O

BiolVled Central

Software

Magallanes: a web services discovery and automatic workflow

composition tool
Javier Rios, Johan Karlsson and Oswaldo Trelles*

BIVIC Bioinformatics

Address: Computer Architecture Department, University of Malaga, 29080, Malaga, Spain

Email: Javier Rios - jriosp@uma.es; Johan Karlsson - tjkarlsson@uma.es; Oswaldo Trelles* - ots@ac.uma.es
* Corresponding author

Published: 15 October 2009
BMC Bioinformatics 2009, 10:334 doi:10.1186/1471-2105-10-334

Received: | June 2009
Accepted: |15 October 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/334

© 2009 Rios et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: To aid in bioinformatics data processing and analysis, an increasing number of web-
based applications are being deployed. Although this is a positive circumstance in general, the
proliferation of tools makes it difficult to find the right tool, or more importantly, the right set of
tools that can work together to solve real complex problems.

Results: Magallanes (Magellan) is a versatile, platform-independent Java library of algorithms aimed
at discovering bioinformatics web services and associated data types. A second important feature
of Magallanes is its ability to connect available and compatible web services into workflows that can
process data sequentially to reach a desired output given a particular input. Magallanes' capabilities
can be exploited both as an API or directly accessed through a graphic user interface.

The Magallanes' API is freely available for academic use, and together with Magallanes application
has been tested in MS-Windows™ XP and Unix-like operating systems. Detailed implementation
information, including user manuals and tutorials, is available at http://www.bitlab-es.com/

magallanes.

Conclusion: Different implementations of the same client (web page, desktop applications, web
services, etc.) have been deployed and are currently in use in real installations such as the National
Institute of Bioinformatics (Spain) and the ACGT-EU project. This shows the potential utility and
versatility of the software library, including the integration of novel tools in the domain and with
strong evidences in the line of facilitate the automatic discovering and composition of workflows.

Background

Applications and databases available online for bioinfor-
matics research are rapidly proliferating [1]; however, the
absence of effective discovery tools for these resources pre-
vents them from being combined in workflows to create
powerful bioinformatics machines.

Typically, in service-oriented architectures, dynamic dis-
covery of tools is made possible by registering tool meta-

data in a shared repository or registry--for example, UDDL
In bioinformatics, some metadata repositories such as
BioMoby [2] and FETA [3] also recognize the importance
of sharing data formats between tools, and make use of
this strategy to implement integration architectures. Such
repository approaches have collected large sets of regis-
tered services and data types, making a manual discovery
process difficult and time consuming. Support for this
task has become crucial.

Page 1 of 12

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19832968
http://www.biomedcentral.com/1471-2105/10/334
http://creativecommons.org/licenses/by/2.0
http://www.bitlab-es.com/magallanes
http://www.bitlab-es.com/magallanes
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10:334

In general, a discovery process aims to segregate a set of
services or data-types that satisfy a given number of
requirements from the larger pool of available resources;
for example, what services are able to process my molecu-
lar sequence?

These discovery processes can be based on syntax or
semantics. In bioinformatics, a syntax-based discovery
process is often unsatisfactory because it presumes knowl-
edge of the names of the objects or services to be searched.
Semantics-based discovery processes enable a more accu-
rate discovery mechanism since the descriptions are gen-
erally structured and well defined. Magallanes uses a
syntactic approach for text-based searches and a semantic
approach to combine different services, guided by seman-
tic knowledge about the input and output data types.

The essential task is to design and implement a search
engine adapted to the demands of bioinformatics. In this
document we present a programmatic library called
Magallanes that provides necessary support for flexible
and expandable discovery of services, which in turn sim-
plifies the creation of workflows. Results from Magallanes'
discovery process can be used as input for workflow gen-
eration because web services are automatically combined
based on semantic descriptions (specifically based on
their input and output data types).

As a proof-of concept, we have developed several varia-
tions of the same client (both standalone and web appli-
cations) that use Magallanes as a discovery engine (see
Results section). These clients can also be embedded in
third-party applications.

Implementation

Related work

In this section, we outline related work. Since our work
consists of a software library which can be re-used in other
client software, we look at two aspects: search and work-
flow composition functionality in existing clients.
Although Magallanes support standard WSDL web serv-
ices, our efforts so far have focused on BioMoby services
since there is a large set of services to search and those
services are easily composed due to a shared data type
ontology.

Therefore, we selected the most prominent clients for Bio-
Moby web services for this overview of related work.

Service discovery by clients

BioMoby-compatible clients, such as MOWServ [4], Sea-
hawk [5], Remora [6] and Taverna [7], provide support for
service searches in various degrees (see complementary
material). Typically, services are located by specifying an
input data type (which returns compatible services) or by
name (partial matches).

http://www.biomedcentral.com/1471-2105/10/334

BioCatalogue [8] is a public curated catalogue of life sci-
ence web services that provides a keyword based search
and allows filtering the results by some metadata like serv-
ice type, provider, country, etc. BioCatalogue could bene-
fit from the functionality of Magallanes.

