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Abstract
Background: It is known that transcription factors frequently act together to regulate gene
expression in eukaryotes. In this paper we describe a computational analysis of transcription factor
site dependencies in human, mouse and rat genomes.

Results: Our approach for quantifying tendencies of transcription factor binding sites to co-occur
is based on a binding site scoring function which incorporates dependencies between positions, the
use of information about the structural class of each transcription factor (major/minor groove
binder), and also considered the possible implications of varying GC content of the sequences.
Significant tendencies (dependencies) have been detected by non-parametric statistical
methodology (permutation tests). Evaluation of obtained results has been performed in several
ways: reports from literature (many of the significant dependencies between transcription factors
have previously been confirmed experimentally); dependencies between transcription factors are
not biased due to similarities in their DNA-binding sites; the number of dependent transcription
factors that belong to the same functional and structural class is significantly higher than would be
expected by chance; supporting evidence from GO clustering of targeting genes. Based on
dependencies between two transcription factor binding sites (second-order dependencies), it is
possible to construct higher-order dependencies (networks). Moreover results about transcription
factor binding sites dependencies can be used for prediction of groups of dependent transcription
factors on a given promoter sequence. Our results, as well as a scanning tool for predicting groups
of dependent transcription factors binding sites are available on the Internet.

Conclusion: We show that the computational analysis of transcription factor site dependencies is
a valuable complement to experimental approaches for discovering transcription regulatory
interactions and networks. Scanning promoter sequences with dependent groups of transcription
factor binding sites improve the quality of transcription factor predictions.

Background
Transcription factors (TFs) are a major class of DNA-bind-
ing proteins and are a crucial element in the regulation of

gene expression. It is well established that many transcrip-
tion factors act together to regulate gene expression in
eukaryotes [1]. For example, the cooperation between E2F
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and NF-Y, two main regulators of cell cycle, has been
described in [2,3]. A commonly used experimental
method to identify interacting proteins is tandem affinity
purification (TAP), as reviewed in [4]. This approach
requires the expression of recombinant fusion proteins,
which is laborious, may interfere with protein function
and may lead to non-physiological expression levels of
the studied protein. A computational detection of poten-
tial interacting transcription factors could therefore com-
plement experimental approaches. There are many
prediction tools and databases of composite motifs and
cis-regulatory modules (multiple transcription factor
binding sites in a strict order and spacing) [5-21]. Most of
the tools for predicting cis-regulatory modules have been
limited by rigid assumptions on the architecture of the
module, such as length, number and order of contained
cis-motifs, distance between cis-motifs, and the DNA
strand on which a binding site must appear. It has been
shown that 98% of 375 known vertebrate composite ele-
ments have a distance of less than 100 bp [22]. Although
these assumptions can be valid for the detection of cis-reg-
ulatory modules, they are too restrictive to allow sensitive
detection of binding sites dependencies. Transcription
factor cooperativity can be achieved with different spatial
arrangements on different promoters. There are, for exam-
ple, transcription factors which co-occur and bind to the
promoter at very large distances (>1 Kbp) between them
(such as GAGA and Gal4 [23]). In order to overcome these
restrictions, we investigated transcription factor binding
sites dependencies in terms of how often their predicted
binding sites are found together within a window extend-
ing 1.5 Kb 5' and 200 bp 3' of the putative starts of tran-
scription in human, mouse and rat genes, without any
further assumption on their binding characteristics. This
leads to an approach that differs from prior approaches
for detecting cis-regulatory modules. Dependencies
between transcription factor binding sites are evaluated
using only co-occurrences among different promoter
sequences, disregarding any information on arrangement
and counts of occurrences within the same promoter.
Binding sites of two transcription factors that appear sig-
nificantly more often together (among different promot-
ers) than expected are indicative of a dependency between
them. Using this approach, even dependencies between
sites that do not occur in a strictly defined order and spa-
tial organization can be identified. Our approach for
quantifying tendencies of transcription factor binding
sites to co-occur is based on a scoring function which
incorporates dependencies between nucleotides [24], the
use of information about the structural class of each tran-
scription factors (minor or major groove binder) and con-
sidering the possible implications of varying GC content
of the sequences. The significant tendencies (dependen-
cies) have been detected by non-parametric statistical
methodology (permutation tests). Evaluation of obtained

results has been performed in several ways: reports from
literature (many of the significant dependencies between
transcription factors have previously been confirmed
experimentally); dependencies between transcription fac-
tors are not biased due to similarities in their DNA-bind-
ing sites; the number of dependent transcription factors
that belong to the same functional and structural class is
significantly higher than would be expected by chance;
supporting evidence from GO clustering of targeting
genes. The only restriction our method applies is to limit
the search to the 1.7 Kb window described above, without
any further restrictions on the distance between or the
organization of the binding sites (cis-motifs).

