probability that a subset
of consecutive probes is, for example, gained (the prob-
lem for losses is equivalent). That is, if we denote as S; the
state of probe i and with 1 the state 'gain', we are inter-
ested in P(S;= 1,.., S;,, = 1) for a subset of contiguous p
probes. (Note that, strictly, we can find P(S;=1,..., §;,,= 1)
also for the case of non-contiguous probes, but this sce-
nario is unlikely to be of any interest in the search for
recurrent CNA regions.)

Using RJaCGH (or other methods) we can compute the
probability for every probe to belong to any of the states
of gain and to any of the states of loss. The problem of
these probabilities is that they are marginal probabilities:
they are the probability of the event of an alteration of a
probe without considering the alteration of other probes,
in particular of neighboring probes. But the states of the
probes are not independent [24], and thus the probability
of alteration of a region (within an array) can not be com-
puted simply as the product of the probability of the indi-
vidual probes.

With HMM it is customary to obtain the most likely path
of hidden states using the Viterbi algorithm which returns
the maximum a posteriori sequence (MAP). The Viterbi
algorithm, however, does not return any distributional
statements about the states of the path [41]. It is straight-
forward, however, to compute the marginal probabilities
of the state of a probe or the joint probabilities of an arbi-
trary sequence of probes, because the sequence of hidden
states conditioned on the parameters of the HMM is a
Markov Chain [41]. For instance, we could compute the
probability that the first three probes are jointly gained:
P(S;=1, S,=1, S5 = 1) using straightforward conditional
probabilities as P(S; = 1)P(S, = 1|S, = 1)P(S; = 1|S, = 1),
and these conditional probabilities can be computed by
backward-smoothing. The problem is that the classifica-
tion of probes or regions into states given by these two
approaches (Viterbi and backward-smoothing) does not
always coincide, leading to inconsistencies. For example,
we might obtain a sequence of hidden states with maxi-
mum marginal probabilities that is not the same as we
obtain with Viterbi; that sequence might even contain two
consecutive altered probes that can not be jointly altered
[42]. This is a common problem that can arise when using
maximum likelihood approaches to HMM.

To avoid these problems, we can use, as RJaCGH does,
Markov Chain Monte Carlo (MCMC) instead of Maxi-
mum Likelihood (ML). With MCMC, however, we can not
average the conditional probabilities obtained through
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the MCMC iterations, because that would break the Mark-
ovian property [43], as we are averaging over different
runs with (potentially) different values for the model
parameters (as new values for the parameters are drawn at
each iteration of the MCMC). For instance, suppose we
want to compute the probability that the first three probes
arejointly gained: P(S;=1, S,=1, S;=1). We cannot com-
pute P(S; = 1)P(S, = 1|S; = 1)P(S; = 1|S, = 1), with those
conditional probabilities obtained by averaging over the
multiple MCMC runs. What we can do, instead, is com-
pute the probability of an alteration for any arbitrary
sequence as the frequency of that sequence being altered
in the MAPs from each of the MCMC draws. For the pre-
vious example, we would count in how many MAPs (from
Viterbi) we found §; = S, = S; = 1. We must note that, in
this case, we are not obtaining the real distribution of the
hidden states per se, but the distribution of the hidden
states as members of the maximum a posteriori hidden
sequence [44]. That is, we do not sample from the distri-
bution of the hidden states, but from the distribution of
the MAP. This is coherent with the classification method
used with just one array, as every sequence is only
accounted for if it has been part of the MAP sequence, and
thus this is a stronger requirement as the regions obtained
have always been part of the MAP.

Finally, the above scheme can be applied both to models
that assign to hidden states probabilities of being altered
of either 1 or 0, and to models that assign to hidden states
probabilities of being altered between 0 and 1.

Combining regions over arrays

Once we have computed the probability that the above
region is altered, for our first algorithm, pREC-A, we need
to know how to average over the arrays to get a probability
of alteration for that region over a set of arrays. Many
HMM models (RJaCGH included) will model each array
with a different HMM, to reflect the fact that they can have
different characteristics, such as dispersion. Thus, for each
array, we have a (potentially different) stochastic process
for the log-ratios. Once the data are summarized as states
(gain, loss, no-change), however, they are comparable
across arrays as we are using the same approach to label
probes as gained/lost/not-changed. In other words, a
value of §;= 1 has the same meaning regardless of the
array. Thus, we can average directly all the probabilities
for every array (the averages might be weighted if there are
differences in the reliability or the precision of different
arrays). Therefore, the probability that a given region of
the genome is altered over a set of arrays is computed as:

P(Sl = 1""’Si+p = 1) =

.

