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Abstract

Background: The development of effective environmental shotgun sequence binning methods
remains an ongoing challenge in algorithmic analysis of metagenomic data. While previous methods
have focused primarily on supervised learning involving extrinsic data, a first-principles statistical
model combined with a self-training fitting method has not yet been developed.

Results: We derive an unsupervised, maximum-likelihood formalism for clustering short
sequences by their taxonomic origin on the basis of their k-mer distributions. The formalism is
implemented using a Markov Chain Monte Carlo approach in a k-mer feature space. We introduce
a space transformation that reduces the dimensionality of the feature space and a genomic fragment
divergence measure that strongly correlates with the method's performance. Pairwise analysis of
over 1000 completely sequenced genomes reveals that the vast majority of genomes have sufficient
genomic fragment divergence to be amenable for binning using the present formalism. Using a high-
performance implementation, the binner is able to classify fragments as short as 400 nt with
accuracy over 90% in simulations of low-complexity communities of 2 to 10 species, given sufficient
genomic fragment divergence. The method is available as an open source package called LikelyBin.

Conclusion: An unsupervised binning method based on statistical signatures of short
environmental sequences is a viable stand-alone binning method for low complexity samples. For
medium and high complexity samples, we discuss the possibility of combining the current method
with other methods as part of an iterative process to enhance the resolving power of sorting reads
into taxonomic and/or functional bins.

Background throughput genome sequencing to non-clonal DNA puri-
Metagenomics, the study of the combined genomes of  fied directly from an environmental sample. This removes
communities of organisms, is a rapidly expanding area of ~ the requirement to isolate and cultivate clonal cultures of
genome research. The field is driven by environmental  each species, allowing an unprecedented broad view of
shotgun sequencing (ESS), a technique of applying high-  microbial communities.

Page 1 of 16

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/10/316
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19799776
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10:316

Thus far, environments such as acid mine drainage [1],
Scottish soil [2], open ocean [3], termite gut [4], human
gut [5], and neanderthal [6] have been sequenced, to
name a few. Attention has been directed to bacterial and
viral fractions of these communities, with eukaryotic
metagenomics pioneered by projects such as the marine
protist census [7]. Complexity of these communities var-
ies greatly from 5 to several thousand identifiable bacte-
rial species. These projects have uncovered vast amounts
of previously unobserved genetic diversity [8,9]. For
example, "deep sequencing" using 454 pyrosequencing
suggests that possibly tens of thousands of species coexist
in a single ml of seawater [10].

Given this wealth of genomic data it is becoming possible
to make increasingly precise biological inferences regard-
ing the structure and functioning of microbial communi-
ties [11-13]. As but one example, the discovery of a novel
proteorhodopsin gene was the first step in uncovering a
previously unknown, yet apparently dominant, mecha-
nism for phototrophy in the oceans [14]. Characterization
of functional diversity is limited by our ability to classify
sequences into distinct groups that reflect a desired taxo-
nomic or functional resolution.

Shotgun metagenomic DNA is sequenced in fragments of
50 to 1000 nucleotides, then possibly assembled into
longer sequences (contigs). Phylogenetic binning, the task
of classifying these sequences into bins by taxonomic ori-
gin, then becomes critical to separate metagenomic data
into coherent subsets plausibly belonging to separate
organisms. This task is challenging due to the short length
of available fragments. Bacterial communities of very high
complexity, with thousands of species present, further
complicate the task.

While methods such as 16S bacterial community censuses
[15] and functional- or sequence-based screening surveys
are the forerunners of modern metagenomics, indiscrimi-
nate whole-genome shotgun sequencing may be the
defining approach of the discipline today. This approach
has recently generated vast amounts of data, facilitated by
continual capacity increases and quality improvements at
major sequencing centers and the emergence of cost effec-
tive very high throughput Next Generation sequencing
(NGS) (454 pyrosequencing [16], Illumina [17] and
SOLID [18]). At the highest diversity levels, the reads may
not be assembled at all due to the sparseness of even the
highest throughput sequencing methods and the danger
of chimeric assemblies, arising from sampling so many
organisms at once, leaving the binner with raw reads. Bin-
ning methods therefore aim to be able to operate on very
short read lengths provided by next-generation sequenc-
ing, although most, including the present approach, are
only able to go down to 454 pyrosequencing read length
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(about 400 nt) and not to microread length (30 to 100
nt).

Classic approaches to phylogenetic determination of spe-
cies identities from environmental sequences rely on
identifying variants of highly conserved genes, like 16S
rRNA or recA [19]. This approach is not applicable on a
full metagenomic scale for two reasons: first, ribosomal or
marker gene sequences comprise a small fraction of the
bacterial genome, so most shotgun sequences do not con-
tain them and cannot be classified this way; and second,
organisms with identical or closely related 16S genes have
been shown to exhibit variations in essential physiologi-
cal functions [20]. Other approaches are broadly divided
into sequence similarity based classifiers such as MEGAN
[21], which rely on BLAST or other alignments, and
sequence composition based classifiers, which rely on sta-
tistical patterns of oligonucleotide distributions. Many
solutions integrate the task of phylogenetic assignment
(labeling) together with that of binning per se (clustering)
of genomic fragments. However, with unsupervised meth-
ods, like the one presented here, labeling is not possible
as part of the algorithm and has to be performed by other
means, like analyzing the correspondence of generated
clusters to known phylogenies.

Sequence classification based on oligonucleotide distribu-
tions has been the basis for gene finding applications
since the early 1990s. In 1995, Karlin and Burge [22]
noted that dinucleotide distribution is relatively constant
within genomes but varies between genomes. Since then,
this property has been extensively studied and generalized
to other oligonucleotide lengths [23]. With the advent of
ESS, several binning methods have used oligonucleotide
distributions of various orders to build supervised and
semi-supervised classifiers. These include PhyloPythia
[24], CompostBin [25], and self-organizing map (SOM)
based methods [26-28].