Based on dependencies between two transcription factor
binding sites (second-order dependencies), it is possible
to construct higher-order dependencies (networks).
Obtained results about dependencies among transcrip-
tion factor binding sites have been further used for devel-
opment of a web-based tool that allows scanning of
promoter sequences for groups of dependent transcrip-
tion factor binding sites http://promoterplot.fmi.ch/
TFDepSSeq1/. This tool can help in predicting transcrip-
tion factor binding sites in promoter analysis with rela-
tively high sensitivity and modest specificity (which is still
higher in comparison to single site prediction tools (such
as [24]).

Results and Discussion
Distributions of dependencies between transcription 
factors

From the JASPAR database, we selected all vertebrate tran-
scription factors (August 2007, total: 76) and made all the

possible 2-order combinations (in total:  = 2850).

There is no comprehensive transcription factor database
that would list all transcription factors with their target
binding sites. From publicly available databases, JASPAR
is currently the best annotated transcription factor data-
base (new version of JASPAR database has appeared in
2008 with 88 vertebrate transcription factors). Using pro-
moter sequences of all human, mouse and rat annotated
genes (see Materials and Methods section), we analysed
transcription factor site dependencies (see Material and
Methods section). The total number of significant
dependencies (significance level of 0.05/k, k = 75, see
Methods section) in the human, mouse and rat genomes
were 1438 (50.5%), 1239 (43.5%) and 1063 (37.3%),
respectively [see Additional file 1]. The corresponding
numbers of significant dependencies observed on back-
ground sequences [see Additional file 1] are significantly
smaller (Fisher's exact test, p-value < 0.001), and are
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about as high as expected based on the p-value threshold
(0.05*2850). On average, the numbers of significant
dependencies observed in the human, mouse and rat
genomes are about four times higher than those found in
the background sequences, which may indicate that statis-
tical dependencies could correspond to real biological
dependencies between transcription factors. The number
of the common dependent pairs between species was also
analysed [see Additional file 1] and we found a high con-
servation between species in terms of transcription factor
dependencies, further supporting the validity of our
results. Additional supporting evidence for our findings
was found from the literature for many of the significant
transcription factor combinations [25-29]. For example, it
has been reported that SP-1 and E2F interact directly in
delivering an activation signal to the basic transcription
machinery [25]. In our computational analysis, depend-
encies between binding sites of SP-1 and E2F were
detected separately in human, mouse and rat genomes,
with p-values < 0.0001 in each case. There was a similar
situation for USF1 and RUNX1: dependency was pre-
dicted in all three genomes, with p-values < 0.0001, and it
has been reported that they interact with each other [26].
Another example is the MAX and MYC-MAX dependency
which, as well as the MAX and MYCN dependency, was
predicted in all three genomes, with a p-value < 0.0001,
and has previously been identified [27]. The MAX-USF,
MYC-USF dependency (p < 0.0001) was described in [28],
NFkappaB-RELA, NFKB1-REL (p < 0.0001) in [29], and
the E2F1-NFY dependency (p < 0.0001) in [2,3]. There are
many other confirmatory examples which agree with the
computationally predicted transcription factor dependen-
cies. However, in order to perform a detailed investigation
of the number of true and false positives we would need a
precise text-mining tool to search the available scientific
literature. Moreover, an additional limitation for such an
investigation is that experimental information available
in the literature about interacting transcription factors is
certainly incomplete. Because of this, some of the results
that have been evaluated as incorrect predictions (false
positives) may in fact be true positives.