Automatic workflow composition

GBrowse [9] and Seahawk [5] are two end-user oriented
clients with a data-centric approach. Users either specify
input data by submitting a data file which the application
analyses to determine the correct data type (Seahawk) or
they specify identifiers of a sequence in an external data-
base (Seahawk/GBrowse). Available services to further
process data are presented once the user data and data
type is known to the applications. Seahawk has a slightly
more sophisticated approach that lets the user specify
what he/she wants to do with the data (using semantic
keywords used for by the compatible services) instead of
choosing the next service specifically. Both applications
allow users to save their results as Taverna workflows.

The strategy in [10] is to simplify interactive service com-
position of BioMoby services. In each step of the workflow
construction process, only those services that are compat-
ible and more likely to be useful are displayed. This is
achieved by ranking the services according to several
aspects, such as semantic similarity of data type inputs; or
by non-functional measurements such as number of
retrievals of service definitions from MobyCentral. Their
composition algorithm aims to limit the number of serv-
ices presented to the user. The algorithm considers not
only direct compatibility and polymorphism (data type
compatibility by inheritance), but also includes services
whose input/output data type matches the requested data
type either directly or recursively. Results are further
ranked by their popularity as measured by requests to the
central registry, and by the disparity between data types in
the ontology.

Summarizing the related work

As is evident from section 'Service discovery by clients’,
search functionality in clients is heterogeneous. Users
would benefit from having a standardized way of locating
services. Client software developers could, instead of re-
inventing search algorithms, focus on providing a user-
friendly graphical interface. This shows the need for a
freely shared software library.

Regarding workflow generation, authors in [10] do not
address the problem of locating data types as input to the
workflow generation algorithm. This problem becomes
serious considering the proliferation of data types in Bio-
Moby (currently over 800).

While there is clearly a need for service composition sup-
port, current approaches fail to recognize the difficulties

Page 2 of 12

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:334

in a) find initial data type and b) automatically creating
an initial version of a workflow. Therefore, we have
addressed both a) and b).

Magallanes' architecture

Existing workflow composition approaches do not assist
the user during initial selection of input and output data
types, even though this step can be quite complicated.
Magallanes aims to do two things: simplify the discovery
task, and integrate discovery with composition.

Magallanes consists of a Java library with algorithms and
data handling routines built using the Modular API [11].
The Modular API uses specific wrappers called accesses to
map different data types and web-services repositories
into a unified model (e.g., parsing the WSDL to get the
web service's description, name, etc.). Magallanes can
access and manage various remote repositories using a
standardized interface, and benefits from a cache system
to reduce processing time. Currently, the Modular API can
access to BioMoby, INB, ACGT and standard WDSL repos-
itories. In order to support another repository, a new
access must be implemented (e.g. we are currently work-
ing to incorporate BioCatalogue in the list of available
repositories).

Magallanes' API is organized in two main modules: search
engine and workflow composition.

Search engine

The search engine module provides Google™-like meth-
ods for finding web resources using a scoring system
based on the number of occurrences and relative word
positions of matching hits. Currently it is endowed with
AND/OR operators and regular expressions. The searching
space defined by the resource metadata is easily expanda-
ble [see Additional file 1]. The algorithm initially searches
for words similar to the keywords on the metadata
descriptions. The similarity threshold can be setup as a
configuration parameter [see Additional file 1]. If no hits
occur, it becomes necessary to fall back on approximate
expression matching. There are two widely used
approaches for approximate expression matching: the
Hamming distance [12], which compares strings of the
same length and the Levenshtein distance [13], which
compares two strings not necessarily having the same
length, measuring by the minimum number of insertions,
deletions, and substitutions of characters required to
transform one string into another. Levenshtein distance is
also known as the matching with k differences or errors. If
the search does not generate hits, a "Did You Mean?"
module in Magallanes pops up to aid the user. This mod-
ule offers plausible alternatives to the user's query by com-
puting the Levenshtein distance automatically (and
letting the user influence the suggestions) to identify

http://www.biomedcentral.com/1471-2105/10/334

words similar to each keyword, and to estimate the dis-
tance using multiple keywords.

Magallanes uses a feedback module to continually learn
and refine its discovery capabilities. Any client software
using Magallanes is able to access this feedback module,
which records user selections of resources associated with
specific keywords. The module stores this information
and records the 'feedback' value associated to the key-
word-resource tuple (KR). This value is adjusted when the
user selects another resource using the same keyword.

Selected KR tuples increase their feedback value (v) using
the function v = v*a + (1-a), where a is a decay value [0-
1 ranged] to slope the learning curve, and correspondingly
all the remaining KR tuples with the same keyword decre-
ment their value to v*o.

Results are ranked by combining the metadata matching
information (id, name, description, documentation, etc.)
with the feedback information when available. A score is
computed as the average value of both. The first value is
computed as the hits density in the matching space; in
other words, the rate between the number of hits and text
length. All density values are averaged and normalised to
[0-1] to produce the metadata score. The feedback value for
a given resource is the average of the KR tuple value for all
the keywords used in the query.