Machine learning-based classification algorithms like
those used for binning are categorized into supervised,
semi-supervised, and unsupervised classes. Supervised
algorithms accept a training set of labeled data used to
build their models, which are then applied to the query
data. In case of binning, this training set consists of
genomic sequences labeled according to the species they
originate from. Semi-supervised algorithms use both
training set data and query data to build their models.
Unsupervised algorithms use no training data and derive
their models directly from the query input. While meth-
ods described above have achieved considerable success
in classifying short anonymous genomic fragments, their
supervised nature makes them reliant on previously
sequenced data. For example, BLAST-based methods are
completely dependent on the presence of sequences
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related to the query in the database. While semi-super-
vised clustering methods can have significant generalizing
power, their accuracy still depends on similarity of input
data to their training set.

To our knowledge, two approaches to unsupervised
metagenomic binning have been published. TETRA
[29,30] explores the applications of k-mer frequency sta-
tistics to metagenomic data. The authors state that their
method is suitable as a "fingerprinting technique" for
longer DNA fragments, though not as a general-purpose
binning method for single-read 454 pyrosequenced or
Sanger fragments, and an application of methods includ-
ing TETRA to binning of fosmid-sized DNA is used in
[31]. Abe et al. [26] used self-organizing maps (SOM) in
combination with principal component analysis (PCA)
on 1- and 10-Kb fragments, and this method was evalu-
ated and enhanced in [27] using growing self-organizing
maps (GSOM), an extension of SOM, on 8- and 10-kb
fragments.

Given the apparent diversity of metagenomic samples and
the significant fraction of the full bacterial phylogeny with
no sequenced representatives [20,32], as well as possible
undiscovered diversity of the tree of life, binning methods
must perform well on previously unseen data. Semi-
supervised methods may be able to extrapolate on this
data, but if not, unsupervised clustering will be a neces-
sary part of a combined-method binning approach. We
present LikelyBin, a new statistical approach to unsuper-
vised classification of metagenomic reads based on an
explicit likelihood model of short genomic fragments
[33]. The rest of this paper is organized as follows. The
Methods section introduces a formal definition of the bin-
ning problem, the application of the Markov Chain
Monte Carlo (MCMC) formalism, and the feature space
and likelihood model used. We discuss numerical meth-
ods used in the implementation, including a novel coor-
dinate transformation which achieves dimension
reduction for the feature space of k-mer frequencies, and
the genomic fragment divergence measure D,, a novel sta-
tistical measure we developed for performance evaluation
of our algorithm. The Results section presents perform-
ance evaluations of our method on mixtures of 2 to 10
species compiled from completed genomes available in
GenBank, with fragment lengths starting at 400 nt, as well
as accuracy trends over different fragment lengths and
mixing ratios. We also present results on the FAMeS [34]
dataset and compare the current method to a semi-super-
vised binning method based on k-mer distributions [25].
The Conclusion section explains the applicability of our
method, its speed and availability, as well as important
future directions for improvement.
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Methods

The binning problem

We state the problem as follows: given a collection of N
short sequence reads from M complete genomes, how can
we predict which sequences derive from the same
genome? In our model, we represent a genome as a string
of characters deriving from a stochastic model with
parameters O, referred to here as a master distribution. We
make the simplifying assumption that the oligonucleotide
distribution is uniform across the bacterial chromosome.
This assumption is not satisfied biologically; gene-coding,
RNA-coding, and noncoding regions, leading and lagging
strands of replication, and genomic islands resulting from
horizontal gene transfer can all exhibit distinct oligonu-
cleotide distributions. Accurate classification of these
regions in metagenomic fragments is an open problem
which requires complex statistical models that we have yet
to incorporate into our framework, and which are targets
for subsequent model development. Nonetheless we have
found that clustering of short reads using the above
assumption is sufficiently accurate for use in low com-
plexity metagenome samples.

Given this assumption of statistical homogeneity, we
model a collection of sequences from a single genome as
realizations of a single stochastic process. Similarly, we
model a collection of sequences from multiple genomes
as realizations of multiple stochastic processes, one per
genome, each with its own master distribution. We are
interested in determining which sequences in a metagen-
omic survey are likely to have been drawn from the same
genome and, consequently, the statistical distributions of
oligonucleotides within each of the master distributions.
If the number of master distributions is unknown, then
we must include some prior estimate to close the model.
Thus, even in cases where due to insufficient coverage it is
impossible to assemble disparate segments of a consensus
genome together, a binning algorithm should still be able
to group reads together based on their statistical distribu-
tion of oligonucleotides.

The simplest model of a genome would be a random col-
lection of letters, A, T, C, and G. The master distribution
of a single genome can then be represented as a single
probability, p,, denoting the fraction of A-s in the
genome. Base complementarity requires p, = prand po= 1/
2 - ps = pe- A more complex representation would be to
assume that genomes are random collections of k-mers.
When k = 1, each nucleotide is independent of the previ-
ous. When k = 2, the genomes are random collections of
dimers and so on. However, when k > 2, inherent sym-
metries are present in this representation since all but the
first letters of the current k-mer are also contained in the
next k-mer. In a metagenomic dataset, each short frag-
ment derives from a single master distribution, €, which
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is represented a fraction f; of times. How then can we infer
the most likely ® = (0, 6,, ..., 6,) and F = (f, 5, .- fu)
given a set of N sequences S = (s, S,, ..., Sy)? To do so, we
must calculate the likelihood (S|®, F) of observing the
sequences S given the parameters ® and F. Then, we must
estimate the values of ® and F that maximize the likeli-
hood . Below, we demonstrate the use of a MCMC algo-
rithm to perform this task.