1
Zp(si =1,..,S;,, = 1| array ))P(array ) )
j=1
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where different P(array;) allow us to use different weights
for different arrays (and, of course, the P(array;) are scaled,
if needed, so that X, P(array;) = 1).

For notational convenience, when there is only one
probe, we define

PS;=1)=
S p(s, - 2)
(S; =1|array j)P(array ;)
j=1

pREC-A: Finding regions with a probability of alteration of at least p,
The following algorithm (Table 1) finds all the regions
with an average (average over all arrays) probability of
alteration of at least p,. This algorithm is the one that is
most similar to other existing approaches in objective.
Notice, however, the simplicity of our algorithm, and the
straightforward interpretation of its parameters. A
detailed explanation of each line of the algorithm and its
logic is provided in the Additional file 1.

pREC-S: Finding all the regions shared by at least freq.array arrays

where each region in each array has a probability of at least p,,

In this algorithm (Table 2) we are imposing two thresh-
olds: 1) p,, the minimum joint probability, within array,
for each region; 2) freq.arrays, the minimum number of
arrays that share the alteration. Notice that p,, in this algo-
rithm is different from p, in the previous algorithm (where
averaging over arrays is used). This algorithm has no
equivalent in alternative methods. A detailed explanation
of each line of the algorithm and its logic is provided in
the Additional file 1.

Table I: pREC-A algorithm

I Start < |
2 while Start < Total Number Of Probes do
3 Pl < P(Ssire = 1);
4  if Pl >p,then
5 End <« Start + 1;
6 while End < Total Number Of Probes do
7 P2 < P(Sigrp--r Seng = 1)s
8 If P2 <p,then
9 break out of the while loop;
10 else
11 Pl « P2;
12 End « End + 1;
13 end
14 end
15 UpdateRegionA(Start, End - |, Pl);
16 Start < End,;
17 else
18 Start < Start + |;
19 end
20 end
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Table 2: pREC-S algorithm

I for Start < | to Total Number Of Probes do
2 SetArrays_A < ¢;
3 for array <— | to Total Number Of Arrays do
4 if P(Sgiqr = l|array) > p,, then
5 SetArrays_A < SetArrays_A U array;
6 end
7 end
8  if |SetArrays_A| > freq.arrays then
9 End < Start + |;
10 while End < Total Number Of Probes do
1 SetArrays_B < ¢;

12 foreach candidate array in SetArrays_A do

13 if P(Ssiarps--» Seng = ||candidate_array) > p,, then
14 SetArrays_B <« SetArrays_B U candidate_array;
15 end

16 end

17 if |SetArrays_B| <freg.arrays then

18 break out of the while loop

19 else

20 if |SetArrays_B| < |SetArrays_A| then

21 UpdateRegionS(Start, End - |, SetArrays_A);
22 SetArrays_A < SetArrays_B;

23 end

24 End < End + [;

25 end

26 end

27 UpdateRegionS(Start, End - |, SetArrays_A);

28 end

29 end

Simple numerical example: pREC-A

Suppose we have fit a model to six probes and four arrays
and, after using RJaCGH's model averaging, we have
obtained the marginal probabilities of gain shown in
Table 3. We want to use pREC-A with p, = 0.6. First, we
average the probability for probe 1 for the four arrays:

0.17+0.16+0.08+0.16
4

P(S1 = Gain) = =0.14

As it does not reach the threshold of 0.6, S1 can not
belong to a region. We do the same for S2, obtaining 0.35.
For S3 the averaged probability is 0.97, so the first region
will include this probe. To see if we can extend this region
to the next probe, we compute for every array the joint
probability of probes 3 to 4 to be gained. This probability

Table 3: Simulated data example.