Finally, Magallanes also allows the use of third-party dis-
covery functionality. For instance, several repositories
implement discovery strategies based on web service com-
patibility with a given data type (i.e., which services are
able to process my data?). Intuitively, the consecutive
application of this strategy can be exploited to create a
sequence of compatible services that connect a given
input with another target data type, in "pipeline" fashion.
This motivates the next major area of functionality offered
by Magallanes: the automatic arrangement of services to
connect differing data types, including the management
of user interactions to refine results.

Automatic workflow composition

The Workflow Management consortium (WfMC) defines
a workflow or workflow model as the complete or partial
automation of a process in which information or tasks are
passed from a participant to another according to a
defined set of procedural rules.

Bioinformatics research can often benefit from connecting
several applications in sequence to form a workflow (WF).
Manual construction of WFs is complex and prone to
error, particularly in bioinformatics where data comes in
a multitude of formats. Combined with the difficulty of
using distributed web services, composing a meaningful
WEF can present a challenge to life scientists.

Page 3 of 12

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:334

Automatic workflow generation (also called automatic
service composition) aims to automate the task of con-
necting independent services. Two services can be con-
nected if the output of one is compatible with the input of
the other. Therefore, the task of automatic workflow gen-
eration is to find the shortest non-redundant sequence of
services, meaningful to the research, that match outputs
with inputs to link the source to the target data type.

Workflow generation support can be either semi-auto-
matic, interactively giving advice on suitable services for
each step in workflow construction, or fully automatic,
where the scientist only provides input and output data
sets and the algorithm generates the complete workflow.

In simplest terms, the automatic WF-builder in Magal-
lanes proceeds to identify all the services that produce a
target data type as output. All the data types used as input
for such services are used a target in the next step.

A well defined data type hierarchy will provide the
required semantics to generate meaningful workflows.

A breath-first with pruning algorithm [14] speeds up the
process of finding the shortest path from source to target
(see Discussion section).

The following definitions are needed for formal statement
of the algorithm: let D be the set of all the data types, and
D* be the set of all the possible subsets of data types (that
will be consumed by the functions H), thus D* = {d < D

}.

Let T be the set of all the registered tools in the current
repository and let P be all the tools I/O combinations
(valid combinations D-T-D without inheritance). There-
fore, P={i,t,0:i,0 e D,t e T|iisaninputoftand o is
an output of t }.

Here H-: D — D* is a function defined to consume a given
data type or any of the corresponding sub-data types as
input: d; > d = { dj € D: d;is subtype of d; }.

As can be observed, H: D* — D* extends the function to
receive a set of data types to return all the subtypes of any
ofthem D;—d = {d;e D |3d, € D;: d;is subtype of d,, }.

The inverse function H+*: D — D* defines the supertype d;
— d = { d;e D: d;is subtype of d; } and correspondingly
H+: D* — D* extends the function to use collections of
inputs: D;—> d = { d;e D |3 d, € D;: d;,is subtype of d, }.

Using these definitions we can outline the algorithm:

Function Compass

http://www.biomedcentral.com/1471-2105/10/334

Input: source: D
target: D

(1) sources: &
(2) unexplored: {target}
(3) explored: &
(4) depth [target]: O
(5) maxDepth: infinity
(6) while unexplored != &
(7) current: first of unexplored
(8) unexplored = unexplored - current

(9) explored = explored U current

(10) if depth [current] > maxDepth
(11) end

(12) if current € H+*(source)

(13) sources = sources \U current
(14) maxDepth: depth [current]
(15) continue

(16) v p=(py Pr P,) € P: p,= current
(17) unexplored = unexplored U p;
(18) depth [p,]: depth [current] +1
(19) suc [current] = suc [current] U p;
Outputs:

sources: possible WF's input
suc [dt]: p € P backtrack information from dt to a source.

When the sources set is empty means a partial solution was
obtained; otherwise, a full solution has been reached. It is
possible to modify the algorithm's behaviour to search for
solutions other than the shortest by managing the Depth
threshold parameter and by using a-posteriori refinement
of the solution space by user interaction.

Page 4 of 12

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:334

To illustrate the algorithm behaviour, a trivial example
with a reduced set of data types (DT) and services regis-
tered in a repository will be used (see Table 1). The exam-
ple consists of obtaining a set of amino acid sequences in
Fasta format (FastaAAmult target DT) that are similar with
a given an AASeq (source DT).

The content of the variables during the execution of the
algorithm evolves as follows (see Table 2): 'sources' will
contain all the possible WF inputs; 'unexplored' is a list
with the remaining DTs to analyse, in this case the target
FastaAAmult DT and 'explored' is the list with the already
analysed DT. The variable 'maxDepth' contains the depth
of the shortest solution, and depth [<DT>] contains the
specific values for each data type. Finally, suc [<DT>] is the
set of services that produces the target from <DT> source
in depth [<DT>] steps.

In step 1, 'current' is assigned with 'FastaAAmult', this data
type is removed from the 'unexplored' list and added to
the 'explored’ list. For each tool that returns the 'FastaAA-
mult' data type (in this case only 'parseMultipleAlign-
FromBlastText), add the inputs to the 'unexplored' list
(BlastText) and set the depth of each input to depth
[FastaAAmult]+1 (a new service is in the path). Finally,
add the tool to the input data types' successors.