MCMC framework

FIGURE 1 We are interested in finding the values of ® and
F that maximize the likelihood, . The MCMC approach
has been described in detail elsewhere [35]. Given an ini-
tial parameter setting and a metagenomic data set, we
implement the following Metropolis-Hastings algorithm
to MCMC maximum likelihood estimation: (i) Deter-
mine the likelihood of the dataset (®, F|S); (ii) Choose
some @ =0 + dO, and G = F + dF and determine its likeli-
hood, ' (®, G), such that both ® and G exist in the same
high-dimensional simplex as ® and F respectively; (iii)
Accept the new value given a probability 1 if ' (®, G) >'(0,
F) and with probability ' (®, G)/(0, F) otherwise; (iv)
Repeat, and after a burn-in period determine the values e)

and F which maximize (S|©, F). We can then utilize the
resulting model of sequence parameters to classify
sequences and estimate the most likely oligonucleotide
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entire binning algorithm, is illustrated in Figure 1. Some
technical details necessary for the implementation follow.

Likelihood model

Consider a nucleotide sequence s = ¢, ¢, ¢35, ..., ¢€. We
would like to know the probability of observing such a
sequence given some underlying model. We assume that
our sequence is selected from broken pieces of double-
stranded DNA, and thus that complementary nucleotide
sequences have the same probability: i.e., L(s) = L(s'),
where s'=¢,...c}, and ¢ is the nucleotide complemen-
tary to the nucleotide ¢;. We assume that the probability of
our sequence is determined by a set of 2% k-mer probabil-

ities p. ., -

That is, we write:
4
P()=pe,c, [ | Pejlinmici) (1)
j=k+1

Assuming we know probabilities for all of our k-mers, we
have probabilities for & - 1-mers as marginals.

Thus we can write:

4 p
e s L Citl—k---Cj
distribution of each of the originating master distribu- P(s)=p, . I I ( jti=k:-¢j ) (2)
. . . . 1k
tions. The iterative process, together with key stages of the =+ P(c j+1-k--€j-1)
7 Binner
/SM:z?iegsog:;tt/ » Initialize ®, F Estimate sources /“ Output ;
P e ) .
1
1
Test harness ! T i
! Sample x
Sample fragments [==="======= 1 > stationary Compute
distribution accuracy
H
Take random step Test harness
Complete Accepted with P= O’ =0 +dO
PO’ F) / P(O, F) F = F+dF Aecepted
S ¢ -~
Calculate P(®’, F')
Figure |
Binning diagram. Diagram of binning data pathways and main MCMC iteration loop.
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As an example, the probability of a sequence given a set of
known dimer frequencies is:

4

Plcj-1¢j)
P(S) = pclcz VN (3)
l,:s[ P(cj-1)

Note that we assume the marginal probabilities are well
defined: i.e., that we get the same marginal probability if
we collapse a k-mer to a k - 1-mer by summing over the
first, or the last, nucleotide. The likelihood of observing N
sequences given M master distributions is

N M
‘C=H mepm(si) (4)
i=1 m=1

where P, (s;) is the probability of generating the i-th
sequence given the m-th master distribution.

A simple example of likelihood computation according to
the described model is given in the Appendix.

The space of k-mer frequencies

Given the assumption of uniformity of the k-mer (oligo-
nucleotide) distribution across each genome, we can
impose three kinds of constraints on the k-mer frequency

k
space. This space is a subspace of R* , subject to three
kinds of constraints: all k-mer frequencies sum to 1, e.g.

Paaa +Paar +---+Pcoc =1

each k-mer has the same frequency as its complement; and
all marginal probabilities are consistent over all margins,

e.g.

Paaa t Paar t Paac T Paac = Paa-

We then derive a transformation of the original k-mer fre-
quency vector, X = [pa, pr Per Por Paar Par Pacr Pacy Pras -1,
into the independent coordinate space. To generalize and
automate the process, we perform it for each case from 1-
mers (4 dimensions before removing redundancies) to 5-
mers (1364 dimensions before removing redundancies)
by generating all equations governing the constraints
above. We use the notation [A|b] to denote the matrices of
the constraint equation Ax = b by generating rows for each
constraint type. For example, for k = 2, we write the sum-
mation, complementarity and marginality constraints as
follows:

. 11 1000O0O0O0OO0OO0OOO0OOOO0OOO0OTO0O]|1
Summation :

0000111111111 1111111[1]

(5)
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1 -10 0 00O0OOOOOOOOOOOOOOGO|O
. 0 01 -1000O0OO0OT0OTUOOOOOOOOTO OO O|O
Complementarity :
0 0 0 100O0O0O-100WO0OO0OO0OO0O0OOO0OT®O0O|O
(6)
1000-10 00-1000-1000=-1000]0]
- 0-1-1-10-10000 00O0O0OO0 O0O0O0O|O0
Marginality : .

(7)
We find the nullspace of the resulting matrix A and use it
to perform the transformation. The resulting number of
independent dimensions is shown in Table 1. The MCMC
simulation then performs the search in the independent
coordinate space. For k > 6, the matrix A becomes too big
to compute its nullspace using a non-parallelized algo-
rithm. Even for k = 6, the number of independent dimen-
sions is so large that the MCMC simulation takes an
intractable amount of time. Therefore, we only generalize
our algorithm up to k = 5.

Initial conditions

The choice of initial conditions can dramatically alter the
speed of convergence of a MCMC solver. We used the
same initial conditions for comparison of model results,
specified by the frequencies of k-mers in the entire dataset
provided as input (i.e., the weighted average of all sources'
contributions to the dataset). Other possibilities, imple-
mented but not chosen as the default, include taking uni-
formly distributed frequencies, randomizing the starting
condition, or using principal components analysis with K-
means clustering to obtain initial cluster centroids. We
verified that convergence, when it did occur, did not
depend sensitively on initial conditions (Additional files
1 and 2).