Sl S2 S3 S4 S5 S6
Al 0.17 0.17 0.97 0.97 0.97 0.17
A2 0.16 1.00 1.00 1.00 0.15 1.00
A3 0.08 0.07 0.93 0.07 0.06 0.92
A4 0.16 0.16 0.99 1.00 1.00 1.00

Marginal probabilities of being gained.
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is not shown in the table above (which shows only mar-
ginal probabilities) but is obtained as explained above
(see section "Computation of the joint probability of an
arbitrary sequence of probes in an array"): the relative fre-
quency of a sequence in the MAPs from all the MCMC
samples.

0.97+1+0.07+0.99 _

P(S3 = Gain, S4 = Gain) = 4

0.76

As it is over the threshold, we join S4 to the region.

Now we check if S5 can be joined too. We compute the
joint probability of gain for the probes 3 to 5 (again, the
joint probability is computed from the relative frequency
of this sequence in the MAPs from all the MCMC sam-

ples):

P(S3 = Gain, S4 = Gain, S5 = Gain) =
0.97+0.15+0.06+0.99
4

=0.54

As it does not reach 0.6, S5 will not be part of the region,
SO we get:

Region 1: {(S3, S4)}.

Now we keep on searching from probe 5. S5 does not have
a marginal probability higher than the threshold, so it will
not form any region. But S6 will:

0.17+1.00+0.92+1.00

P(S6 = Gain) = 1

=0.77

So it will form its own region. As there are no more
probes, the regions found are {(S3, S4), (S6)}.

Boundaries of regions are forced to be common over all
arrays: the algorithm finds the common regions. For
instance, the left boundary of the first region of gain of
sample A2 is located in probes S2, whereas the boundary
for all the other three samples is located in S3. Thus, S2 is
excluded from the first common region: a region that
spanned {(S2, S3, S4)} would not reach, over all four
arrays, the required p, = 0.6.

Simple numerical example: pREC-S

We use the same data as above. We want to find all regions
where at least two arrays have a joint probability of gain
of at least 0.9 (note that we raise the probability threshold
because we do not ask that, on average, all arrays reach it,
but at least two of them do). In other words, we are using
PREC-S with freq.arrays = 2 and p,, = 0.90. Line numbers
below refer to the lines in the algorithm.

http://www.biomedcentral.com/1471-2105/10/308

We start on S1, but there is no array that reaches the
threshold of 0.9 for that probe (i.e., the condition in line
4 of Table 2 is not fulfilled for any array). We iterate (line
1 of Table 2) to the next probe, S2, but the threshold is
reached only in Array 2, and we imposed that there should
be at least 2 arrays. Thus, condition in line 8 is not met.
We iterate to the next probe, S3. Here, when we iterate
over all the arrays (line 3) we find all of the arrays reach
the threshold, so in line 5 we end up with SetArrays_A =
(A1, A2, A3, A4). As the condition in line 8 is fulfilled we
try to increase the region by one probe: we set End to S4
(line 9) and enter the "while" loop (line 10) as we are not
yet at the end of the total number of probes.

After looping over all four arrays (line 12) we find that
line 13 is only fulfilled for Arrays 1, 2 and 4:

P(S3 = Gain, S4 = Gain | A1) =0.97
P(S3 = Gain, S4 = Gain | A2) =1.00
P(S3 = Gain, S4 = Gain | A4) = 0.99
P(S3 = Gain, S4 = Gain | A3) < 0.90

Note that the last expression is obvious since P(S4 =
Gain|A3) = 0.07.

Therefore (from the iteration over line 14) we have
SetArrays_B = (A1, A2, A4). We still fulfill the condition
about freq.arrays in line 17, but the new set of arrays con-
tains fewer than before (line 20) which means that in the
step before a region was found. We call UpdateRegionS so
that the region ((S3), (A1, A2, A3, A4)) is stored, and we
set SetArrays_A = (A1, A2, A4) (line 22). We increase End
to S5 (line 24), and consider it as the end of the new pos-
sible region. Iterating again (line 12) we find

P(S3 = Gain, S4 = Gain, S5 = Gain | A1) = 0.97

P(S3 = Gain, S4 = Gain, S5 = Gain | A4) =0.99

P(S3 = Gain, S4 = Gain, S5 = Gain | A2) < 0.90
As above, this means that in the previous step we found a
region (line 20 is true). Therefore, we call UpdateRegionS

to store the region from the previous step: ((S3, S4), (A1,
A2, A4)). We increase End to S6 and find