In Step 2, proceed as in step 1 by taking 'BlastText' from
the 'unexplored' list as the 'current’ and including 'AASeq',

Table I: Data types and services used in the example

http://www.biomedcentral.com/1471-2105/10/334

'NNSeq' and 'FastaAA' to the 'unexplored' list, all of them
with a depth value equal to 2.

In Step 3, 'current' takes 'AASeq' from the 'unexplored' list.
Since 'AASeq’, is the source data type, the algorithm adds
'AASeq' to the 'sources' list and removes it from the 'unex-
plored' list. Set maxDepth to the depth [AASeq] value (in
this case 2).

In step 4, 'current' takes and moves 'NNseq' from the
'‘unexplored' to the 'explored' list. Since there is no tool
that returns 'NNSeq' data type, go to the next step.

In step 5, proceed as in step 4 by selecting 'FastaAA' from
the 'unexplored' list as the 'current' data type. The algo-
rithm ends at this step because the 'unexplored' list is
empty.

The only possible workflow input is sources = {AASeq}.
To built the graph (see Figure 1), WF sources are retrieved
from sources and the successors can be recursively
obtained from suc (i.e. suc [AASeq] = { runBlastp, runT-
blastn }. This means that the target data type (the solu-
tion) is closer when using AASeq to call runBlastp or
runTblastn).

Results
In this section, we describe the role and operation of
Magallanes client. Magallanes' API functionality is availa-

Input DT Service Output DT
Object getAASequence AASeq
getAASequenceCollection AASeq
VirtualSeq
GenericSeq fromGenericSequenceCollectionToFasta Fasta

fromGenericSequenceToFasta Fasta
fromGenericToAASequence AASeq

AASeq runBlastp BlastText
runTblastn BlastText

NNSeq runBlastn BlastText
runBlastx BlastText
runTblastx BlastText

TextPlain

TextFormatted

BlastText getBestHitsFromBlast Object
getIDsFromBlast Object
parseMultipleAlignFromBLAST Text FastaAAmult

Fasta fromFastaToAASequence AASeq
fromFastaToGenericSequence GenericSeq
runDisruptionPhysicalProperties TextPlain

FastaAA fromFASTAToAASequence AASeq
runPSIBlastpFromFASTA BlastText

FastaAAmult fromFASTAToAASequenceCollection AASeq

Schematic representation of a reduced set of data types and associated services able to process these different types of data. Although tools names
are descriptive, a long description is available as supplementary material [see Additional file 1].

Page 5 of 12

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:334

Table 2: Execution trace

http://www.biomedcentral.com/1471-2105/10/334

Step Status

Init sources = J
unexplored = { FastaAAmult }
explored = &

maxDepth =

depth [FastaAAmult] = 0

current = FastaAAmult

sources = &

unexplored = { BlastText }

explored = { FastaAAmult }

maxDepth = ©

depth [BlastText] = |

suc [BlastText] = {parseMultipleAlignFromBLAST Text }
2 current = BlastText

sources = &

unexplored = { AASeq, NNSeq, FastaAA }

explored = { FastaAAmult, BlastText }

maxDepth = ©

depth [AASeq] =2

depth [NNSeq] = 2

depth [FastaAA] = 2

suc [AASeq] = {runBlastp, runTblastn}

suc [NNSeq] = {runBlastn, runBlastx, runTBlastx}

suc [FastaAA]={parseMultipleAlignFromBLAST Text}
3 current = AASeq

sources = { AASeq }

explored = { FastaAAmult, BlastText, AASeq }

maxDepth =2
4 current = NNSeq

sources = { AASeq }

unexplored = { FastaAA }

explored = { FastaAAmult, BlastText, AASeq, NNSeq }

maxDepth = 2
5 current = FastaAA

sources = { AASeq }

unexplored = &

explored = { FastaAAmult, BlastText, AASeq, NNSeq, FastaAA }

maxDepth =2

Tracing information showing the content of the main variables during the step-by-step algorithm execution.

ble as a set of Java methods [see Additional file 1] that can
be used by external clients in such a way that results can
be used to invoke web services, recover data type descrip-
tions, build up workflows, etc. Specific clients can be
developed to fulfil services inter-operability, to enhance
search engines, include the "Did you mean?" method, etc.
[see Additional file 1]. It is noteworthy to observe that 'did
you mean methods' has a long tradition of support of
searching engines in the web environment, so what we
claim is the novelty of the design, incorporation and util-
ity of this type of strategies in the bioinformatics applica-
tion domain.

Magallanes is a client with simple but powerful architec-
ture for resource discovery and workflow composition
(see Figure 2). As previously explained, the bottom layer
of Magallanes' API supplies a uniform view of different

data models by managing the uniform representation of
resources from different repositories.