Finding the maximum likelihood model

Once the predefined number of timesteps has elapsed, the
model with the largest log likelihood is selected. Note that
the MCMC framework is amenable to a Bayesian

Table I: Redundancies in oligonucleotide dimension space

k Total dimensions Independent dimensions
I 4 I

2 20 7

3 84 25

4 340 103

5 1364 391
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approach, which we implemented as an alternative. Once
the equilibrium state has been reached we calculate the
autocorrelation of frequencies and estimate a window
over which frequencies show no significant autocorrela-
tions. Given a specified prior distribution p(®, F) for the
master distribution and frequencies, the Metropolis-Hast-
ings approach will converge to the true posterior distribu-
tion of &t (O®, F|S) « (S|®, F) p(O, F). In our case we used
an uninformed prior distribution so long as positivity and
all other specified constraints among k-mer probabilities
were preserved. We then sample from the equilibrium
state to find n (©, F). Averages of master distributions in
the posterior distribution also preserve the constraint con-
ditions because of the linearity of the averaging operator.
Accuracy of the model was similar whether using the max-
imum likelihood model or the average of the posterior
distribution (Additional file 3). Full posterior distribu-
tions of k-mer models could be used to estimate posterior
distributions of binning accuracy.

Numerical details
Precision

Due to precision limitations of the machine double preci-
sion floating point format, the model likelihood calcula-
tion is performed in log space. Denote the old model
under consideration as M = {M;, M,, ...
(perturbed) model as M = {M,, M,,...M,,} . The log likeli-

hood of a single model is

N M
lOgH mepm(si)
R i=1 Mm:l
Y log Y fululs)

i=1

M,,}, and the new

log £

m

Zlongm PCMHpC] ! C]

j=3 C]1

and note that the innermost fraction contains higher-
order terms when working with Markov chain orders
higher than 2. The innermost product term is a product of
on the order of 1000 terms of magnitude ~ 1/4. However,
1/4n exceeds double floating point precision at n = 540. To
prevent underflow, we find the P,,(s;) of highest magni-
tude and divide the inner sum by it. This allows log space
evaluation of the highest magnitude term and ensures
that any terms whose precision is lost are at least ~ 1300
times smaller. The model log likelihood ratio is then
L(M[S) _

ZM]S) = If this

log log £L(M |S)—log L(M|S) . term
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exceeds 0, the new model is more likely to be observed
than the old.

The MCMC iteration loop was implemented with the
Metropolis-Hastings criterion. From an initial model, a
perturbed model My is generated. The new model's prob-
ability is evaluated as above and compared to that of the
currently selected model M. If higher, the new model is
selected; otherwise, the new model is selected with prob-
ability p = exp (log (My]|S) - log (M(|S)). The step is
repeated N times (N is fixed at 40000 for the experiments
described). Each selected model is stored in a model
record for later sampling.

Computing the perturbation

The statistical model consists of sub-models for each
source. The perturbation step is performed for every sub-
model independently. Every sub-model consists of a com-
plete k-mer frequency vector, {p,, pr Do Por Pan--- - It is
perturbed by scaling each vector of the basis matrix A by a
random number r; drawn from a Gaussian distribution
with mean 0 and constant variance (computed as
described below), then adding each scaled vector in suc-
cession to the frequency vector. The basis matrix A is
precomputed for each k-mer model order from 2 to 5 and
supplied with the program. The computation is per-
formed by generating a system of equations representing
the base complementarity, marginal, and summation
constraints and using the standard nullspace algorithm
supplied with GNU Octave.

The perturbation step variance must be calibrated inde-
pendently for each dataset. An excessive variance will
result in too many suboptimal perturbations as well as
perturbations placing the frequency vector outside the
unit hypercube (those perturbations are rejected). A vari-
ance that is too small can result in an inability to escape
local maxima in the model search space and an inability
to reach the stationary phase before the pre-determined
number of steps is taken. To calibrate the variance, the
MCMC iteration is started independently for a reduced
number of steps, and different variances ranging from 1le
-3 down to le - 8 are tried. With each trial, the number of
new model acceptances is recorded. We consider the frac-

# acceptances

tion f: # timesteps

. Once the variance yielding f closest

to 0.234 is found (a heuristic level of acceptances that has
become standard [35], p. 504), we use this variance for the
main run. Convergence to the stationary phase occurred
after 40,000 iterations in all cases of interest.
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Computing the prediction

To derive the final model prediction, the model with the
overall maximum log likelihood is selected. The full
MCMC simulation is repeated a selected number of times
(to increase performance, the classifier was run in parallel
on an 8-core machine; each core was assigned to run one
MCMC simulation for a total of 8 restarts). Final model
predictions are compared between different runs, and the
best overall prediction is selected according to its model
likelihood (described above).

The classifier then assigns a putative source to each
sequence fragment it was initially queried with. For every
fragment, its likelihood according to each sub-model in
the final predicted model is computed, and the sub-model
supplying the highest likelihood is selected. Since the
sources are anonymous, they are referred to simply by
indices from 1 to n corresponding to each sub-model's
index in the final predicted model. Figure 2 illustrates the
log likelihood comparison process for all fragments in a
given dataset, according to the best model selected as a
result of this process.

Testing methodology
Simulated metagenomic datasets were created by selecting
two or more genomic sequences as source DNA. Sequence

-2000
A
-2050F
3 —2100
(o]
=
©
X
_g‘ -2150
o
o
3 ;
< 2200
2250} ’ . 4
4 Species 1 fragments
e Species 2 fragments
- = = Decision separator
—-2300 L i " " "
72300 2250 -2200 -2150 -2100 -2050 —-2000
Model 1 log likelihood
Figure 2
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fragments were selected at random positions within
source sequences; overlaps were allowed to occur. Frag-
ment size was fixed for all fragments for each experiment.
The total number of fragments per source was selected
either according to overall source length or at specified fre-
quency ratios (e.g., 2:1, 10:1:1). The number of sources in
each testing dataset was supplied to the classifier.