P(S3 = Gain, S4 = Gain, S5 = Gain, S6 = Gain | A1) < 0.90
P(S3 = Gain, S4 = Gain, S5 = Gain, S6 = Gain | A4) = 0.99
3)

Now, the condition in line 17 is true, because only one
array satisfies being over p,. We break out of the while
loop (line 19) and we UpdateRegionS in line 27, so we
store the region from the previous step:((S3, S4, S5), (A1,
A4)).
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We continue iterating over Start (line 1), so now Start =
S4. Repeating the steps above we would find a first region
((S4), (A1, A3, A4)), and a second region ((S4, S5), (A1,
A4)). However, when executing UpdateRegionS, we would
find each of these regions is a subset of a previously found
region (((S4), (A1, A3, A4)) of ((S3, S4), (A1, A3, A4));
((S4, S5), (A1, A4)) of ((S3, S4, S5), (A1, A4))).

When we iterate over Start to Start = S5, we find only the
region ((S5), (A1, A4)) which is again a subset of a previ-
ously found region.

Finally, we set Start = S6. We find (lines 3 and 4) that p,, is
satisfied by arrays A2, A3, A4, so we end up with
SetArrays_A = (A2, A3, A4). We fullfill the requirement
about freq.arrays, but in line 10, however, we find we are
at the end of the total number of probes, so we do not
enter that loop (lines 11 to 24 are skipped). We therefore
call UpdateRegions, and add the region ((S6), (A2, A3,
A4)). (Note that the call to UpdateRegions in line 27 with
End - 1 is correct, since we increased End one position over
S6 in line 9). Therefore, we end up with the regions:

Regions = {((S3), (A1, A2, A3, A4)), ((S3, S4), (A1, A2,
A4)), ((S3, 84, S5), (A1, A4)), ((S6), (A2, A3, A4))}

We can see the regions obtained in Figure 1. In contrast to
PREC-A, boundaries need not be common over arrays;
with pREC-S differences in boundaries will lead to differ-
ent subsets and different regions (for instance, that is why
the common region (S3, S4) includes only samples A1,
A2, A4, but not A3).

We can also use the output of this algorithm as the basis
for clustering and to display patterns of groupings of
arrays. We can measure similarity between two arrays as
the number of common probes in recurrent CNA regions
between those two arrays or, alternatively, as the number
of common regions (where the same probe might belong
to more than one region) between two arrays. Once simi-
larity is measured, we can immediately apply any cluster-
ing method of our choice. An example is show in Figure 2.
At this stage, clustering is mainly a device for representing
patterns of similarity, since the grouping of arrays with
respect to recurrent CNVs is the very output of the pREC-
S algorithm.

Implementation and testing

The algorithms above are part of the freely available and
open-source RJaCGH R package (available from the R
repositories), which uses R and C (the later, dynamically
loaded from within R). For storage and efficiency reasons,
we do not save directly all of the Viterbi paths (i.e., each
Viterbi from each iteration of the MCMC sampler) but
only the jumps in paths and the counts of different paths.
This requires less storage, allows for faster access to the
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information and computation of the joint sequence, and
of course permits reconstructing all of the sequences. The
Viterbi paths are obtained as part of the regular execution
of the C code for RJaCGH, saved in R as gzipped files, and
read back by the C functions for pREC-A and pREC-S only
once.

Execution time in all the examples of the paper is negligi-
ble: all the examples of pREC-A execute in less than 5 sec-
onds. Execution time for pREC-S goes up to 160 seconds
for the examples from [45] but less than 4 seconds for the
remaining examples. (All these timings from a worksta-
tion with an AMD 280 processor running Debian GNU/
Linux).

Testing was carried out by comparing the output from the
algorithms with manually computed examples. Code for
the examples and comparisons is included in the reposi-

tory for the package http://launchpad.net/rjacgh.

Examples with real data and comparison to other
approaches

All the examples below were analysed with RJaCGH,
which provided the probabilities of alteration. Our exam-
ples use aCGH arrays because these are three "classic" sets
of data that have been analyzed before with other
approaches. Our methods, however, can also be applied
to other platforms, including custom and commercial oli-
gonucleotide arrays and SNP arrays (e.g., [25]) or any
other platform for which we can obtain joint probabilities
of alteration. The main objective of these examples is to
illustrate the range of analysis that can be performed.