Magallanes, coded in Java, provides:

e integration of different repositories through the use
of the modular API in such a way that discovery can be
defined for multiple or individual repositories;

¢ the capability to extend the metadata discovery space
to web links available in descriptive metadata;

¢ 'did you mean' assistance methods and user-profile
learning capabilities;

¢ wide and extendable functionality to include new
calling methods using the types of data available; and
finally,

Page 6 of 12

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:334

& Magallanes: INB [chirimoyo.ac.uma.es]
File Repository Help

" Search | Workflows I

http://www.biomedcentral.com/1471-2105/10/334

=1k

Workflows
Source: urn:lsid:biomohy.org:objectclass:AminoAcidSequence ¥ || Generate Workflow
Target: urnisid:biomoby.org:objectclass:FASTA_AA_multi v

FASTA_AA_multi

[Produces a multiple alignment in FASTA format fram Blast Hits. |

AminoAcidSequence

Figure |

Workflow example. Proposed WF composition to obtain a set of sequences similar to a given amino acid sequence. Two
alternative paths were identified and displayed to be edited and fine-tuned by user interaction.

e several alternatives for user interaction, using the
GUI library to directly built-up a desktop application,
or developing a web-based tool by direct use of Magal-
lanes' API; or as a discovery engine embedded in third-
party applications.

Just like Magallanes' API, Magallanes client is organised
into two main modules: searching and workflows. Both
are GUI coded as Java Swing components [15] for query-
ing and managing results, providing extra functionality
such as service-data type compatibility.

The WF composition module is independent from the dis-
covery engine, but the client can send data between the
modules (e.g., set a data type as WF's input or output). The
interactive GUI uses the JUNG framework [16] for graph-
ing.

Magallanes is available as desktop application, Java Web
Start, web page, web service implementation, or portlet in
a Grid-Environment (currently, automatic workflow gen-
eration isn't available in Magallanes' web version). It can
also be embedded in third-party applications like the

jORCA client http://www.bitlab-es.com/jorca.

Figure 3, depicts Magallanes' web interface using the key
words 'nucleotide sequence' as a simple example. In a
more elaborate query such as "How can I obtain a phylog-
eny for the gene I have?" the user could start by searching
'gene' (generating 512 hits), or 'phylog' (generating 62
hits--observe this is equivalent to phylog*) or finally,
search for "gene phylog" which generates 14 hits. The sec-
ond and third matching results correspond to 'Estimate
phylogenies from protein (or nucleotide) sequence by
unrooted parsimony'. It is interesting to note that the
'gene’ keyword does not appear in the service description
but in the web pages associated with the service. Magal-
lanes follows the links in descriptions to also search for
potential matches. This feature allows Magallanes to out-
perform current search engines, and function as a discov-
ery engine.

For a deeper exploration of Magallanes' capabilities, let us
assume that we wish to obtain a multiple sequence align-
ment in Newick format using a given generic sequence as
the starting point. The 'Did you mean?' module manages
spelling mistakes (e.g. "seqeunc") and suggests a set of
possible solutions (data types and services) related with
the word 'sequence’, among them the 'GenericSequence'

Page 7 of 12

(page number not for citation purposes)

http://www.bitlab-es.com/jorca

BMC Bioinformatics 2009, 10:334

Third Party Applications

1L
Magallanes

Plug-in Interface | Plug-in Interface

Search GUI WF Generator GUI
1
Magallanes' API
DidYouMean Workflow
Search Generator
FeedBack Engine
1L
Modular API
[Cache Layer
Access Interfaces
1 1L 1L 1T
[MOBY | [INB | [ACGT | [Cthers |
Figure 2

Magallanes architectural scheme. The bottom layer of
the Magallanes' API library works over a standardised view of
the diverse repositories and data models supplied by the
modular APl framework. Magallanes' API functionality is
exposed to external clients as a powerful programmatic API
organised in two main groups: searching and workflows
methods.

data type that can be used as initial input into a WF. Note
that GenericSequence is an example of a BioMoby specific
data type that is likely unknown to the average user. The
'Did you mean?' module was able to inform the user
about this data type. A second search using 'tree' keyword
will identify "Newick_tree" that can be entered as target
data type. Then the algorithm selects the "shortest" path,
which could be extended by relaxing the depth threshold
or by expanding one more level in a particular step.

In some research endeavours, a problem arises when only
a partial solution can be found and there are no services
to connect a given data type with the source data type by
reverse analysis. Magallanes manages this situation by
inserting a Black-Box service to complete the pathway, let-
ting the user search manually for a solution.

WF editing

Although WF editing is beyond the scope of Magallanes,
the generated WF model can be examined by an expert
user using the developed GUI, which has two switchable
and synchronized graph layouts to provide alternative
graph representations. The expert user understands how
to analyse the WF model and, at the end of this stage, the
model can be validated and accepted. In addition, before

http://www.biomedcentral.com/1471-2105/10/334

validating, the expert can review further feedback on the
quality of the WF model derived by the quality of the indi-
vidual services that make up the workflow. Some systems
such as MOWServ [4] store information about service per-
formance: CPU time, availability rate, frequency of use
against alternative services, etc.

The resulting WF model can be stored in a SCUFL format
for editing using the Taverna 1 [7] application. Final map-
ping with end-point services will occur in run-time.