Accuracy of the classifier is calculated as follows. Every
possible matching of source genomic sequence names to
classifier output indices is considered, e.g. {seq1 — 1, seq2
— 2}, {seq1 — 2, seq2 — 1}. The number of correct assign-
ments made by the classifier is then counted for each
matching and the matching with the highest number of
correct assignments is selected. Accuracy is then given as

# correct assignments

Fragments . To evaluate separability of the ran-

domly generated datasets according to the classifier's
model, we also define and compute the genomic fragment
divergence between two sources' k-mer distributions. First,
we compute the mean, x4 and standard deviation, o, of
each k-mer frequency for each source across fragments
originating from that source. The genomic fragment diver-
gence of k-mer order n is then given by

-2000
B
-2050F A ’
'I
3 2100} £
(o}
£
O
X
2 2150}
[aV]
) »
3 .
< -2200} .’
‘l
2250} r- $ , -
ot 4 Species 1 fragments
A ® :
Y e Species 2 fragments
A - = = Decision separator
7230[2“4 A.- A ~ a — J
-2300 -2250 -2200 -2150 -2100 -2050 -2000

Model 1 log likelihood

Fragment likelihood separation. Log likelihood values of fragments from pairs of species according to models fitted by the
classifier. Points' positions on the two axes represent log likelihoods of each fragment according to the first and second model,
respectively. A, Helicobacter acinonychis vs. Vibrio fischeri, good separation (98% accuracy, D = 1.31); B, Streptococcus pneumoniae
vs. Streptococcus pyogenes, poor separation (57% accuracy, D = 0.22). Fragment length was 800 in both cases. 500 fragments per
species were supplied.
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S S9+2
(#i 1—;11- 2)

n
1
Dn(Sll Sy)= 27

S Sy 2"
k=1 4 ie{k-mers (Gl 1)2+(Gi 2)2
of order k}
(8)
Generalizing to M species, let {S} = {S;, S,, ... S,,}. Then
we define.
D,({S}) = AR (D (Si:S))- )

i#j

Figure 3 illustrates the distribution of genomic fragment
divergences between completed bacterial genomes. A dif-
ferent formula for intergenomic difference, called the aver-
age absolute dinucleotide relative abundance difference is [36]:

5°(f,8) = 15 Dy | PRr(F) - Piv(8)]. where
Pxy = f XY This formula encompasses dinucleotides
Xfy

and pairwise comparisons of entire sequences only, and
uses dimer frequency biases instead of absolute frequen-
cies and their deviations in a hierarchical fashion.

Results and Discussion

The accuracy and applicability of the present method in
binning short sequence fragments from low complexity
communities (2-10 species) was systematically analyzed
using a variety of species, varying fragment lengths, and
varying ratios of fragment representation.

First, a set of 1055 completed bacterial chromosomes was
retrieved from GenBank. This set was randomly sampled

http://www.biomedcentral.com/1471-2105/10/316

for sets of 2, 3, 5, 10 genomes at a time, representative of
various genomic fragment k-mer distribution divergences.
Binning results for nearly 1800 simulated communities
comprised of 2 or 3 genomes at a time are summarized in
the top panels of Figure 4. There is a strong positive corre-
lation between genomic fragment divergence and average
performance. Classification accuracy was consistently
above 85% for fragment divergences when D5 > 2. Results
for Bayesian posterior distribution sampling were not
substantially different (Additional file 3).

Accuracy of binning simulated communities of 5-10 spe-
cies was consistent with the results from 2-3 species com-
munities. The accuracy of binning was strongly positively
correlated with genomic fragment divergence with accura-
cies consistently above 85% for D, > 2. Note that accurate
binning was possible when fragment length was either L =
400 nt or L = 800 nt (middle and bottom panels of Figure
4 respectively). For 5 and 10 species, a total of 1815 sim-
ulated communities were tested in the L = 400 nt case and
a total of 425 simulated communities were tested in the L
= 800 nt case.

Next, we evaluated the robustness of our binning method
to changes in fragment length and to changes in fragment
ratios using five distinct genome pairs from the preceding
experiment (see Table 2). The pairs were selected based on
their relatively low genomic fragment divergence, D;~ 1,
given a fragment length of L = 400 nt. Binning results on
these 2-species tests were evaluated using sequence frag-
ments whose lengths ranged from 40 to 1000 nt. The
results are shown in Figure 5. Performance stabilizes close
to its optimal value at fragment length 400. Again, results
for Bayesian posterior distribution sampling were not
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Pairwise genome divergence distributions. Cumulative distributions of pairwise divergences (D,) between all completed
bacterial genomes retrieved from GenBank. Fragment lengths of 400 to 1000 were used to compute D,. Divergences based on
k-mer order 2, 3, and 4 are represented in panels A, B, and C, respectively. The vertical cut-off line at D = | indicates an empir-
ical boundary above which the binning algorithm works with high accuracy. For fragment length 400, over 80% of all randomly

selected pairs are observed to have divergences above this line.
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Figure 4

Algorithm accuracy vs. fragment divergence. Sets of 2, 3, 5, 10 genomes were sampled randomly from a set of 1055

completed bacterial chromosomes, and experiments were conducted as described in Materials and Methods. Trials were con-
ducted with 400- and 800-nt long fragments. Classification accuracy for the majority of genome pairs above overall divergence
| is in the high performance range (accuracy > 0.9), while above divergence 3 accuracy is above 0.9 for over 95% of the trials.
Results for Bayesian posterior distribution sampling were not significantly different (Additional file 3).
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Algorithm accuracy vs. fragment length. Fragment length-dependent performance on 2-species datasets. Same trials as in
Figure 4 were performed on a subset of pairs of genomes while varying simulated fragment size from 40 to 1000. The species'

characteristics are given in Table 2.

substantially different than the maximum likelihood
approach (Table 3).

For the same five pairs as in Figure 5, we performed a test
of fragment ratio-dependent contributions to accuracy
(Figure 6). The binner successfully classifies mixtures with
species' fractional content of 20% and above. Although
robust to moderate variation in fragment ratios, these
results indicate that binning relatively rare species may
require modifications to the present likelihood formal-
ism.