For each transcription factor, we analyzed the number of
its dependent mates in human, mouse and rat genomes.
The distributions of dependent mate numbers [see Addi-
tional file 2] are very heavily skewed from Gaussian (sig-
nificantly different from Normal distributions with p-
value < 0.01 detected by Kolmogorov-Smirnov, Cramer-
von Mises or Anderson-Darling test for all 3 genomes)
and follow a U-shaped distribution (e.g. Beta(a, b),

a<1,b<1). That was expected according to the fact that
there are "popular" (very often seen in dependent pairs)
and "unpopular" (rarely seen in dependent pairs) tran-
scription factors. For example a popular transcription fac-
tor in all three genomes is CREB. CREB was found to
regulate ~4000 target genes in the human genome, and a
majority of these are occupied in vivo [30]. In addition,
there is a large number of CREB-occupied loci in the rat
genome [31].

Some transcription factors, such as GATA2 and EN1, have
a very high number of predicted binding sites and are thus
predicted to regulate a large fraction of the analyzed pro-
moters. For such factors, a higher number of co-occur-
rences with other binding sites can be observed. While our
statistical approach will take this into account through an
increased number of expected random co-occurrences, we
wondered whether this could still cause a bias in our
results. We have therefore performed a correlation analy-
sis between the number of predicted single binding sites
and the number of dependent mates for each transcrip-
tion factors. We used the "Significance test for Pearson
correlation" which is valid for sample sizes where N > 6 to
assess these correlations. The Pearson's correlation coeffi-
cients were 0.04 (p-value = 0.75), -0.27 (p-value = 0.02)
and -0.39 (p-value < 0.01) for human, rat and mouse,
respectively. These results indicate that there might be
reduced statistical power for factors with many predicted
sites (correlation coefficient significantly different from
zero in the case of rat and mouse), potentially because
their lower site information content could give rise to
more noise in the site predictions. However, weak correla-
tion coefficients imply small influence of such noise on
obtained results.

Similarly, we investigated the influence of binding site
length on the number of dependent mates. Short binding
sequences could increase the frequency of detected bind-
ing sites. We have therefore performed a correlation anal-
ysis between the length of binding sites and the number
of dependent mates for each transcription factor. The
Pearson's correlation coefficients were -0.30 (p-value <
0.01), -0.17 (p-value = 0.14) and -0.06 (p-value = 0.60)
for human, rat and mouse, respectively. These results indi-
cate that at least for the analysis in human, shorter bind-
ing sites tend to give rise to more dependent pairs. We
cannot rule out that this is due to a higher number of false
positive predictions associated to TFs with short binding
sites. Yet, the observed correlation coefficients are weak,
and for mouse and rat not significantly different from
zero. This indicates that the resulting bias is weak and
does not dominate our results.

Another potential source of bias could be the sequence
composition of the promoters and binding motifs. For
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example, a GC-rich promoter sequence would be more
likely to contain predicted sites for GC-rich binding
motifs, and detection of dependencies between corre-
sponding factors could be biased. The stratification
according to GC-content used by our resampling
approach should control for the GC-content, but other
compositional biases might exist that we did not account
for. To investigate this issue, we performed a clustering of
transcription factors based on the similarity between their
binding sites [see Additional file 3]. This kind of clustering
is performed in [32], and we observed [see Additional file
3] that only few TFs had sufficiently similar binding site
specificities to be grouped together: the top two clusters
are Cluster-15 (containing 6 transcription factors) and
Cluster-5 (containing 5 transcription factors). The other
clusters contain less than 5 TFs, and 32 clusters only con-
tain a single TF. Moreover, the most popular/unpopular
transcription factors (we define a popular TF as a TF which
is involved in many pairwise interactions) always belong
to different clusters (do not have similar binding sites),
with only one exception with two popular transcription
factors (ARNT, USF1). We then analyzed if dependent
pairs are more likely to belong to the same cluster (Table
1). In 25 out of 469 dependent pairs (5.3%), both tran-
scription factors are part of the same cluster. Over all pos-
sible transcription factor pairs, both factors belong to the
same cluster in 33 of 1507 pairs (2.2%). This indicates
that similar binding site specificity might increase the
chance to be dependent by about 2.5-fold, but would still
only account for a minority of predicted dependent pairs.
Taken together, these results suggest that dependencies
between transcription factors cannot be explained by sim-
ilarity of their DNA-binding sites.

