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Abstract

Background: Since the transfer and application of modern sequencing technologies to the analysis of
amplified fragment-length polymorphisms (AFLP), evolutionary biologists have included an increasing
number of samples and markers in their studies. Although justified in this context, the use of automated
scoring procedures may result in technical biases that weaken the power and reliability of further analyses.

Results: Using a new scoring algorithm, RawGeno, we show that scoring errors — in particular "bin
oversplitting" (i.e. when variant sizes of the same AFLP marker are not considered as homologous) and
"technical homoplasy" (i.e. when two AFLP markers that differ slightly in size are mistakenly considered as
being homologous) — induce a loss of discriminatory power, decrease the robustness of results and, in
extreme cases, introduce erroneous information in genetic structure analyses. In the present study, we
evaluate several descriptive statistics that can be used to optimize the scoring of the AFLP analysis, and we
describe a new statistic, the information content per bin (1;,) that represents a valuable estimator during
the optimization process. This statistic can be computed at any stage of the AFLP analysis without requiring
the inclusion of replicated samples. Finally, we show that downstream analyses are not equally sensitive to
scoring errors. Indeed, although a reasonable amount of flexibility is allowed during the optimization of
the scoring procedure without causing considerable changes in the detection of genetic structure patterns,
notable discrepancies are observed when estimating genetic diversities from differently scored datasets.

Conclusion: Our algorithm appears to perform as well as a commercial program in automating AFLP
scoring, at least in the context of population genetics or phylogeographic studies. To our knowledge,
RawGeno is the only freely available public-domain software for fully automated AFLP scoring, from
electropherogram files to user-defined working binary matrices. RawGeno was implemented in an R
CRAN package (with an user-friendly GUI) and can be found at http://sourceforge.net/projects/rawgeno.
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Background

For the past decade, studies on ecology and evolution
have relied upon the assessment of genetic diversity in
populations and species [1]. Genomic screening
approaches for the measurement of diversity are more sat-
isfactory than any other phenotype- or genotype-based
techniques in the sense that they reveal a large number of
markers [2]. Before the 1990's, restriction fragment length
polymorphisms (RFLP [3]), random amplified polymor-
phic DNA (RAPD [4]) and simple sequence repeats (SSR
or microsatellites [5]) were widely used to generate a rela-
tively high number of markers. However, the implemen-
tation of amplified fragment length polymorphisms -
AFLP [6], a relatively cheap, easy, fast and reliable method
[7] - has exponentially increased the number of informa-
tive markers, resulting in large datasets. Most of those
approaches retrieve genetic information through PCR-
based techniques coupled with electrophoretic gels. As a
result, markers are identified according to their absolute
size that is measured as a function of mobility. The AFLP
technique starts by digesting genomic DNA with two
restriction enzymes (EcoR 1 and Mse I according to the
original protocol [6]). This step is followed by the ampli-
fication of a subset of the restricted DNA fragments
(requiring several intermediate steps, see [7]) through two
successive PCR reactions (namely, the preselective and
selective PCRs) and the separation of the amplicons by
electrophoresis. Amplicons are fluorescently labelled and
electrophoresis takes place in a genotyping machine, for
instance using the GeneScan technology (i.e. amplicons
migrate along a capillary during a span of time propor-
tional to their size). As a result, the reaction conducted on
a sample constitutes an "AFLP electropherogram" or "pro-
file", in which each amplicon is recorded as a "peak" that
is characterized by its mobility (converted to size and
measured in base pairs, "bp") and intensity (measured as
relative fluorescence units, "rfu"). The final step of the
analysis aims to convert numerous AFLP profiles, that
reflect the results of an AFLP reaction conducted on many
samples, into a binary matrix where the presence/absence
of each amplicon is recorded for each sample. While the
GeneScan technology improves the accuracy of the geno-
typing process, its precision is not absolute and several
factors (i.e. biases occurring during restriction, amplifica-
tion or migration of the fragment in the capillary of the
genotyping machine [8]) can affect the recorded size of an
amplicon. Consequently, variability of recorded sizes
complicates the analysis, as the same amplicon may have
similar but non-equal sizes throughout the sampling. Due
to these variations, checking and recording the presence/
absence of a given amplicon, through the sampling, is
generally done manually by the user. This phase is termed
"scoring" and is achieved by the following procedures:

I. Defining amplicon size categories (i.e. called "bins")
that ideally represent AFLP loci.
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I1. Recording the presence/absence of an amplicon within
each bin and for each sample [9]. As a result, an AFLP
locus will be coded as a binary state, where the presence
of an amplicon is coded with 1 ("present" allele) while the
absence of the amplicon is coded as 0 ("null" allele).