Colorectal cancer example (Nakao et al.): direct application of pREC-A
Nakao et al. [46] analyze 125 colorectal tumors. They
apply a segmentation method based on a threshold and
then find common regions of alteration studying the fre-
quency of alterations. Rouveirol et al. [28] apply both of
their algorithms for minimal common regions to the
same data. As shown in the Additional file 1, using pREC-
A with a threshold of 0.35, we find basically the same
regions of alteration, and most of the reported differences
come from regions with a probability (or frequency, in the
case of [46]) in the limit of 35%. The only remarkable case
is the gain in 11q which has a much lower probability in
our analysis, probably because that alteration is based on
a single BAC and the segmentation analysis used in [46] is
based on a threshold and therefore is more likely to be
affected by outliers.

Colorectal cancer example (Douglas et al.): comparing probability of
alterations between groups using pREC-A

PREC-A can also be used to compare the probability of
alteration between groups of samples. Douglas et al. [47]
present data from 37 primary cancers. Seven show micro-
satellity instability (MSI) and 30 show chromosomal
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Array 1

Array 2

Array 3

Array 4

Figure |

PREC-S, simple numerical example. Subsets of at least
2 arrays that share common regions of gain of at least 0.90
probability: freq.arrays = 2, p,, = 0.90. Boxes of the same color
represent the same region. In circles, the marginal probabili-
ties of gain. In boxes, the joint probabilities.

instabillity (CIN). (For a definition of genetic alterations,
see [48]). They call alterations using a threshold-based
method and compare their frequency between the two
types using a chi-square statistic. van de Wiel and van
Wieringen [49] analize the same data using a dimension
reduction technique (CGHRegions) after segmenting the
data with DNACopy [50]. They then use a Wilcoxon test
with FDR correction for the difference between the two
levels.

We have used a threshold of p, = 0.50 to find the common
regions of gain/loss and have then compared the proba-
bility of alteration in those regions for the two groups of
samples. We have obtained a total of 21 regions of gain
and 11 of loss, shown in Additional file 1 - Figure S2.
Next, for every region found above we computed the joint
probability of alteration for each of the 30 arrays of class
CIN and the seven arrays of class MSI and, by region, we
calculated the absolute value of the difference in mean
probability between the MSI and CIN groups. To assess
the significance of this statistic, we used a permutation test
(randomly permuting the MSI and CIN labels and recom-
puting the absolute value of the difference in mean prob-
ability) to obtain a two-sided p-value. Then, we applied
the FDR method [51] for multiple testing correction (to
account for the multiple testing arising from comparing
multiple regions). The regions found significantly differ-
ent (at 0.05 level) between groups are listed in Additional
file 1 - Table S3, where we also provide further details
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about the differences with the results in [47] and [49]. Our
results are largely coincident with those in [47] and [49].
Some regions mentioned in [47] (a two-clone region in
chromosome 8, a 29-clone region in chromosome 18, and
the p arm of chromosome 20) are not detected by us as
these are regions with probability of alteration just below
0.50. There are differences with the method of [49], CGH-
regions, in the location of the breakpoints: CGHregions is
a dimension reduction method that simplifies the com-
plexity of the sample profiles, which probably leads to a
larger imprecision in the location of region boundaries.

Breast cancer example (Pollack et al.): pREC-S and homogeneity
index

Pollack et al. [45] analyze data from 44 breast tumors and
10 cancer cell lines. They search for common regions of
alteration and then compare the frequency of aberrations
in each arm of every chromosome as a function of other
variables such as tumor grade, estrogen receptor (ER) and
TP53 mutations. Rouveirol et al. [28] also analyze these
data. We have applied our second method, pREC-S, to the
44 tumors to examine if there is any similarity in the alter-
ations shared by the groups of arrays defined by those var-
iables. We have computed common regions of at least
0.50 probability of alteration (Gains or Losses) shared by
at least two arrays (i.e., freg.array = 2, p,,= 0.50).