Next, we investigated how many dependent pairs contain
transcription factors that belong to the same structural
class, using the classification from JASPAR [33]. It has
been reported that transcription factors from the same
structural class tend to bind in a similar way [33-37]. We
found that belonging to the same structural class is related
to dependencies between transcription factors (Figure 1).
This is also in agreement with the statement that similar
structures imply similar functions, and similar functions
imply possible transcription factor binding site depend-
encies. An alternative way of classifying transcription fac-

tors is based on their functions (i.e. biological processes)
obtained from [38]. We investigated the distribution of
dependencies according to this classification (which only
covers 51 of the 76 factors used in this work), in a similar
way to the structural classification. In this situation
(which is more relevant for this study), we expected that
transcription factors that belong to the same functional
group (have the same or similar biological processes)
should be dependent more often than transcription fac-
tors from the different functional class. Indeed, the
number of dependent transcription factors that belong to
the same functional class is significantly higher (p = 0.04,
Chi-square test) than randomly expected in the human,
rat and mouse genomes (Figure 1). For the functional
analysis we did not use the all transcription factors used in
this study, because for some there was no reported func-
tional class available in [38]. This could have limited our
statistical sensitivity and might be the reason why the
functional enrichment was only marginally significant.

Finding groups of genes that are correlated throughout a
set of experiments leads to the hypothesis that these genes
are involved in common functions [39]. Further, we can
expect that these genes have similar sets of dependent
transcription factor binding sites. Knowledge of these sets
may be crucial for further understanding of regulatory net-
works. Following this we investigated distributions of
dependent transcription factor binding sites using the GO
ontology classification (biological process and molecular
function) of target genes whose promoters we used in the
study, using only GO classes that contained at least 25
genes. Clustering of dependent TFs was performed in the
following way: each dependent pair of TFs which had in
its target list at least 80% of promoters (genes) that belong
to the given GO class is assigned as relevant for that class.
All results are available from http://promoterplot.fmi.ch/
TFDEP1/TFdepGO.html. The predictions of dependent
transcription factor binding sites are more likely to be true
if they are supported by multiple lines of evidence. Figure
2 represents Venn diagrams for human, mouse and rat
results separately. Venn diagrams show the number of
total predicted dependent pairs, the number of predicted
dependent pairs conserved in two or three species, the
number of predicted dependent pairs supported by GO,
and the number of predicted dependent pairs supported

Table 1: Distributions of pair dependencies according the binding sites similarity clustering.

Dependent pairs A-B* Independent pairs A-B*

A&B belong to the same cluster 25 8
A&B belong to the different cluster 444 1063

p-value = 7.692106e-08 (Fisher's exact test)
*transcription factors for which cluster is not assigned [see Additional file 3] are omitted from analysis
The number (percent) of dependent/independent pairs (in all there genomes human+mouse+rat intersection) that belong to the same/different 
cluster (clustering of transcription factors is performed based on the similarity between their binding sites, see Additional file 3).
Page 4 of 12
(page number not for citation purposes)

http://promoterplot.fmi.ch/TFDEP1/TFdepGO.html
http://promoterplot.fmi.ch/TFDEP1/TFdepGO.html


BMC Bioinformatics 2009, 10:339 http://www.biomedcentral.com/1471-2105/10/339
by overlapped supporting evidence. We can see that the
highest number of dependent pairs is supported by 2 evi-
dences and all dependent pairs from GO analysis are sup-
ported by other 2 evidences for each species, further
supporting the validity of our results. Another potential
way to investigate dependencies between transcription
factors according to the GO classification of their target
genes would be to group the promoters belonging to the
same GO cluster and perform the same analysis (see sec-
tion 2.1) as performed previously with the set of all pro-
moters. However, in practice this approach proved under-
powered because of the limited number of promoters in
each GO class. There were too few promoters to apply the
same re-sampling techniques used for the whole genome.