Programs such as Genographer V2.0 [10] (freely available
at http://sourceforge.net/projects/genographer [verified
on December 30, 2008]) propose a graphical solution by
displaying the GeneScan results on a "gel-like" interface
and allowing the user to manually define the bins.
Although this strategy allows direct control of the scoring,
it requires experienced users and remains sensitive to
human biases (e.g. see Bonin et al. [11]). Moreover, the
procedure becomes problematic for large numbers of
samples and adding new samples to the analysis requires
a new scoring session. As a consequence, the final results
may vary among runs, among users and across time,
weakening the reproducibility and reliability of the analy-
sis. These limitations justify the use of partially automated
(e.g. Peakmatcher V6.1 [12], freely available at http://per
ennialgrains.org/wiki/index.php?title=User:Dehaan [veri-
fied on December 30, 2008]) or fully automated scoring
procedures (e.g. GeneMapper V3.7, Applied Biosystems,
Foster City, CA), where the user does not directly score the
dataset, but parameterizes a scoring algorithm. At least
three main issues must be considered when scoring a data-
set (either manually or using automated procedures).

I. Size homoplasy [13], which can arise in two ways: a)
when two non-identical amplicons are considered to be
homologous because they display identical mobility or b)
when two amplicons are scored as absent at the same
locus for differing reasons (e.g. amplicon size polymor-
phism or mutation in the restriction site).

II. Occurrence of bin definition errors resulting from a
non-optimal scoring parameterization. This bias can lead
to two contrasting errors: either a) "oversplitting”, in
which bins are too thin and may split variant locations of
the same amplicon into smaller and erroneous sub-bins,
or b) including an exaggerated range of amplicon sizes
within the same bin, thus introducing an artificial similar-
ity between unrelated samples. Although they differ in
their causes, we assume that this second bias has compa-
rable consequences for the dataset quality as those caused
by size homoplasy. We will therefore term this bias "tech-
nical homoplasy" in order to distinguish it from size
homoplasy.

III. Difficulties in detecting amplicons due to variable
quality of AFLP reactions. Low quality runs can lead to the
introduction of a noisy signal (i.e. "false-negatives" or
"false-positives") within the dataset. This bias can be lim-
ited by using optimized and standardized laboratory AFLP
protocols [8] and by running blank samples in order to
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determine the background noise associated with the gen-
otyping machine.

In addition, recent studies propose the evaluation of the
quality of both bins and alleles in order to increase the
final dataset quality. Several of these procedures are
applied once the scoring is complete [14]. However, it is
also possible to proceed before the scoring phase, while
analysing the AFLP profiles, for instance by tuning the
peak detection parameters [15].

The scope of the present study covers methodology of
automated AFLP scoring in the framework of population
genetics and phylogeography. We propose a new auto-
mated solution for scoring AFLP electropherograms:
RawGeno, a program implemented as a package in the
widely used R CRAN freeware. We investigate the effects of
sub-optimal settings on our algorithm, by focusing on
two upstream processes of the AFLP electropherograms
analysis: the bin definition and the recording of alleles.
For this purpose, we tuned scoring parameters and pro-
duced five datasets differing in the average width of bins.
This strategy, applied to the model-species Cerastium uni-
florum (Caryophyllaceae), produced five datasets with
increasing technical homoplasy. In parallel, we produced
five analogous datasets with the commercial software
GeneMapper. Finally, we scored the dataset manually by
using the freeware Genographer. Using these eleven data-
sets, we first evaluate several descriptive statistics that can
be used to optimize the scoring of the AFLP data. We then
investigate the effects of the AFLP scoring settings, as well
as the choice of the scoring method, on downstream anal-
yses such as data mining statistics (ordination tech-
niques), inter-individual and inter-population distance,
Maximum Likelihood clustering (using PSMix [16], an
algorithm aimed to investigate patterns of genetic struc-
ture) and population diversity indices.

Methods

Technical features of RawGeno

The analysis begins by detecting and calculating the size of
peaks within the AFLP profiles. This preliminary analysis
is conducted either with GeneScan V3.1.2 (ABI) or with
the freeware PeakScanner V 1.0 (ABI, http://www.applied
biosystems.com/peakscanner [verified on December 30,
2008]) to produce an exhaustive list of detected ampli-
cons generated by the AFLP reaction. This list records the
size, fluorescence and sample origin of each amplicon
which are used as the input data for RawGeno. It should
be noted that our program can potentially be modified to
handle results from other genotyping machines.

The bin definition algorithm [17] is the core of our library
(see Figure 1. for a thorough explanation). In brief, it
begins by defining the locations and limits of the bins.
The bins are identified on the basis of the range of ampli-
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con sizes from all samples, regardless of their fluorescence
intensity (amplicons are preliminarily filtered according
to their intensity during the detection and sizing analysis;
e.g. 50 rfu as in our present study). This strategy aims to
minimize the bin widths while maximizing the intervals
between bins. Amplicons are sorted according to their
sizes and size intervals are computed between each con-
secutive amplicon. Transitions between successive bins
are identified by considering the inter-bin size intervals to
be larger than the intra-bin ones. Two additional rules are
involved in bin definition. First, bins must fit within a
user-specified width range (i.e. the "maximum bin width"
is parameterized). Second, a bin can include only one
amplicon per sample. The application of this second rule
is modulated by the "minimum bin width" parameter, in
order to allow the occurrence of technical homoplasy. As
aresult, "thin" bins are accepted only if they effectively co-
occur in at least one sample. Similarly, the definition of
"wide" bins that would include more than one amplicon
per sample within a single bin is prevented as often as pos-
sible but remains possible by manipulating the "mini-
mum bin width" parameter. Once bins are defined, the
algorithm notes the presence or absence of an amplicon in
each bin for each sample and builds a binary matrix.
Finally, amplicon features (i.e. fluorescence and size) are
used to improve the binary matrix quality (see Additional
file 1).