To compare our approach with the results of [45], and to
gain more insight on the patterns of recurrent CNA
regions and their relationship to the other three variables
(tumor grade, ER, TP53), we have defined a simple statis-
tic to measure within-group homogeneity of recurrent
CNA regions. Let Y;; be the number of probes that array i
and array j have altered in common, k a group of arrays
(typically, with some common characteristic), n, the
number of different pairs of arrays in a given group k and
n_k the number of different pairs formed by arrays in
group k and arrays in a different group. Let us define

That is, Y, is the average number of common altered

probes between two arrays of group k, and Y_,, is the aver-
age number of common altered probes between one array
of group k and other in a different group. We define the
proportion of common alterations shared by the group %
as Y,/ Y_, . This index measures the homogeneity of the

genomic alterations within a subset of arrays compared to
the alterations shared with arrays of other group. If this
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Figure 2

Clustering based upon pREC-S. Number of common
regions shared by pairs of arrays. In parenthesis, the average
length in probes of the regions. On the left, a dendrogram
using hierarchical clustering (complete linkage) with number
of common regions shared by pairs of arrays as similarity
measure.

index is greater than 1, the arrays of this group share more
alterations between themselves than arrays of different
groups do. If this index is 0, no alterations are shared
between any two arrays in the group. A value of 8 means
that no alteration is shared between arrays of this group
and others. We can compute this index for the groups
defined by the three variables tumor grade, ER, and TP53
mutations; this is shown in the Additional file 1 - Tables
S4 to S6). Those tables allow us to easily discern chromo-
somes that are very homogeneous with respect to shared
alterations; for instance, gains in chromosomes 4 and 5
and losses in chromosome 8 are very homogeneous in the
estrogen receptor negative samples (Additional file 1 -
Table S4). We can display the patterns of similarity graph-
ically, as is done in Figure 3, where we have ordered the
arrays by tumor grade and show the number of common
alterations for chromosome 8. Our results are not easy to
compare with [45], because they define the regions and
compare subgroups at chromosome arm resolution, while
our method works at probe resolution.

Furthermore [45] consider every chromosome arm as
altered or not without taking into account the number of
altered probes in it.

To further understand the pattern of similarities, instead
of comparing subgroups according to the number of alter-
ations, we can analyze how homogeneous each group is
over the whole genome (not chromosome by chromo-
some, as in previous tables). This is shown in Table 4.
When we divide arrays according to tumor grade, Grade I
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and Grade III show high homogeneity within groups,
meaning that the alterations are consistent in arrays
within those grades. Arrays of grade II, however, show
much more heterogeneity, sharing many aberrations with
arrays of Grade I and/or Grade III. This is an indication
that arrays of Grade II can be classified in one of the other
two groups according to the pattern of alterations. Figure
2 provides a graphical illustration: four arrays of Grade II
are very similar to the arrays of Grade IIL

Discussion

We have developed two very different approaches for
finding regions of recurrent, or common, copy number
alteration. The lack of gold standards and the current non-
existence of an unambiguous definition of what a region
of recurrent CNA is [6], as well as the unique and qualita-
tively different nature of our methods from previous ones,
make it difficult to compare performance, but at the same
time highlight the relevance of our methods for current
and future studies of CNA, their relation to phenotypic
variation, and their usage for subject clustering.

The two methods we have developed share that they use
as input probabilities of alteration and return probabili-
ties. Regardless of whether the input probabilities are
obtained from our RJaCGH method [24] or some other
approach, it can be argued that probabilities are much
better suited to the task at hand than p-values or discrete
classifications into "gained", "lost", "not changed". By
using probabilities as input, we incorporate uncertainty in
the estimates of copy number states. By returning proba-
bilites and using probabilities throughout all the analysis,
the user can decide the appropriate thresholds (or, even,
modify them depending on context) and define distances
between arrays that incorporate the strength of evidence
in favor of alteration. Precisely because of the conceptual
simplicity of using probabilities, we can approach within
a unified framework both questions related to "unsuper-
vised problems" (e.g., identify subsets of regions that are
common to subsets of arrays) and to "supervised prob-
lems" (e.g., measure how different two groups of arrays
are with respect to recurrent regions of alteration). This
unified approach is unique to our methods, and not
shared by any others.