Discussion

Scoring system: resource retrieval

The rationale of the scoring system used to rank resources
is to combine the learning rate based on traditional KR
voting systems with user's feedback. This enriches
resource identification and adapts resources more rapidly
to user needs. For instance, Magallanes stores feedback
information using a file system--local in the case of desk-
top installations or on the server for web-based installa-
tions. In these different conditions, context sensitivity can
be controlled by managing the learning rate. For instance,
the typical scenario for desktop implementations is an
individual user, thus a rapid learning rate is appropriate to
accelerate adaptability to user preferences. However, a
web-based application is designed to be used by several
users, so a slower learning rate would improve stability
and better reflect group behaviour.

WF composition

Depth- and breath-first with pruning implementations
were both evaluated for WF composition. Depth-first was
able to identify the shortest solution by using an adaptive
threshold. However, the repetitive exploration of the
potential-solutions space is a challenge when efficient
implementation is the goal.

Initial breath-first implementation drives a forward explo-
ration from source to target data type with poor response
times. The main reason for the excessive response time is
related to the large number of services that uses a generic
object as input; the typical root in the data type taxonomy
system [see Additional file 1]. As result, object-input serv-
ices always appear to be initially compatible.

However, a breath-first backward implementation from
target to source data types produces good response times.
Basically, this is because there are many more ways to con-
sume a data type in current repositories than ways to pro-
duce data of a specific data type.

In graphical terms, forward connection is equivalent to
the query, 'Which services can use a given DT?' This
approach becomes expensive because of the large number
of services that consume the root object (e.g. 'Object').

Page 8 of 12

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:334

4 Al repositories

http://www.biomedcentral.com/1471-2105/10/334

¥ | nucleotid sequence

Resources: Options: Type:
DataType AND ®
_yp Follow Links []
Service o OR O
. Case Sensitive [_
ServiceType Regular Expression O

B | e <hcer 2o

115 results of nucleotid sequence. (0.044 seconds)

DataType: MOBY [moby.ucalgary.caf
RenciNucleotideSequence

Mucleotide sequence in RENCI format

urnilsidbiomoby. org objectclass RenciMNucleotide Sequence

DataType: INB [chirimoyo.ac.uma.es]
NucleotideSequence

urnlsidbiomoby. org objectclass: Nucleotide Sequence
Lightweight representation af any type of nucleotide sequence (DNA, R NA, etc)

Service: MOFBY fmoby.ucalgary.ca]
getNucleotideSequence

urnilsidbiomoby. org servicemnstanceinb. bsc.es,getNucleotide Sequence
Retrieves a nucleotide sequence from a nucleotide database.

Figure 3

Web-based implementation of Magallanes search engine. Example of the web-based implementation of Magallanes
engine using the default options for the "nucleotide sequence" query. Results are shown ranked by score, including the specific
repository and resource. The web-search option follows web links specified as part of the service metadata.

Backward compatibility asks 'Which services return a
given DT?' Situations can arise when the list is empty since
several DT are used as input by the services (but no serv-
ices produce them); however, in general, the list is much
shorter than in the forward approach.

Our breath-first algorithm is quicker than the deep-first
one, although it consume more memory. To ensure that
memory demand in breadth-first approach do not repre-
sents a problem we have tested the algorithm using the
University of Calgary's BioMoby repository with around
786 services and 1655 data types registered. No memory
problems arose.

About the "Did you mean?"' methodology

Levenshtein distance is used to identify similar words in
the repository, producing a ranked list of possible solu-
tions available to the client. This strategy ensures an up-to-
date dictionary that is adapted to a specific repository
(e.g., in different languages), but it becomes influenced by
the quality of annotations in the repository (as when mis-
spelled words on the repository cannot be detected).

The initial search approach is perfect matching which can
produce an aesthetic situation: if a spelling mistake is
made during the metadata resource annotation and the
same mistake is used as query keyword, Magallanes will
identify the mistake as the best solution and will suppress
the "Did you mean?" module. However, this functionality
(on/off methods) can be managed by the Magallanes' API.

Another discovery alternative is the use of dictionaries or
ontologies to link related concepts, such as "FASTA —
sequence — genome" providing semantic information
that can be exploited by reasoning engines. However, a
generic approach fits better for a broad range of applica-
tions, and also, the system is easily extendable to incorpo-
rate specific discovery mechanisms.

Complex workflows (more than one input)

Without losing the advantages of generality, the described
procedure enables users to discover alternative pipelines
that connect source with target data types. However, some
services need more than one input data type that, in turn,
needs to be obtained via another pipelined branch of serv-

Page 9 of 12

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:334

ices. The current solution uses the iterative application of
the algorithm for each of the needed branches and inte-
grates them into a global solution [see Additional file 1].

Service discovery

MOWServ [4] provides several alternatives for service dis-
covery. The taxonomies for services and data types are pre-
sented in a tree which the user can browse and search. The
search shows the number of hits and highlights the hits in
yellow. The user must expand the trees to identify the hits.
Furthermore, the trees always contain all resources, not
only the matching hits, which make it difficult to find the
hits. Searches are limited to full-string matching (allows
for intermediate spaces). Additionally, services can be
located based on the input data (similar to Seahawk and
GBrowse). Recent additions to MOWServ allow users to
search for services based on input data types, service type
(keyword describing the semantics of the service) and out-
put data types.