Empirical data and experimental design

In order to investigate the effects of the scoring procedure
on genetic analyses, a dataset from an extensive study on
intra- and inter-specific plant biodiversity (IntraBiodiv
Consortium [18]) was chosen as a model. This dataset
includes samples covering the whole geographic range of
Cerastium uniflorum (Caryophyllaceae), a perennial, dip-
loid (2n = 36) plant distributed throughout the European
Alps in subnival habitats. A total of 209 individuals
(including 40 individuals that were replicated in the DNA
extraction step) from 46 populations (four individuals per
population on average) were analysed with three selective
AFLP primer pairs. Details on the sampling scheme, the
primer pairs used and the scoring methods are provided
in Gugerli et al. [18] and Bonin et al. [19]. Raw data were
obtained after running AFLP reactions on an ABI 3100
sequencing machine (ABI) and analysing electrophero-
grams using GeneScan V3.1.2 (ABI). The program was set
up with default detection parameters; only peaks ranging
between 50 and 500 bp with a minimum fluorescence
intensity of 50 rfu (i.e. the minimum reportable peak
height according to Gilder et al. [20]) were included in the
analysis. In the context of the Intrabiodiv Consortium, the
scoring was performed manually using Genographer V1.6
[10], through a classical user-defined protocol [18], in
which non-reproducible bins were discarded before being
recorded (as proposed in Bonin et al. [11]). As a conse-
quence, this manually scored dataset did not include
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Flowchart illustrating the bin definition algorithm of RawGeno. On the right side: an example showing two samples
(SI and S2) where a total of nine AFLP peaks were preliminarily detected and sized. The bin width (i.e. the difference in size
between the longest and the shortest amplicons included in the considered bin) and the technical homoplasy (i.e. the mean
number of peaks belonging to the same sample that are included in a same bin) are indicated for each bin.
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information regarding rates of reproducibility of alleles
and individuals. The resulting scored matrix (referred to as
"manual” below) was coded as binary states with lines
and columns recording presence or absence of amplicons
in samples and bins respectively. Finally, ten datasets were
produced by tuning the scoring parameters of RawGeno
and GeneMapper. We tuned the "minimum bin width"
parameter of RawGeno and the "bin width" parameter of
GeneMapper in order to force the algorithms to assign
amplicons displaying close but differing sizes to the same
bin. As a consequence, the technical homoplasy of the
datasets increased proportionally while increasing the bin
width.

Automated scoring procedures

The parameters of RawGeno were determined as follows
(refer to Figure 1. for a scheme of the scoring algorithm
and its parameters): the "maximum bin width" was left
unconstrained and set as being the maximum observed
amplicon size in the dataset (default value from the origi-
nal algorithm). As a consequence, RawGeno avoided sys-
tematically the oversplitting bias (see above). In contrast,
the "minimum bin width" was constrained during the
analysis and set to 0.2 bp, 1 bp, 2 bp, 5 bp and 10 bp. This
strategy produced datasets with an increasing amount of
technical homoplasy since RawGeno was forced to use
wider bins. It bears repeating that this setting strategy was
used to intentionally increase the technical homoplasy in
the produced datasets and not to produce optimally
scored datasets (refer to the Additional file 1 for recom-
mendations to conduct a proper scoring with RawGeno).
The parameters in GeneMapper were determined using
the standard detection settings and a polynomial degree
of three was used for peak recognition in the electrophe-
rograms. The scoring step was achieved by tuning the "bin
width" parameter with values ranging from 0.2 bp to 10
bp (identically to RawGeno settings). The precise effect of
the "bin width" parameter on the GeneMapper scoring
algorithm could however not be predicted a priori and was
deduced from the results we obtained. Replicated samples
(i.e. ~20% of the sampling) were included in all ten data-
sets, which allowed the calculation of error rates (see
below) and subsequently, the removal of non-reproduci-
ble bins (as done during the manual scoring) in the final
dataset. Monomorphic bins and singletons were also
removed. The whole set of downstream analyses (see
below) were carried out on these cleaned datasets. The ten
resulting matrices were coded as binary states in the same
way as for the manual dataset (see above). For RawGeno,
datasets were labelled as follows: RG_0.2, RG_1, RG_2,
RG_5 and RG_10. GeneMapper datasets were labelled as
follows: GM_0.2, GM_1, GM_2, GM_5 and GM_10.

Descriptive statistics
Several indices were computed. First, the final number of
bins (nbin) was recorded for each dataset. Second, the
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mean homoplasy rate was computed within the RawGeno
datasets. The homoplasy rate (HR) was defined as the
number of amplicons belonging to the same individual
that are assigned within the same bin. This statistic was
calculated for each sample/bin and averaged for the whole
dataset. The frequency of the "present" allele was com-
puted for each bin and frequencies were plotted against
the bin sizes (in bp). Finally, the level of correlation was
calculated between each of the ten automatically scored
datasets and the manually scored one (i.e. performing
Pearson's correlations; hereafter referred to as "R2 Man-
ual"). This was achieved by: I. Calculating Jaccard similar-
ity indices [21] between samples, within each dataset. This
calculation is defined as being asymmetric as it only
accounts for presences in individual genotypes while
absences are not considered. II. Calculating Pearson's cor-
relation between the resulting similarity matrices, using
the similarity matrix obtained with the manually scored
dataset as reference.