We also tested our method using subsets of the JGI FAMeS
[34,37] simulated low-complexity dataset (simLC). We
took 5 genomic sources at a time, using 500 fragments,
each of length L = 400 nt. The accuracy results for binning
these simulated low complexity communities are summa-
rized in Table 4. The binning method has approximately
80% accuracy for a five-species community despite the
genomic divergence, D;, being approximately 1.5 (an
indicator of a community with similar k-mer distribu-
tions).

We also compared our method to CompostBin [25], a
semi-supervised algorithm that utilizes a PCA method to
bin fragments based on their k-mer distributions (Table
5). We performed comparisons on pairs of genomes with

fragment divergence D; =~ 1 using the same dataset ana-
lyzed in Figures 5, 6 and Table 2. The results indicated that
our method performs on par with or better than Com-
postBin, even though CompostBin required a fraction of
input fragments to be labeled to initialize its clustering
algorithm. Run time and memory performance was com-
parable between the two methods.

The algorithm is implemented in portable Perl and C code
that can be compiled and run on any platform supporting
a Perl interpreter. Both memory use and run time scale lin-
early with the number of fragments and species, and sub-
linearly with fragment length. Memory complexity scales
quadratically with the number of dimensions in the
search space, or exponentially with k (as shown in Table
1). We selected k = 3 as the default k-mer length, with user-
defined options for 2, 4, or 5 available. We have not yet
formalized convergence time performance as a function of
k. In practice, a 3-species dataset of 1000 fragments per
species, with k-mer order set to 3, takes approximately 2
minutes to run on an Intel Core 2 Duo-class processor.

Conclusion

We developed an unsupervised, maximum likelihood
approach to the binning problem - called LikelyBin. Like-
lyBin uses a MCMC framework to estimate the set of mas-
ter distributions and relative frequencies most likely to
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Table 2: Summary of species’ characteristics, including all independent monomer and dimer frequencies, in the subset of trials on 5
pairs of genomes performed in Figures 5 and 6.

Species composition GC content Pa Paa Pac Par Pca Pce Pec
Arthrobacter aurescens TCI 63% 0.186 0.041 0.044 0.048 0.054 0.127 0.114
Sinorhizobium meliloti 102 1 62% 0.189 0.040 0.057 0.037 0.068 0.097 0.098
Lactococcus lactis subsp. cremoris MG1363 36% 0.322 0.128 0.046 0.092 0.063 0.025 0.037
Francisella tularensis subsp. holarctica FTA 32% 0.337 0.118 0.047 0.109 0.059 0.015 0.038
Helicobacter pylori HPAG | 40% 0.301 0.105 0.050 0.082 0.066 0.027 0.042
Streptococcus pneumoniae Ré 39% 0.303 0.126 0.040 0.079 0.058 0.037 0.060
Staphylococcus aureus RF122 35% 0.324 0.122 0.042 0.097 0.060 0.017 0.037
Prochlorococcus marinus str. NATL2A 33% 0.333 0.121 0.053 0.110 0.066 0.026 0.035
Staphylococcus aureus subsp. aureus COL 31% 0.343 0.134 0.038 0.110 0.055 0.008 0.027
Methanocaldococcus jannaschii DSM 266 | 33% 0.335 0.122 0.053 0.112 0.065 0.026 0.033

Table 3: Summary of algorithm performance on JGl FAMeS data.

FAMeS identifiers min D; Fragment count Fragment length Accuracy
APOWI005, PPD 1199, AIBF1022, AHZI1 134, AHXOI1014 2.3451 500 400 0.87
BCSB1222, ABFI1048, AHYP1295, AKNK 1296, AAZH3626 1.9598 500 400 0.69
AHYTI1 136, AHY11010, PIT10099, AINZ1029, AHZF1044 1.9314 500 400 0.85
PPDI1199, AUNIIOI3, ABSUIO031, AABS2846, AHXOI1014 1.8881 500 400 0.89
AOTUI1003, BCSB1222, AIOH 1083, AIFS1040, AHXX1063 1.8032 500 400 0.86
BCSB1222, VNY1182, AHXFI 121, AKNK1296, AHZII |34 1.3563 500 400 0.8l
KPY1561, AOTY1222, BAHFI005, POG1025, AAOP| 172 1.2429 500 400 0.79
BCSB1222, AADD1003, AUNII0I3, KPRI102, AHXO1014 I.1571 500 400 0.87
AICI1287, AAOOI711, AKNK1296, AHXX1063, KPR1102 1.0279 500 400 0.72
AHYT1136, AAWXI1070, WBJ1361, AIAI1092, AXBY | 147 0.9987 500 400 0.65
AICI1287, AHYTI1 136, AAWX1070, AADEI259, AINZ1029 0.9856 500 400 0.72
AUSCI572, AHYF1232, AAON 1449, AIAX1019, ACBK1133 0.8884 500 400 0.78
Average (12 trials, 5 sources, L = 400) 1.46 500 400 0.79

Random subsets of 5 sources each were selected from the FAMeS simLC dataset, with a genomic fragment divergence, D;, as shown. Fragments
were truncated to the indicated length where appropriate. Reads from the dataset were used raw with no trimming.
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Algorithm accuracy vs. source ratio. Fragment ratio-dependent performance on 2-species datasets. Same trials as in Fig-
ure 4 were performed on a subset of pairs of genomes while varying species' contributions to the dataset from 2% to 98%.
Fragment sizes were fixed at 400 nt (A) and 1000 nt (B). The species' characteristics are given in Table 2.

give rise to an observed collection of short reads. The like-
lihood approach is based on k-mer distributions, for
which we developed an index of separability of any pair of
genomes, which we termed the genomic fragment diver-
gence measure, D,. We found that the vast majority of
genomes have sufficient divergence to be distinguished
using the present method (Figure 3).

Using a high-performance implementation, LikelyBin can
be used to cluster sequences with high accuracy (in some

cases, > 95%) even when the mononucleotide content of
the original genomes is essentially identical (Figure 4).
The method does as well or better than a comparable
semi-supervised method (CompostBin [25]) that also
uses k-mer distributions as the statistical basis for binning
(Table 5).