As mentioned before, Seahawk [5] analyses user data to
determine the correct BioMoby data type. Based on this
information, the application presents the user with avail-
able services grouped according to keywords (service
types). There is no direct searching of service or data type
descriptions.

Remora [6] displays available services based on the cur-
rently produced data type during workflow construction.
Furthermore, the application provides search functional-
ity that selects search terms based on direct or partial
matches. Search terms must be exact and cannot be mis-
spelled.

Taverna [7] has updated its search functionality in version
2.0. The application now allows direct and partial match-
ing of nodes in the tree of available activities (BioMoby
being one) showing also the number of matches. The tree
is automatically filtered to show only matching results.

Taverna has a plug-in for FETA that allows the user to dis-
cover services based on name (partial or entire matches)
or additional constraints where the user can select con-
cepts from a list (task performed, data resource used,
method used [algorithm etc.] and input/output data
types). Concepts used in the search are taken from the
myGrid ontology [17].

Workflow generation

Magallanes performs automatic workflow composition,
generating the entire sequence of services from start to fin-
ish datatypes. After the workflow has been generated, the
user can select alternative paths. This strategy is less inter-
active than [10], but Magallanes was never designed to be
a complete workflow editor. Instead, its focus was on serv-

http://www.biomedcentral.com/1471-2105/10/334

ice, data type and workflow discovery. Service and data
type discovery allows clients to find the required data
types and services using text searches in descriptions.
Workflow discovery is not only supported in the obvious
way, by treating workflows as services, but also by gener-
ating interesting workflows on-the-fly, allowing users to
"discover" potentially interesting workflows and then
export them to a fully-fledged workflow editor such as
Taverna.

Magallanes' workflow generation is based on the hits gen-
erated in the search engine (see Magallanes' architecture
section) where the user can choose to select a data type as
source or target for the workflow generation algorithm.

As proof of concept we choose to test the workflows gen-
eration module to reproduce already published work-
flows like [18]. The workflow reported by Kerhornou and
Guig6 supports the clustering of co-regulated genes, pro-
ducing as main result a hierarchical clustering in Newick
format from a collection of DNA sequences.

Magallanes is able to find multiple alternative paths to
solve that problem from a FASTA_NA_multi (a collection
of nucleotide sequences in FASTA format) to produce a
clustering in Newick format (Newick_text data type). The
main path of that workflow (ignoring the image output)
can be obtained making only four branch selections on
Magallanes. This task only took a few minutes to complete
with Magallanes, comparing to around two months
needed for the manual elaboration of the same workflow
(personal communication) [see Additional file 1].

Conclusion

One of the most relevant research methods in bioinfor-
matics is intensive use of distributed web-accessible
resources. As a number of recent technical publications
suggest, appropriate tools for resource discovery and for
composition of complex workflows have become urgently
needed. Both discovery and composition are the new par-
adigms to support data processing in massive genomics
analysis. In this document, we have acknowledged those
new working paradigms and proposed effective solutions.

The Magallanes software library supplies an integrated
framework to develop powerful discovery engines that
help researchers find web-services and associated data-
types. The rationale for Magallanes' design has been effi-
ciency and usability. There is consensus in the genomics
research community that one of the biggest barriers to the
integrated use of remote resources is difficulty of locating
the appropriate resource. Several techniques have pro-
posed to solve this problem, with varying degrees of suc-
cess. Magallanes represents advancement in practical web-
resource discovering tasks, regardless of application

Page 10 of 12

(page number not for citation purposes)

BMC Bioinformatics 2009, 10:334

domain. Approximate keyword matching and user profil-
ing have demonstrated the power of simple approaches
similar to the most commonly used way to locate web
pages--search engines.

A second important feature available in Magallanes is its
capacity to build up workflows by automatic and efficient
analysis of alternative pathways. These pathways go from
an initial type of data to a desired output by using a set of
available and compatible services. Rigorous evaluations
of different algorithm implementations lead to an effi-
cient breath-first pruning algorithm from target to source
followed by a backtracking procedure.

The Magallanes client integrates different sources of
resource metadata outperforming current client search
capabilities. Moreover, the inclusion of indirect informa-
tion from the available web page links usually embedded
in description metadata extends the scope of discovery.

Various implementations of Magallanes client have been
deployed to demonstrate the potential utility of the
Magallanes' API. Different variations of the same client
(web-based engines, desktop applications, etc.) demon-
strate the versatility of the software library. Several of these
clients are being used in real installations such as the
National Institute of Bioinformatics (Spain) and ACGT-
EU project, to exploit BioMoby-based repositories. Web
services from the EBI are also among the available service
catalogues.

Although many interesting improvements are already
planned for Magallanes, the current approach is an impor-
tant step in the integrated exploitation of web services,
with user interaction and client usability in the applica-
tion domain of bioinformatics.

Awvailability and requirements
eProject name: Magallanes.

eProject home http://www.bitlab-es.com/

magallanes

page:

eOperating system(s): Platform independent.

eProgramming language: Java.

eOther requirements: Java 6 or higher.

eLicense: free software.