Our first method, pREC-A, searches for general, broad
patterns of common gains (or losses) over all the samples
in the study. This is the approach which is most similar to
previous ones. This method is well suited to comparing
pre-defined groups of samples. By its very nature (e.g.,
that an overall pattern is identified by a mean probability
larger than a threshold) this method can only detect
regions for which there is at least moderate evidence
(medium probability) of alteration over almost all sam-
ples, or very strong evidence (high probability) of altera-
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tion over an important fraction of the samples. Thus, it is
easy to miss regions that are present with very high prob-
ability in a small subset of the samples. As well, mixing in
the same sample very heterogenous groups will tend to
smooth out the evidence of alteration, so that few com-
mon regions will be found. Alternatively, if there are very
different sample sizes (different number of arrays) in the
different heterogenous groups, the detected common
regions will often be a subset of the common regions
among the most abundant group. These features can be
controlled to answer the specific study questions. First, as
equation 1 shows, it is easy to weight different arrays dif-
ferently, so as to increase the influence of some arrays in
the final analysis. Moreover, if we know in advance that
there are different subgroups of samples, we can use
PREC-A independently in the different subgroups; for
instance, when we have already subdivided the subjects in
the study into homogeneous groups with respect to dis-
ease (e.g., [52]), and want to locate recurrent CNA regions
common to most samples within a subgroup and possibly
different from other subgroups. Finally, as our last exam-
ple with the data of [47] shows, a user that understands
these features of pREC-A can employ this algorithm to
highlight the differences between subgroups and how
these change as we modify the minimum required thresh-
old for the probability of alteration. In particular, note the
easy formulation of a permutation-based test for identify-
ing the differences in the probabilities of alteration of
regions between subgroups. This type of approach might
be even more useful when two or more suspected sub-
groups are compared against a larger, reference group. The
main advantages of this algorithm are that it is most sim-
ilar to previous approaches, has a simple interpretation in
terms of global patterns across most of the samples, and
requires the specification of only one parameter. Thus,
pREC-A will often be the method of choice if we are trying
to relate major, global, recurrent patterns of CNA to vari-
ations in phenotype or to differentiate between subroups
of samples. In contrast to pREC-A, the second method,
PREC-S, can detect small subgroups of samples with
respect to common alterations, without being adversely
affected by averages over arrays or differences in number
of samples in different subgroups. Moreover, different
subgroups can be detected with respect to different altera-
tions. pREC-S, therefore, addresses a common and dis-
tinct need that arises in any study of CNA with
heterogeneous samples.

As seen in the results, this second algorithm allows us to
elegantly approach some of the questions in the second
example (breast cancer example, [45]). First, the deriva-
tion of a specially tailored statistic, Y, /Y,, to answer the
relevant questions in this study is straightforward. More
importantly, the second algorithm finds homogeneous
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subgroups, with respect to alterations, and these differ-
ences are associated with differences in three other mark-
ers (estrogen receptor status, TP53 mutation, tumor grade;
see Additional file 1). In other words, pREC-S finds CNV
that differentiate between groups. It must be emphasized
that pREC-S has been applied to the complete set of data
after specifying that the within-array probability of altera-
tion be larger than 0.5 (i.e., p, = 0.50) and that these

regions be shared among, at least, two arrays (i.e.,
freq.array = 2), but the algorithm is blind to the "labels" of
the arrays regarding the other markers (estrogen receptor,
TP53, grade). Therefore, pREC-S allows us to find CNVs
that differentiate between known groups (as in this case),
but its systematic usage also opens the door to finding pat-
terns of CNA that might differentiate between previously
unknown groups. Moreover, there is no need for the asso-
ciation recurrent CNA regions-marker to be similar
among different markers, specially since, as explained
above, different subgroups of arrays can be detected with
respect to different CNA recurrence patterns. These are fea-
tures unique and characteristic of pREC-S, compared to
all the alternative available methods.

We suggest that pREC-S is the method of choice when
there is unknown heterogeneity among arrays in CNAs,
and when we want to relate possibly non-identical subsets
of samples, defined in terms of recurrent patterns of CNA,
to phenotypic variation. Moreover, routine use of pREC-S
even with apparently homogeneous groups of samples
might help discover possible subtypes of diseases that
might generate novel hypothesis or uncover previously
unknown heterogeneities.