Performance of LikelyBin is consistently good for synthe-
sized low-complexity datasets (2-10 species) with frag-
ments of length as low as 400 nt, which corresponds to

Table 4: Performance comparison of LikelyBin and CompostBin on pairs of genomes analyzed in Figures 5, 6, Table 2.

Org | Org 2 Frag L Frag N D, LikelyBin accuracy CB seeds CompostBin accuracy
S. meliloti A. aurescens 400 500 1.02 094 10 0.93
25 0.93
L. lactis F. tularensis 400 500 I.I5 092 10 0.76
25 0.12*
S. pneumoniae H. pylori 400 500 097 0.96 10 0.12*
25 0.96
P. marinus S. aureus 400 500 099 093 10 0.73
25 0.83
M. jannaschii S. aureus 400 500 092 094 10 0.17*
25 091

Frag L, Fragment length; Frag N, Number of fragments per source; CB seeds, labeled fragments supplied to CompostBin for training. LikelyBin
consistently performed equally to or above CompostBin performance despite being completely unsupervised, while CompostBin required a
fraction of input fragments to be labeled to seed its clustering alorithm. We supplied training fragments to CompostBin without regard to their
origin (protein or RNA-coding). In a likely practical scenario, only 16S RNA-coding fragments would be labeled, but would have different k-mer
distributions from protein-coding regions, possibly confounding classification. (¥) Convergence toward a good clustering was not observed in
CompostBin for these datasets; accuracy can be less than 50% due to labeled input.
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Table 5: The method of sampling the posterior distribution of the MCMC chain by averaging random accepted models from the steady
state was compared to the method of selecting the model with the overall maximum log likelihood.

Order 3 model Order 4 model

Org | Org 2 Frag L Sampling type D;  Accuracy LL D, Accuracy LL

Arthrobacter aurescens TC| vs. Sinorhizobium meliloti 1021

400 Steady state sampled 1.08 0.95 -1054490.36
1.09 0.94 -1040007.41
400 Maximum log likelihood 1.02 0.94 -1055584.16
NC 003047 NC 008711
1000 Steady state sampled 1.95 0.97 -2648159.80
2.52 0.99 -2637429.69
1000 Maximum log likelihood ~ 2.12 0.98 -2645204.57

Lactococcus lactis subsp. cremoris MG 1363 vs. Francisella tularensis subsp. holarctica FTA

400 Steady state sampled 1.08 0.90 -1045063.72
1.33 0.95 -1040811.10
400 Maximum log likelihood I.15 0.92 -1047966.99
NC 009004 NC 009749
1000 Steady state sampled 2.02 0.96 -2624742.76
222 0.97 -2615376.71
1000 Maximum log likelihood ~ 2.19 0.96 -2626080.18
Helicobacter pylori HPAG| vs. Streptococcus pneumoniae R6
400 Steady state sampled 0.93 0.96 -1059955.55
1.18 0.93
400 Maximum log likelihood ~ 0.97 0.96 -1061298.85
NC 003098 NC 008086
1000 Steady state sampled 1.71 0.99 -2656860.50
2.28 0.99 -2634722.55
1000 Maximum log likelihood 1.69 0.98 -2658488.27
Staphylococcus aureus RFI22 vs. Prochlorococcus marinus str. NATL2A
400 Steady state sampled 0.99 0.90 -1049716.33
1.00 0.95 -1045188.54
400 Maximum log likelihood ~ 0.99 0.93 -1050316.80
NC 007335 NC 007622
1000 Steady state sampled 1.92 0.97 -2636903.64
221 0.97 -2624299.41
1000 Maximum log likelihood 1.75 0.97 -2636046.52

Staphylococcus aureus subsp. aureus COL vs. Methanocaldococcus jannaschii DSM 266 |

400 Steady state sampled 0.96 0.95 -1037936.55
1.05 0.89 -1033285.36
400 Maximum log likelihood ~ 0.92 0.94 -1037505.67
NC 000909 NC 002951
1000 Steady state sampled 1.84 0.98
2.36 0.99 -2581181.80
1000 Maximum log likelihood 1.94 0.98 -2601394.32

Frag L, Fragment length; LL, Output model log likelihood

The resulting accuracy differences were negligible. Accuracy was also compared in 3-mer models vs. 4-mer models. While 4-mer models slightly
outperformed 3-mer models on average, a significant run time increase was observed (not shown). NC_identifiers refer to GenBank accession
numbers for genomes listed in each trial.
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the characteristic single-read length of a 454 pyrosequenc-
ing FLX machine. Microread sequencing technologies
such as Solexa and SOLID are currently out of reach of any
non-alignment-based binning method when applied to
single reads, which range from 30 to 50 base pairs with
these technologies.

The unsupervised nature of our approach makes it poten-
tially useful for classifying mixtures of novel sequences for
which supervised learning-based methods may have diffi-
culties. A future direction for our work is to combine our
statistical formalism with alignment and supervised com-
position-based models. For example, we could develop a
feature selection framework that would transform the
input fragments' features such as k-mer statistics, coding
frame information, and variable-length motifs into a
lower-dimensional space. We could then feed these fea-
tures to an unsupervised MCMC-based classifier in tan-
dem with an alignment-based classifier that can partially
label fragments based on known taxonomic information,
then compare and combine their results.

A number of challenges remain to broaden the scope and
applicability of the current method. At present, our
method is scalable for k-mer length from k=2 to k= 5. We
intend to expand the method's ability to capture longer
motif frequencies by using dimension transformation or
feature selection in a future work. Intra-genomic heteroge-
neity of oligonucleotide distributions is another topic that
is yet to be addressed. A confidence measure that serves as
a performance self-check is already available as part of our
method but we have not incorporated it into the pro-
gram's output yet.