Ordination techniques

The datasets produced from the automated analysis were
compared to the manually scored one by using a partial
constrained correspondence analysis [21]. We used the
"vegan" package [22] implemented in the R CRAN envi-
ronment and applied the "cca" function (using a "scaling
1" procedure, in order to optimally represent the samples
coordinates). This analysis was used to produce residuals
containing information that is specific to the automati-
cally scored dataset, according to the following model: V,
-V, = R, where V, is the variance of the automatically
scored dataset, V., is the variance of the manually scored
dataset and R, is referenced to as the residuals that are spe-
cific to the automatically scored dataset. We further meas-
ured the ability of these residuals to discriminate
populations, in order to assess whether the automatically
scored datasets effectively contained more information
than the manually scored one. This calculation was
achieved by applying a Mantel test between the residuals
matrix and a contrast matrix comprising the population
origin of each sample. This test required the computation
of Euclidean distance on the contrast and residual matri-
ces, for which we used the "mantel" function of the
"vegan" R CRAN package (1000 permutations).

Error rates and optimality criterion

For each dataset, two estimators of the error rate were
computed by considering the information comprised in
the replicated samples.

[. The mismatch error rate [11] defined as Ej, = M,,,/nbin,
where M, is the total number of mismatches between a
sample and its replicate and nbin is the total number of
bin. This statistic was computed for each sample-replicate
pair.
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II. The Bayesian error rates £€1.0 and €0.1 that represent,
respectively, the probability of mis-scoring the presence or
the absence of AFLP fragments. We used MasterBayes (an
R CRAN package [23]) and the AFLPScore R CRAN script
collection [14] to compute 1000 estimates of these statis-
tics.

These two estimators required the inclusion of replicated
samples and did not allow addressing the quality of data-
sets where non reproducible bins had been removed (e.g.
in the manually scored dataset). As a consequence, we
propose a new "optimality criterion" based on the infor-
mation content per bin (I,;,). This statistic was calculated
for each sample of the dataset and was defined as I;, =
Mgampling/bin where Mg, 1,0 is the average number of
mismatches between the considered sample and the other
samples of the dataset and nbin is the total number of
bins in the dataset. This criterion can be computed at any
stage of the scoring process and does not require the inclu-
sion of replicated samples. Here, we applied it after the
removal of non-reproducible bins.

Biogeographic structure

We investigated the spatial genetic structure in our data-
sets at two levels of complexity: first between individuals
by computing the Jaccard similarity index [21], second
between populations by using an estimator of the FST and
by performing Maximum Likelihood clustering (assum-
ing Hardy-Weinberg equilibrium). FSTs were computed
with the program AFLP-Surv [24] (allelic frequencies were
estimated with a Bayesian method using a non-uniform
prior distribution and assuming Hardy-Weinberg equilib-
rium). Jaccard similarity indices (see above) and FST val-
ues obtained with the various datasets were compared
using scatterplots and linear regressions. Maximum Like-
lihood clustering was performed using PSMix [16], a pack-
age implemented under the R CRAN environment. It uses
Maximum Likelihood methods in order to assign individ-
uals into a predefined number of groups with an associ-
ated probability. The algorithm assumes Hardy-Weinberg
equilibrium within groups and linkage equilibrium
between loci. The datasets were coded as follows: each
individual genotype was duplicated, in order to simulate
a diploid co-dominant dataset. The absences (0) of the
original genotype were coded as absences in the dupli-
cated genotype (i.e., "0" is coded as "0-0") whereas pres-
ences (1) occurring in the original genotype were coded as
missing data in the duplicated genome (i.e., "1" is coded
as "1-2"). This coding scheme is adapted from Bonin et al.
[19]. The default settings of PSMix were applied (except
for itMax [i.e. the maximum number of iterations] that
was set to 100000). The number of investigated groups
(K) ranged from two to nine, with ten replicated runs per
K. For each K value, only the run showing the highest like-
lihood value was selected for further analysis. The result-
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ing assignment probabilities were compared using pie-
charts mapped on geographical maps.

Diversity indices

Three indices, revealing the level of diversity in each pop-
ulation, were computed: 1. the estimated Heterozygosity
(Hj), by using AFLP-Surv [24] (we used the same parame-
ters as above). II. The percentage of polymorphic loci
(PLP), using AFLPdat, an R CRAN script collection [25].
III. The presence/absence rarity index (i.e. "rarity 2"
according to the IntraBioDiv Consortium's [18] explana-
tions at http://www.intrabiodiv.eu/IMG/doc/
Diversity Uniqueness EN v03.doc [verified on Decem-
ber 30, 2008]). The values estimated with the various
datasets were compared using scatterplots and linear
regressions.