It is likely that some protein-DNA complexes not only
contain two, but three or more cooperating transcription
factors. In order to identify such groups of more than two
dependent sites, one could apply the same method as for
pairs. In practise however, it is not feasible to enumerate
and analyze all combinations of three or more transcrip-
tion factor binding sites (for example, there are 70300
groups of three and over 1.2 million groups of 4 factors
from Jaspar). Instead, we used the results on significantly
associated pairs for extrapolation. Starting from depend-
encies of order two, we analyzed the dependencies of

higher orders as fully or partially connected transcription
factor networks. To make all results easily accessible, we
have provided a web-based tool, freely accessible from
http://promoterplot.fmi.ch/TFDEP1/ where users can
search by transcription factor name and retrieve our
results on dependencies (full and partial). For stringent
searching, users can require the transcription factor net-
work to be fully connected (e.g. for A-B-C dependencies it
is necessary to have A-B, A-C and B-C dependencies) and
represents exactly the results which would be obtained via
direct enumeration. Partial connectivity is less stringent
(e.g. for third-order only two combinations are necessary
to be dependent) and represents a less stringent approxi-
mation of the full enumeration results. Information
obtained in this way can be useful for designing biological
experiments where information about transcription fac-
tors that may cooperate is useful (design of regulatory
gene networks for various processes). In addition, the
results obtained about dependencies are potentially use-
ful for better understanding transcriptional networks in
human, mouse and rat genomes.

Computational prediction of groups of dependent 
transcription factors binding sites
Results from descriptive data-mining about dependencies
between transcription factor binding sites can be used for

Distributions according to the structural and functional classificationFigure 1
Distributions according to the structural and functional classification. Expected (random) and observed distributions 
of dependent pairs of TFs which belong to the same structural/functional class (* p < 0.05, Chi-square test; Expected distribu-
tion gives the numbers of dependent pairs of transcription factors which belong to the same structural/functional class that one 
would expect to obtain if there is no difference between proportions of dependent pairs that contain transcription factors 
from the same and different structural/functional classes).
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the computational prediction of modules of dependent
binding sites. In order to evaluate the proposed tool, we
used experimentally verified data from [40,41]. From the
dataset of transcription factors which we used in this
study, we selected a subset which was known to be
involved in the regulation of skeletal muscle gene expres-

sion: MEF2, SP-1, SRF, MZF1_1-4 and MZF1_5-13. It is
known that a set of nine human genes (NM_184041,
NM_001927, NM_002479, NM_079422, NM_003281,
NM_000257, NM_002471, NM_001100 and
NM_005159) is regulated by combinatorial interactions
between the transcription factors listed above [41]. First,

Venn diagrams of the number of dependent transcription factor binding sites pairs in human, mouse and rat genomeFigure 2
Venn diagrams of the number of dependent transcription factor binding sites pairs in human, mouse and rat 
genome. Venn diagrams show the number of total predicted dependent pairs, the number of predicted dependent pairs con-
served in two or three species, the number of predicted dependent pairs supported by GO, and the number of predicted 
dependent pairs supported by overlapped supporting evidence.

Table 2: Computational prediction of groups of dependent transcription factors binding sites.

2-order TF dependency # (%)of promoters where module has been detected

MZF1_5-13 ↔ SP-1 9 (100%)

MZF1_1-4 ↔ MZF1_5-13 9 (100%)

MZF_1-4 ↔ SP-1 9 (100%)

MEF2 ↔ SRF 1 (11%)

General form of output after scanning promoter sequences for the given combination of transcription factors A and B.
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we noticed that based on second order dependencies (in
human) among these transcription factors (Table 2) it was
possible to construct fifth-order partial dependencies
between them. We used the 2 Kbp upstream region of the
nine human genes and scanned them with modules of
order 2. We found (Table 2) that almost all second-order
modules were detected in all nine promoters.

Only module MEF2-SRF was not detected in all
sequences, however there are other combinations that
include one of these two transcription factors detected in
more sequences. This is not a surprise because not only
these 5 transcription factors are involved in the regulation
of skeletal muscle genes.

In order to further demonstrate the practical application
of the proposed tool, we can simulate the following sce-
nario: if we know that one specific transcription factor is
involved in the regulation of a set of genes, and we would
like to know which other possible transcription factors
might be involved, then we could use the proposed tool
to create a list of candidates. Specifically, using the set of
nine genes that showed skeletal muscle expression we
could start from the any of the 5 mentioned transcription
factors and then find the factors that might interact with it
in the regulation of these nine genes. Using the proposed
tool, we were able to predict all the other known transcrip-
tion factors reported to be involved in the regulation of
these genes (true positives). However, we also determined
another set of transcription factors for which no experi-
mental support exists (which we might consider as poten-
tial false positives).