PREC-S is also a key method for clustering. Integrative
studies that combine CNV data with other data (e.g.,
mRNA, SNP) often use clustering of subjects based upon
the CNA data (e.g., [53,54]). The problem of most of these
approaches is that, when clustering based upon the CNA
data (either the gain/loss calls or the smoothed data), the
measure of distance or similarity used ignores that some
of the data show strong serial dependence (probes next to
each other) whereas some of the data (e.g., probes in dif-
ferent chromosomes) are independent. Thus, in most
cases the distance computed is likely to introduce serious
distortions in the true distances among subjects (see also
[29,55,56]). This problem is in addition to the aforemen-
tioned issues of not integrating variability and uncertainty
in the gain/loss calls or smoothed means. In contrast, by
using a biologically motivated and probabilistically based
approach to CNA common regions, such as pREC-S, it
will be possible to construct distance metrics and, there-
fore, clustering approaches, that make full usage of CNA
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Figure 3

Chromosome 8 from the Pollack et al. example. Number of regions of gain with at least 0.50 probability shared by at
least two arrays (i.e., pREC-S, freq.arrays = 2, p,, = 0.50). The arrays are ordered according to tumor grade. Arrays with grade
Ill share many more alterations between them than the other arrays. Four arrays with grade Il share the same gains in copy
number with tumors of higher grade, so they are probably related. There is one array unidentified.

data when searching for groups of subjects. Fully develop- ~ Moreover, an additional distinct feature of our methods is
ing a method for clustering based upon CNA data is out-  that both pREC-S and pREC-A have at most two parame-
side the scope of this paper, but we have presented a  ters of straightforward biological interpretation (probabil-
simple example to motivate further work. ity of alteration, number of samples that share the
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Table 4: Alterations in Pollack et al. [45], genomewide.

PREC-S (Homogeneity index)

ER Positive 0.75
Negative 1.12
p53 Wild Type 0.67
Mutant 1.23
Grade | 1.21
1l 0.56
I} 1.40

The homogeneity index, ?k / Yb , is computed over the whole
genome, not chromosome by chromosome, as done in previous
tables.
alteration). An added advantage of the type of input and
output used by our methods is that probabilities allow
researchers to modify thresholds as needed, and to easily
(and intelligibly) examine the sensitivity of results to
changes in thresholds.

Furthermore, as both methods are based on a Hidden
Markov Model (HMM) with no restrictions on the
number of states [24], we can use models involving an
arbitrary number of states of gain and loss. The HMM
(probabilistically) assigns probes to hidden states, but it is
up to subsequent analysis to assign those states to specific
or interesting "copy number states". This allows us to keep
the two different concepts of "amplitude (or magnitude)
of change" and "evidence of alteration" separate. Moreo-
ver, it is also immediate to restrict finding common
regions to alterations above a certain threshold of ampli-
tude or that belong only to a subset of states so that we can
focus only on alterations of a certain type (e.g., only the
largest hidden states of gain in a model with three hidden
states for gain).

Finally, note that the problem we have been addressing is
the location, de novo, of recurrent CNA regions. A different
set of problems is using pre-existing information about
regions that show copy number polymorphism to inform
the search for rare copy number variants [57,58]. Like-
wise, another very different set of problems is the usage of
previously identified variable regions in tests of associa-
tion between copy number variation and disease [59-61].
These are, however, sufficiently related objectives, and
methodological and conceptual advances in any one set
of approaches could be highly beneficial for the other two
sets of problems.

Conclusion

We have developed methods for finding regions of copy
number alteration (CNA) common or recurrent over sev-
eral arrays. Our methods have an immediate and intuitive
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biological interpretation, and incorporate both within-
and among-array variability. Reanalysis of several data
sets in the literature show that our methods can indeed
recover patterns previously found but can also uncover
additional patterns. Moreover, probabilities allow
researchers to modify thresholds as needed, and to easily
examine the sensitivity of results to changes in thresholds.
In addition, the examples show how it is straightforward
to derive tailored statistics and summary measures to
answer specific research questions. The development of
these two distinct algorithms highlights a key idea that has
often been neglected: recurrent or common CNAs can
refer to very distinct patterns in a group of samples, spe-
cially concerning heterogeneity among arrays and proba-
bility of alteration. We expect that these two algorithms
will help advance efforts to standardize definitions of
recurrent or common CNA regions, and ultimately the
search for genomic regions harboring disease-critical
genes.
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