Results and discussion

Applying the scoring

The manual scoring required approximately 100 hours of
"human work" and produced 102 reproducible bins.
Automated scoring procedures, in contrast, produced the
scorings in about 1 hour (depending on the kind of data-
set and the computer power). Moreover, the automatic
scoring procedures preserved a large number of bins as we
obtained 502, 456, 316, 177 and 116 bins for the RawG-
eno datasets (RG_0.2 to RG_10) and 4126, 1338, 742,
340 and 183 bins for the GeneMapper datasets (GM_0.2
to GM_10). As expected, the use of larger bin widths
decreased the number of bins and introduced technical
homoplasy. Interestingly, technical homoplasy occurred
more rapidly, with the increase of the bin width, in small
fragment sizes (i.e. sizes < 200 bp, Figure 2A) than in
larger fragments. This result is explained as follows.
Amplicon sizes are generally asymmetrically distributed
because short amplicons are often over-represented com-
pared to larger ones (and especially in genomes with a low
GC content when EcoR I and Mse 1 are used as restriction
enzymes) [13,26]. As a consequence, these small ampli-
cons were shown to be especially prone to reflect size
homoplasy [13] and in addition, our results showed that
they were also likely to accumulate more technical homo-
plasy than the rest of the AFLP profile.

Using manual scoring as a reference point

We first investigated the quality of datasets by referring to
the manually scored dataset. Technical homoplasy, gener-
ated by forcing the scoring algorithm to create large bins
(i.e. RG_5, RG_10, GM_2, GM_5 and GM_10), clearly
impacted the dataset quality, as shown by a decreasing
correlation to the manual dataset with increasing bin
width (see Figure 2B). This result matched our expecta-
tions and outlined the effects of technical homoplasy.
Interestingly, we observed an optimal bin width effect in
the GeneMapper datasets (Figure 2B), where datasets
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Significance levels: * (p < 0.05), ** (p < 0.01) and *** (p < 0.001).

scored with small bin widths showed less correlation to
the manually scored one than the datasets scored with a
greater bin width (i.e. GM_0.2 and GM_1 showed correla-
tions of 0.558 and 0.713, respectively, with the manually
scored dataset). Conversely, in RawGeno this phenome-
non was avoided since correlation values remained rela-
tively constant between datasets that were scored with
small to medium bin widths (i.e. RG_0.2, RG_1 and RG_2
showed correlations of 0.771, 0.774 and 0.779, respec-
tively, with the manually scored dataset). Divergences
between RawGeno and GeneMapper can probably be
explained by differences in algorithm settings. While
RawGeno allowed the user to set both the "minimum"
and the "maximum bin width", we suspect that the "bin
width" parameter of GeneMapper might have effects sim-
ilar to those of the "maximum bin width" parameter of
RawGeno. Decreasing the "maximum bin width" param-
eter can exaggerate the splitting of bins and, as a result,
appropriately sized bins might be split into smaller and
erroneous sub-bins. This bias is expected to produce data-
sets with a high number of low-quality bins ("oversplit-
ting of bins"). Such a hypothesis is in accordance with the
very high number of bins produced in GM_0.2 and GM_1
for instance. Holland et al. [15] showed that, by using
GeneMapper, choosing a bin width below 0.4 bp was mis-
leading since it resulted in oversplitting. We could how-
ever not obtain an absolute confirmation of this
hypothesis since GeneMapper algorithms are strongly
black-boxed.

Divergences related to varying bin width parameters were
also detected by the partial constrained correspondence
analysis (Figure 2C). This procedure inspected the residu-
als of the automatically scored datasets (after having
removed the variation explained by the manually scored
dataset). It appeared that the residuals contained relevant
information in several datasets (e.g. the residuals of RG_2,
GM_0.2, GM_1 and GM_2 significantly discriminated
populations). This was particularly true for GeneMapper
datasets where the scoring algorithm outlined several
additional biogeographic patterns (see Additional file 2).
These patterns, however, were seldom interpretable since
they segregated single populations from the rest of the
samples and were identified neither by the manual scor-
ing nor by RawGeno (see below). We could however con-
sider that the very high number of bins associated with
these GM datasets (GM_0.2, GM_1 and GM_2) might
have included such additional private alleles. Finally,
both oversplitting and technical homoplasy decreased the
information content of residuals. This result was rein-
forced by an optimum bin width effect where only RG_2,
from the RawGeno datasets and GM_1 and GM_2 from
the GeneMapper datasets showed the highest residual
information content, while technically biased datasets
presented lower values.