In order to perform more detailed validation test, we used
transcription factors that were predicted and experimen-
tally identified as true positives, transcription factors that
were not predicted but experimentally reported for a given
promoter as false negatives, transcription factors that were
neither predicted nor experimentally reported as true neg-
atives and transcription factors that are predicted but not
experimentally reported are false positives (Table 3, with
muscle specific data from [40,41]). The second order
dependencies have been used in this evaluation. In addi-
tion, we have used promoters (and corresponding tran-
scription factors: HLF, TCF1(HNF1), FOXa2 (HNF3),
RORA, SOX17, cEBP, HNF4) of human liver specific genes
from [42] and performed similar validation (Table 4). We
noticed that sensitivity is relatively high and specificity rel-
atively low. While our method could detect almost all true
positives from both experiments, it produced many false
positive predictions similar to other tools for prediction of
transcription factor-binding sites. However, it is impor-
tant to mention that it is not guaranteed that the experi-
mentally reported transcription factors represent the
complete set of factors for the given genes (true positives).
Therefore, some of the false positives might be true posi-
tives and the actual specificity could be higher than esti-
mated here. In comparison to single site prediction tools
(such as [24], Table Sup eight-three and tools reported
there), our tool has an increased specificity and sensitivity.

Conclusion
In this paper we describe a data-mining study to identify
transcription factor site dependencies in the human,
mouse and rat genomes. Many of the predicted dependent

Table 3: Evaluation of prediction of dependent transcription factor binding sites using transcription factors involved in the regulation 
of skeletal muscle gene expression.

Promoter of human gene (Gene RefSq ID) TP TN FP FN Specificity Sensitivity

NM_000257 3 21 50 2 0.32 0.6

NM_001100 4 24 47 1 0.35 0.8

NM_001927 4 25 46 1 0.36 0.8

NM_002471 3 25 46 2 0.37 0.6

NM_002479 4 20 51 1 0.29 0.8

NM_003281 4 22 49 1 0.32 0.8

NM_005159 5 22 49 0 0.31 1

NM_079422 4 21 50 1 0.31 0.8

NM_184041 3 27 45 1 0.38 0.75

TP-true positives, FP-false positives, TN-true negative, FN-false negative, sensitivity = TP/(TP+FN), specificity = TN/(TN+FP)
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transcription factors had been confirmed previously in
vitro or in vivo and have been reported in the literature:
these represent partial validation of our approach (agree-
ment between statistical and biological/experimentally
confirmed/dependencies). Dependencies between tran-
scription factors are not biased by similarities in their
DNA-binding sites. The distribution of transcription fac-
tors, whose binding sites are dependent, according to their
functional classification shows that they tend to be
involved in same biological process. Genes that are
involved in common functions tend to have similar sets of

dependent transcription factor binding sites. Knowing
these sets may further our understanding of gene regula-
tion networks. This is why we provided distributions of
dependent transcription factor binding sites in GO ontol-
ogy classes of target genes whose promoters we used in the
study and these results are available from http://promot
erplot.fmi.ch/TFDEP1/TFdepGO.html. Starting from the
dependencies of order 2, it is possible to construct higher
order dependencies (networks). All results can be
obtained via the web tool http://promoterplot.fmi.ch/
TFDEP1/. This information may help others in their inves-

Table 4: Evaluation of prediction of dependent transcription factor binding sites using transcription factors involved in the regulation 
of human liver.