*Any restrictions to use by non-academics: none.
Authors' contributions

JR designed and programmed Magallanes. JK tested the
application and helped with the manuscript. OTS con-

http://www.biomedcentral.com/1471-2105/10/334

ceived of the study, participated in its design and coordi-
nation and helped to draft the manuscript. All authors
have read, participated in, and approved the final manu-
script.

Additional material

Additional file 1

Supplementary material. Information about Magallanes' API, complex
workflows composition, how to extend the search space, detailed algorithm
trace, Did You Mean algorithm example, repositories' statistics and pub-
lished workflows discovery.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-334-S1.PDF]

Acknowledgements

This work has been partially financed by the National Institute for Bioinfor-
matics http://www.inab.org a platform of Genoma-Espaiia and the EU
project "Advancing Clinico-Genomic Trials on Cancer" (EU-contract
n0.026996).

References

I. Perez C, Andrade MA, Wren |D: Evolving research trends in bio-
informatics. Briefings in Bioinformatics Advance Access 2007, 8:88-95.

2. Wilkinson MD, Links M: BioMOBY: An open source biological
web services proposal. Briefings in Bioinformatics 2002,
3(4):331-341.

3. Wroe C, Stevens R, Goble C, Roberts A, Greenwood M: A suite of
daml+oil ontologies to describe bioinformatics web services
and data. International Journal of Cooperative Information Systems spe-
cial issue on Bioinformatics 2003. ISSN: 0218-8430

4. Navas |, Rojano M, Ramirez S, Pérez A, Aldana JF, Trelles O: Intelli-
gent client for integrating bioinformatics services. Bioinformat-
ics 2006, 22:106-1 1 1.

5. Gordon PMK, Sensen CW: Seahawk: Moving Beyond HTML in
Web-based Bioinformatics Analysis. BMC Bioinformatics 2007,
8:208.

6. Carrere S, Gouzy J: REMORA: a pilot in the ocean of BioMoby
web-services. Journal of Bioinformatics 2006, 22(7):900-901.

7. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver
T, Glover K, Pocock MR, Wipat A, Li P: Taverna: A tool for the
composition and enactment of bioinformatics workflows.
Bioinformatics 2004, 20(17):3045-3054.

8. Goble CA, Belhajjame K, Tanoh F, Bhagat], Wolstencroft K, Stevens
R, Nzuobontane E, McWilliam H, Laurent T, Lopez R: Biocatalogue:
A Curated Web Service Registry for the Life Science Com-
munity. Microsoft eScience conference: 7-9 December 2008; Indianap-
olis .

9. Wilkinson M: Gbrowse Moby: a Web-based browser for Bio-
Moby Services. Source Code for Biology and Medicine 2006, 1:4.

10. DiBernardo M, Pottinger R, Wilkinson M: Semi-automatic web
service composition for the life sciences using the BioMoby
semantic web framework. Journal of Biomedical Informatics 2008,
41(5):837-847.

1. Ramirez S, Karlsson J, Garcia M, Trelles O: Metadata repositories
for web-services and workflows. Vill Jornadas de Bioinformadtica:
Valencia 2008.

12. Hamming RW: Error detecting and error correcting codes.
The Bell System Technical Journal 1950, 29(2):147-160.

13. Levenshtein V: Binary codes capable of correcting deletions,
insertions and reversals. Soviet Physsics-Doklady 1966,
10(8):707-710. Original in Russian in Doklady Akademii Nauk SSSR
(1965) 163(4):845-848

14. Dijkstra EW: A note on two problems in conection with gra-
pas. Numerische Mathematik 1959, 1:269-271.

Page 11 of 12

(page number not for citation purposes)

http://www.bitlab-es.com/magallanes
http://www.bitlab-es.com/magallanes
http://www.biomedcentral.com/content/supplementary/1471-2105-10-334-S1.PDF
http://www.inab.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16257987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16257987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17577405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17577405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17147784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17147784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18373957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18373957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18373957

BMC Bioinformatics 2009, 10:334 http://www.biomedcentral.com/1471-2105/10/334

4

Geary DM: Graphic Java 2. In Swing Volume Il. Third edition. New

Jersey: Prentice Hall; 1999. ISBN 0-13-079667-0

16. O'Madadhain , Fisher D, White S, Boey YB: The JUNG (Java Uni-
versal Network/Graph) Framework. In Technical Report UCI-ICS
03-17 University of California, Irvine, Dept. of Information and Com-
puter Science; 2003.

17. Wolstencroft K, Alper P, Hull D: The myGrid ontology: bioinfor-
matics service discovery. Int | Bioinformatics Research and Applica-
tions 2007, 3(3):303-325.

18. Kerhornou A, Guigé R: BioMoby web services to support clus-

tering of co-regulated genes based on similarity of promoter

configurations. Bioinformatics 2007, 23(14):1831-1833.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 12 of 12

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17496321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17496321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17496321
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Related work
	Service discovery by clients
	Automatic workflow composition
	Summarizing the related work
	Magallanes' architecture
	Search engine
	Automatic workflow composition

	Results
	WF editing

	Discussion
	Scoring system: resource retrieval
	WF composition
	About the "Did you mean?" methodology
	Complex workflows (more than one input)
	Service discovery
	Workflow generation

	Conclusion
	Availability and requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