Error rates and optimality criteria
The previous statistics used the manually scored dataset as
a reference. This strategy, however, might be misleading
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for several reasons. First, this reference point is not availa-
ble when analysing a new dataset and second, manual
scoring may introduce subjective biases (for instance
resulting from different filtering strategies) in the dataset.
It is therefore clear that the evaluation of dataset quality
requires a much more absolute criterion, such as error
rates. However, the properties of the different estimators
must be evaluated taking into account technical homo-
plasy and bin oversplitting. For instance, the mismatch
error rate (E,), defined by the number of mismatches
between a sample and its replicate, divided by the number
of bins (Ej, = M, /nbin), failed to unambiguously detect
the oversplitting, while technical homoplasy was slightly
detected (Figure 3A). On one hand, oversplitting could
not be detected by an increase of the mismatch error rate
since it dramatically increased the number of bins. Tech-
nical homoplasy, on the other hand, was hardly detected
because it artificially decreased the number of mismatches
between a sample and its replicate, leading to an underes-
timation of E,. Similar results were described by Holland
et al. [15] where the E, rate (i.e. referred to as the Eucli-
dean Error rate by the authors) was shown to be unable to
discriminate datasets scored with varying bin sizes. As a
result, we advise that the mismatch error rate should not
be used to optimize the bin definition and the scoring of
AFLPs. This criterion provided, however, valuable infor-
mation when the number of bins remained similar
among datasets. This situation was encountered, for
instance, during further quality checking steps, such as
fluorescence or bin reproducibility filtering. Interestingly,
the two Bayesian error rates (Figure 3B and 3C) detected
both the oversplitting (with €1.0) and the technical
homoplasy (with £0.1). These indices thus provided a val-
uable solution for optimizing the whole range of scoring
parameters, including downstream filtering procedures as
shown by Whitlock et al. [14]. These statistics, however,
required a large computational time and a quicker alterna-
tive may be desirable. We therefore propose the use of a
new statistic, i.e. the information content per bin (Figure
3D), as a quality criterion to optimize the first steps of
AFLP scoring (see above for explanations regarding this
new criterion). In our study, this statistic detected both the
oversplitting and technical homoplasy. Oversplitting
increased the number of bins faster than the number of
mismatches. In contrast, the technical homoplasy
decreased the accuracy of the dataset at a faster rate than
the number of bins decreased. Maximizing the I,;, repre-
sents an interesting trade-off between the accuracy of the
dataset and the number of bins that are used to record the
AFLP information. We propose applying this criterion to
optimize the bin definition, while the other quality crite-
ria (e.g. Whitlock et al. [14]) can be used during down-
stream scoring steps. According to the I, criterion, we
assumed that RG_2 and GM_2 datasets had a reasonably
good quality. This result was confirmed for RG_2 by both

http://www.biomedcentral.com/1471-2105/10/33

the correlation to the manually scored dataset and the par-
tial constrained correspondence analysis (see Figure 2),
while according to these same statistics, GM_1 might per-
form better than GM_2. It bears repeating, however, that
datasets scored with bin widths up to 2 bp probably
included some level of technical homoplasy. The presence
of stutter-bands (i.e. PCR artefacts) might contribute to
this. The effect of this phenomenon on scoring could
either produce rare alleles that led to the definition of
non-informative bins or cause erroneous results when the
range of the stutter bands extended into another bin (e.g.
oversplitting bins or mis-scoring of absences or pres-
ences). Moreover, stutter-bands generally had a decreased
fluorescence and their various peaks might not be repro-
ducible. Therefore, scoring parameters that considered a
cluster of stutter-bands as a single allele probably handled
the situation in a more appropriate way.

Analysis sensitivity

Biogeographic structure analyses were moderately affected
by the scoring system (Figure 4). For instance, both inter-
individual (Jaccard similarity index) and inter-population
(FST) distances provided comparable results from one
scoring method to the other (although RG datasets
matched the manually scored ones better than did GM
datasets). Additionally, these measures were also moder-
ately affected by the scoring parameters in cases when
technical homoplasy and oversplitting were avoided (for
instance, convergent results were obtained with the man-
ual scoring, RG_0.2, RG_1 and RG_2 or GM_1 and GM_2
respectively [data not shown]).

The PSMix clustering analyses provided similar patterns
(Figure 5). The spatial genetic structure of C. uniflorum
seemed to be composed of five main phylogeographic
regions (the second-derivative of the Maximum Likeli-
hood values showed a small decrease when investigating
more than five groups [data not shown]; this result was
also accompanied by a decrease in the clustering accu-
racy). These regions were identified by the clustering anal-
ysis in the following order (see Figure 5 and Additional
file 2): Meridional (K = 2), Oriental (K = 3), Cryptic (K =
4), and finally Occidental and Central regions (K = 5).
Interestingly, the automatically scored datasets showed
much higher assignment probabilities to clusters than did
the manual dataset (see Additional file 2). RawGeno and
manual scoring provided congruent genetic structures
while GeneMapper identified specific patterns that were
difficult to interpret (as mentioned above). These patterns
also disrupted the clustering analyses and similar values
of K may not provide converging results when comparing
the three scoring methods. The main phylogeographic
structures were observed when inspecting the entire set of
clustering runs (Additional file 2, with K ranging from two
to nine), although results were slightly influenced by the
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scoring algorithm. The scoring parameters were also
important. The consequences of technical homoplasy
ranged from a loss of discrimination power (Figure 5 and
Additional file 2) for the datasets with moderate homo-
plasy (e.g. RG_5), to erroneous results for the most biased
ones (RG_10 which was largely non-informative). In this
situation, coherent results could be observed only up to
four groups (i.e. K = 4, Additional file 2) where the most

evident phylogeographic regions were detected (Meridi-
onal and Occidental clusters) while detailed groupings
(such as the Cryptic, Oriental and Central clusters) were
missing or identified at higher values of K (see Additional
file 2). Interestingly, and despite the relatively high
number of bins (e.g. 177 bins for RG_5 vs. 102 for the
manually scored dataset), accuracy of clustering was not
observed beyond five groups in datasets displaying mod-