Further, applying the current method in an environmental
context requires an estimation of the number of bins. The
problem of identifying the necessary number of distinct
models, or groups thereof, to represent all components of
a given genome, is related to the problem of identifying
the number of distinct genomes in the mixture. A combi-
nation of jump diffusion and grouped models is our cur-
rently planned solution. In this respect, the use of
phylogenetic markers to estimate the number of bins will
provide important prior information.

In summary, the unsupervised method we proposed is
based on a maximum likelihood formalism and can bin
short fragments (L = 400 nt) of low complexity communi-
ties (2-10 species) with high accuracy (in some cases, >
95%) given sufficient genomic divergence. The maximum
likelihood formalism and its MCMC implementation
make the current approach amenable to extension and
incorporation into other packages. The MCMC binner
application is provided as an open-source downloadable
package, LikelyBin [33], that can be installed on any plat-

http://www.biomedcentral.com/1471-2105/10/316

form that supports Perl and C and is fully automated to
facilitiate use in genome processing pipelines. Version 0.1
of the source code is provided in Additional files 4.
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Appendix

Example application of likelihood model

Suppose we have two source genomes, G, and G,, with
two fragments from each: G, > {ATGTTA, TGTAAT}, G,
— {CCTGTC, AGGCCTC}.We wish to evaluate the likeli-
hood of observing these sequences according to a dimer
model of 2 sources, M = {S;, S,}, which we have gener-
ated. Assume the model's source frequency vector is F =
[0.6, 0.4], its monomer frequencies are

{S1: {pa=0.3, pr=0.3, pc=0.2, po= 0.2}, S,: {p,=0.2,
pr=0.2,p.=0.3, po=0.3}} and its dimer frequencies are

S1: {paa = 0.09, prr=0.09, pyc = 0.06, pyc = 0.06, ppy =
0.07, pyp = 0.09, prc = 0.06, pyc = 0.08 piy = 0.08, por =
0.06, poc = 0.04, poc = 0.02pc, = 0.06, pep = 0.06, pog =
0.04, pec=0.04}, S, : {pas=0.02, pyr= 0.04, p,c = 0.08,
pac=0.06, pr, = 0.04, prp=0.02, pro= 0.06, prc=0.08, pea
= 0.08, por= 0.06, pog = 0.07, poc = 0.09pc4 = 0.06, porp =
0.08, poc = 0.09, poc= 0.07} }

Then the likelihoods of observing the first fragment,
ATGTTA, given master distributions S; and S,, respec-
tively, are

S1
;op?l L 81.81.81.81.8
P(ATGITA |S;) = p% (cj-16)) _ PATPTGPCTPTIPTA
( |1)—P5152 3 = S, S SrS
ol p31,51,51,51
= Pcjg) TPGPT PT
_ 0.090.06:0.06:0.090.07 _ oo
0.30.2.0.3-0.3
L P52 S5 85 Sy Sy 5o
P(ATGTTA |S,) = p% (€j-1¢j) _ PATPTCPCTPTTPTA
( |2)—Pclc2 S =5 5 55 S
=3 P 2 pTZP szszz
3 ej-1) G
_ 0.04:0.06:0.06:0.02:0.04 _ o
0.2:0.3-0.2:0.2

where superscripts S; and S, denote the master distribu-
tion. Similarly,
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P(TGTAAT | §,) = 0.000387; P(TGTAAT | S,) = 0.000048;
P(CCTGTC | S,) = 0.000192; P(CCTGTC | S,) = 0.000448;
P(AGGCCTC | §;) = 0.00000568; P(AGGCCTC | S,) = 0.0004704

The overall posterior likelihood of the model is then

N

M
]'[{ SuPus:) }
m=1

i=1

Y
Il

= (fs,P(ATGITA|S,)+ fs, P(ATGITA | S,)) - (fs P(TGTAAT | ;) + fs P(TGTAAT |S,))
{fs,P(CCIGTC|$,) + f5, P(CCTGIC | §,)) - (f5, P(AGGCCIC | §,) + f5 P(AGGCCIC | S,))
= (0.6-0.000378 +0.4 - 0.000048) - (0.6 - 0.000378 + 0.4 - 0.000048)
(0.6-0.000192 + 0.4 - 0.000448) - (0.6 - 0.00000568 + 0.4 - 0.0004704)
= 3.4131E-15

Additional material

Additional file 1

Convergence dynamics. Figure 1: Convergence dynamics for good accu-
racy, Mycoplasma capricolum subsp. capricolum ATCC 27343 vs.
Campylobacter jejuni subsp. jejuni 81-176 (D5 = 2.8). A single
MCMC simulation was completed for this pair of genomes as described in
Methods. k-mer order 3 model was used with 30000 steps, and expected
nucleotide frequencies in accepted models were plotted over time for all
independent mono- and dinucleotides in the model. Two starting condi-
tions were compared: uniform initial frequencies (solid line) and frequen-
cies at dataset mean (dashed line). Dotted lines indicate true average
frequencies in the constituent species' fragment datasets. Convergence was
observed to be substantially the same, demonstrating robustness of the
algorithm to initial starting conditions. Final model accuracy was ~95%
in both cases.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-316-S1.PDF]

Additional file 2

Convergence dynamics. Figure 2: Convergence dynamics for poor accu-
racy, Granulibacter bethesdensis CGDNIH1 vs. Gluconobacter oxy-
dans 621H (D; = 0.45). Details are identical to Additional file 1, but
final model accuracy was ~60% in both cases.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-316-S2.PDF]

Additional file 3

Accuracy-divergence dependencies for Bayesian sampling. Figure 3:
Pairs and triples of genomes were sampled randomly from a set of 1055
completed bacterial chromosomes, and experiments were conducted using
Bayesian posterior distribution sampling on the stationary distribution of
the MCMC simulation. The results were found to not be significantly dif-
ferent from those for maximum likelihood sampling (Figure 4).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-316-S3.PDF]

Additional file 4

LikelyBin version 0.1 archive. This archive contains the source and exe-
cutable files for the binner application.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-316-S4.ZIP]
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