Promoter of human gene (Ensembl ID) TP TN FP FN Specificity Sensitivity

ENSG00000150526 6 23 46 1 0.33 0.857

ENSG00000017427 6 20 49 1 0.29 0.857

ENSG00000084674 6 23 46 1 0.33 0.857

ENSG00000115718 5 23 46 2 0.33 0.714

ENSG00000116833 6 28 41 1 0.41 0.857

ENSG00000126218 6 21 48 1 0.30 0.857

ENSG00000136872 6 20 49 1 0.29 0.857

ENSG00000163581 6 25 44 1 0.36 0.857

ENSG00000163631 6 21 48 1 0.30 0.857

ENSG00000167165 6 28 41 1 0.40 0.857

ENSG00000167910 6 27 42 1 0.39 0.857

ENSG00000171759 6 26 43 1 0.37 0.857

ENSG00000173531 6 23 46 1 0.33 0.857

ENSG00000180432 6 23 46 1 0.33 0.857

ENSG00000101076 6 22 47 1 0.32 0.857

ENSG00000163631 6 21 48 1 0.30 0.857

ENSG00000145321 6 23 46 1 0.33 0.857

ENSG00000169562 6 22 47 1 0.32 0.857

ENSG00000132437 6 21 48 1 0.30 0.857

ENSG00000105398 6 24 45 1 0.35 0.857

ENSG00000131482 6 25 44 1 0.36 0.857

ENSG00000198610 6 25 44 1 0.36 0.857

TP-true positives, FP-false positives, TN-true negative, FN-false negative, sensitivity = TP/(TP+FN), specificity = TN/(TN+FP)
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tigation of transcriptional processes in human, mouse
and rat. In addition, we demonstrated how the informa-
tion obtained about dependencies could be used for the
computational prediction of modules of dependent tran-
scription factor binding sites http://promoterplot.fmi.ch/
TFDepSSeq1/. We validated the tool using experimentally
verified data set of transcription factors involved in the
regulation of skeletal muscle expression. We also demon-
strated how the proposed tool might be applied. Compu-
tational analysis of transcription factor site dependencies
is a complement to experimental approaches for discover-
ing transcription regulatory interactions and networks.

Methods
De novo detection of transcription factor site 
dependencies
The dataset used in this study comprised promoter
sequences (1500 bp upstream to 200 bp downstream of
annotated transcription start sites) of 18,799 human
(Ensembl Build 40, NBCI v36, hg18), 17,954 mouse
(Ensembl v38, NCBI m35, mm7) and 6,723 rat genes
(Ensembl v22, NCBI v3.1, rn3) taken from the cisRED
database, August 2007 [43]. The set of vertebrate tran-
scription factors (total 76) with their binding sites was
obtained from the non-redundant, curated and publically
available database JASPAR [44,45] (August, 2007). We
also used negative control sequences as a background in
order to see how many dependent transcription factors
can be found in sequences which are not real promoters
of selected genes. Background sequences were generated
for each species as described in [43], of 1000 concatenated
search regions that were randomly selected from the
genome's entire set of search regions.

In order to detect transcription factor site dependencies,
we first enumerated all second-order combinations of
transcription factors. Then, using the new scoring func-
tion introduced in our previous work [24], we predicted
binding sites for the given combination of transcription
factors on the aforementioned human/mouse/rat pro-
moter sequences. It is difficult to define a single optimal
score threshold for all TFs. Individually optimized thresh-
olds might be necessary to account for varying degrees of
specificity inherent to some TFs. Nevertheless, we used
universal but distance specific thresholds for this study:
0.88 if the distance between binding sites was longer than
5 bp, otherwise 0.80, because transcription factors with
direct contacts between them can make more stable com-
plexes with DNA even though their DNA-binding affini-
ties may be lower, as discussed in [46]. In our previous
paper [24] we suggested values between 0.8 and 0.9 as
optimal medium stringency thresholds for the prediction
of single transcription factor binding sites. Very similar
results are obtained if other thresholds are chosen from
this interval, with a ~5-10% difference between them

(data not shown). In addition for detection binding site
dependencies, we also included information about the
structural class of each transcription factor from the JAS-
PAR database. It is known that most transcription factors
bind to the major DNA groove, but some of them bind to
the minor groove. Practically, this means that overlapping
binding sites can be possible if one transcription factor
binds to the major and other to the minor groove (accept-
able structural arrangement). The strand of DNA deter-
mines the orientation of transcription factors on DNA.
Based on this observation, we allow that the binding sites
of two transcription factors can overlap (partially or even
completely) if those two transcription factors bind to
DNA in a different way (one to the major and one to the
minor groove). We analyzed both strands of the promoter
sequences. In summary, if there are two binding sites (of
different transcription factors) are further apart than 5 bp,
we treated them as "predicted" if scoring function is
higher than 0.88. If the distance is shorter then 5 bp (or
there is overlap between them) with acceptable structural
arrangement we treated them both as "predicted" even if
scoring function for any of them is smaller of 0.88 (but >=
0.8); finally if two binding sites (of different transcription
factors) overlap with an unacceptable structural arrange-
ment, then we treated only the one with the higher score
as "predicted".