Page 9 of 14

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:33

http://www.biomedcentral.com/1471-2105/10/33

A. B. C.
25 Y=042X+005 2. Y=031X+0.33 2. Y=092X-0.19
R2=0.61 R2=049 R2 =057
@ | @ @ |
S s
o~
~ g N
Q
2 s O 24 xr <]
z oo ° g ©
® o 3 g
8 = o S I S s
g ° E 8 s
ol § ol * o o
° P ° o
o P ° 8 N
olde = o | % o
s ° = 3
r T T T T 1 U T T T T 1 T T T T 1
0.0 02 04 06 08 10 0.0 0.2 04 06 08 10 0.0 02 04 06 08 10
Jaccard Manual Jaccard Manual Jaccard GM_2
D. E. E
4 Y=064X-0.01 84 Y=0.36X+0.05 Qo Y=143X-0.04
R2=0.63 % R2=0.63 R2=0.67 ° o
x 0] 14
= = =
(7] ° 7]
w @ w
o o o
s s s
=) ha o | od
s 5 S
U T T 1 r T T 1 U T T 1
00 0.2 0.4 06 0.0 0.2 04 06 0.0 0.2 0.4 06
FST Manual FST Manual FSTGM_2
Figure 4

Comparison of genetic structure estimators. The statistics evaluate the consistency of two structure analyses, computed
with the manual dataset and two automatically scored datasets assumed to be accurate according to the I, criterion (i.e.
"RG_2" and "GM_2"). The estimations obtained with the three datasets are compared with pairwise scatterplots (RG versus
Manual, GM versus Manual and RG versus GM) and linear regressions (displayed as a solid line). The R2, the slope and the

intercept of the regression are indicated. A. to C. Inter-individ
distances (FST).

erate homoplasy, indicating that the additional bins of
these datasets probably contained noisy information
(Additional file 2). This result also agreed with the I, ;, val-
ues that showed a decrease in the information content of
these datasets.

In contrast to genetic structure patterns, population diver-
sity indices were extremely sensitive to the scoring features
since the estimated Heterozygosity, the percentage of pol-
ymorphic loci and the rarity index showed important dis-
crepancies among the datasets (Figure 6 and Additional
file 3). Interestingly, the percentage of polymorphic loci
and the estimated Heterozygosity were the most robust
measures that we tested (Figure 6A to G6F). Detection of
rare loci was more successful when the datasets were finely
scored, but this statistic was particularly sensitive to the
technical homoplasy (Figure 6G to 6H and Additional file
3C). We explain these results as follows. First, the sam-
pling scheme of our model species might not be robust
enough (with an average of four individuals per popula-
tion) and in this context, estimates of genetic diversity

ual similarities (Jaccard similarity index). D. to F. Inter-population

might be strongly influenced by technical biases. Second,
scoring biases such as the oversplitting of bins or the tech-
nical homoplasy affected the definition of bins and the
recording of presence/absence of alleles. As a conse-
quence, statistics that relied directly on the polymorphic
status of presence/absence of alleles, (such as diversity
measures at the within population level) were likely to be
particularly sensitive to the dataset noise. As a result, scor-
ing biases may have reinforced the problems caused by
size homoplasy in estimating the genetic diversity [26].
This point raised the question of how to obtain reliable
diversity estimates by using AFLP datasets and the use of
other indices, such as the proportion of different geno-
types in a population (not tested here because of the small
sample sizes), might provide more robust results. In con-
trast, synthetic statistics such as distance-based methods
or clustering analyses probably buffered the technical
noise with the rich signal of AFLP and finally provided
coherent results. Similar observations were made in other
studies [15,19,26] where distance-based analyses proved
to be robust regardless of the choice of the scoring algo-
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Effect of the scoring parameters on the PSMix clustering analysis. Scatterplot of the number of bins (nbin, log-scaled
y-axis), according to the mean homoplasy rate (HR, x-axis). The mean homoplasy rate is defined as the average number of
peaks belonging to the same individual that are affiliated within the same bin. The eleven datasets are displayed as dots (in dark
grey, GeneMapper datasets labelled with "GM" as prefix; in light grey, RawGeno datasets labelled with "RG" as prefix and in
white, manual dataset) and as maps on the scatterplot. The maps represent C. uniflorum populations with pie-charts represent-
ing assignment probabilities obtained with PSMix (K =5 groups). On the upper-right corner: geographical location of the sam-
pling and names of the identified phylogenetic groups (violet — Meridional cluster, blue — Occidental cluster, red — Central
cluster, green — Oriental cluster and yellow — Cryptic cluster). The mean homoplasy rate could not be calculated for the Gen-

eMapper datasets.

rithm and its settings. We also report convergent observa-
tions for gene flow detection (N. Arrigo and S. Lappe,
unpublished data) where F1 hybrids and introgressed
individuals were detected accurately, regardless of moder-
ate levels of technical homoplasy. Finally, several steps
that might help to eliminate unsatisfactory bins or peaks
(such as filtering bins according to their average fluores-
cence [14]) were not applied in the present study. Better
results may be obtained by optimizing this specific aspect
of the analysis. Such filtering methods, as well as new tun-
ing strategies, will be progressively implemented in
RawGeno. In any case, however, we stress that users must
carefully choose the parameters of the scoring algorithms
to reflect the aim of the analysis.

Conclusion

Scoring a dataset manually is a time consuming process
that is complicated when investigating a large number of
samples. Using an automated system can significantly
increase the reproducibility of the dataset as all the elec-
tropherograms are scored uniformly and as genotyping
errors are limited to technical factors (e.g. PCR or migra-
tion variations). Our study showed that, with high quality
AFLP and GeneScan raw data, automated procedures can
be particularly efficient in producing ready-to-use data-
sets, at least in the context of population genetic or phyl-
ogeographic studies (i.e., RawGeno was not tested in a
genomics framework [e.g., for gene mapping] and further
investigations are needed before validating its extension
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Genetic diversity statistics. The statistics evaluate the consistency of three diversity estimators calculated with the manual
dataset and two automatically scored datasets assumed to be accurate according to the |, criterion (i.e. "RG_2" and "GM_2").
The estimations obtained with the three datasets are compared with scatterplots (RG versus Manual, GM versus Manual and
RG versus GM) and linear regressions (displayed as a solid line). The R2, the slope and the intercept of the regression are indi-
cated. A. to C. Percentage of polymorphic loci (PLP). D. to F. Estimated Heterozygosity (Hj). G. to I. Rarity index (Rarity).

to this field). However, the automated scoring of AFLPs is
a multiple-step process and a trade-off based on several
quality criteria may be desirable since it might provide
more relevant information than a single statistic. Opti-
mizing the parameters used in the scoring algorithm
therefore represents one of the most important steps of

the whole analysis. Using RawGeno, we were able to eval-
uate the impact of technical homoplasy and bin oversplit-
ting on optimality criteria and genetic structure patterns
by intentionally biasing our starting datasets. Interest-
ingly, our results demonstrated that a high number of
redundant and informative bins might overcome techni-
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cal homoplasy due to scoring errors, at least when investi-
gating biogeographic structures. While allowing for some
plasticity during the optimization of the scoring proce-
dure, this result also reinforces the use of the AFLP meth-
odology for its ability to produce highly informative
datasets. By contrast, the estimation of genetic diversity
may be considered with caution since scoring biases are
likely to reinforce problems caused by size homoplasy.

Finally, RawGeno provided results at least as accurate as
those obtained by scoring the dataset manually (even
when considering bin widths as wide as 2 bp, representing
an error range much higher than the technical error rate of
the genotyping machines) or by using a commercial soft-
ware such as GeneMapper. To our knowledge, RawGeno
is the only freely available program proposing a fully
automated scoring solution, from electropherogram files
to user-defined working binary matrices. Benefiting from
the open source R platform, RawGeno can be potentially
enhanced and used by any user.

Authors’ contributions

NA1 carried out the main design of the study, organized
the package, programmed and debugged the R code, and
drafted the manuscript. JWT, DE and TG participated in
the design of the study and programmed parts of the code.
NA2 participated in the main design and coordination of
the study and helped to draft the manuscript. All authors
read and approved the final manuscript.

Additional material

Additional file 1

Detailed technical features of RawGeno. This document provides a
description of scoring and bin filtering solutions proposed by RawGeno. In
addition, it includes recommendations to achieve a proper scoring.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-33-S1.doc]

Additional file 2

Spatial genetic structures for all datasets. The graphics are displayed on
an array where the lines represent the different datasets (Manual - man-
ual scoring, RG — RawGeno datasets and GM — GeneMapper datasets)
and the columns display the different analyses. The three first columns
contain the scatterplots of three genetic diversity indices (Rarity — rarity
index, Hj — estimated Heterozygosity and PLP - percentage of polymor-
phic loci). The values obtained by using the automatically scored datasets
(displayed on the y-axis) are compared to those obtained with the manu-
ally scored dataset (displayed on the x-axis). The red line represents a lin-
ear regression between values obtained by both datasets (the Pearson's
correlation indices of these regressions are displayed in the Figure 6). The
next columns contain individual clustering results (with the number of a
priori groups ranging between K = 2 and K = 9).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-33-52.pdf]
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Additional file 3

Effect of the scoring parameters on diversity estimators. Scatterplot of
the number of bins (y-axis, log-scaled), according to the mean homoplasy
rate (x-axis). The mean homoplasy rate (HR) is defined as the average
number of peaks belonging to the same individual that are affiliated
within the same bin. The eleven datasets are displayed as dots (in dark
grey, GeneMapper datasets labelled with "GM" as prefix; in light grey,
RawGeno datasets labelled with "RG" as prefix and in white, manual
dataset) and as maps on the scatterplot. The maps represent C. uniflorum
populations with circles. The radius of circles is a function of the measured
diversity. A. Percentage of polymorphic loci (PLP). B. Estimated Hetero-
zygosity (Hj). C. Rarity index (Rarity).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-33-53.pdf]
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