For each promoter sequence we calculated the CG context
(%G + %C). Histogram distributions of GC content are
given in Additional file 4. We employed a Monte-Carlo re-
sampling approach to determine the significance of
observed co-occurring transcription factor binding sites as
follows. For a given combination of two transcription fac-
tors A and B, and the list of promoter sequences, the
results of the initial predictions can be represented as a
table in which we have calculated the number of pro-
moter sequences that have binding sites for both tran-
scription factors A and B [see Additional file 5]:

where

and n is the total number of sequences, Ai = 1 means that
sequence i has binding sites of transcription factor A, Ai =
0 means that sequence i has no binding sites of transcrip-
tion factor A, and similar for Bi.

Then, in a series of R replicates, we performed a permuta-
tion of the initial table [see Additional file 5] in the fol-
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lowing way: for each promoter sequence i (1 ≤ i ≤ n), we
randomly assigned to it another promoter sequence j (1 ≤
j ≤ n) which had a similar GC content, and we replaced
(swapped) values in column A between rows (sequences)
i and j (i.e. Ai <-> Bj).

In order to define the term "similar GC content between
sequences" we could have used equal intervals of GC con-
tent. However, we noticed that this would result in a
smaller number of sequences for permutation in high and
low GC bins. To correct for this, we produced 50 bins with
a fixed number of promoters per bin [see Additional file
6]. In this way, we ensured enough possible permutations
for each sequence and its corresponding GC content.
Using this method, we produced R permuted tables, and
for each permuted table we counted how many times we
had the value 1 in columns A and B (CountPermjAB was
performed substituting "CountPermAB" for "CountAB"
in equation (1)) for each table j (j = 1,... R). Finally, a p-
value was calculated in the following way:

where

and R is the resample size (number of replicates), and
adding 1 is the pseudocount that prevents us from under-
estimating the p-value when it is low or zero. We used an
adjusted p-value (with Bonferroni's correction) to correct
for multiple testing errors. Dependencies were declared
significant if the computed p-value was smaller than 0.05/
k (where k is the number of multiple tests). We determine
the number of re-sampling runs using the following for-
mula:

where P_threshold is the significance p-value threshold
selected which, in our case, corresponded to P_threshold
= 0.05/k where k = 75. We therefore selected R = 15,000 as
a compromise between accuracy in p-value estimation
and calculation time (R>>k/0.05 = 1500).

Higher-order transcription factor site dependencies
Starting from dependencies of order two, we constructed
dependencies of higher orders in the following way: if
transcription factors A-B, B-C and A-C are all dependent,

then we can claim that there is an order three dependency
between transcription factors A, B and C. (Note: it is not
true if only A-B and B-C are dependent pairs but A-C is
not). Third-order dependencies between the transcription
factors A, B and C can be represented as fully connected
graph as shown in Additional file 7. Other forms of third-
order dependencies (partial third-order dependencies) of
transcription factors (when any of two pairs of three tran-
scription factors are dependent) can be represented using
a not fully connected graph [see Additional file 7]. Higher
order dependencies between factors can be represented in
a similar way.

Scanning tool for predicting groups of dependent 
transcription factor binding sites
The computational prediction of cis regulatory motifs of
dependent transcription factors in scanning form can be
performed using information about dependencies
between transcription factor binding sites using the scor-
ing function which we introduced in a previous paper [24]
and, in addition, structural information (possible posi-
tion binding) between transcription factors as we
described in section "De novo detection of transcription
factor site dependencies". We used universal but distance
specific thresholds for the scoring function as described in
the same section. This method is implemented as a web-
based tool and it is available from: http://promoter
plot.fmi.ch/TFDepSSeq1/. Different cut-off values in the
range between 0.8 and 0.9 only had a minor influence on
the results in Table 3 and 4 (slightly varying only in the
number of false positives for different promoters from the
here shown numbers for different cut-off values). If very
different cut-off values are chosen (above 0.9 or bellow
0.8), a greater impact on the results as shown in Table 3
and 4 can be observed. As indicated in the section "De
novo detection of transcription factor site dependencies",
we think however that it is not recommended to use such
cut-off values.
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Additional file 1
Distribution of dependencies of order 2 in the human, mouse and rat 
genomes using real promoters sequences and background sequences.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-339-S1.PDF]
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Additional file 2
Distributions of number of dependent mates in human, mouse and rat 
genome. File containing 3 histograms of number of dependent mates for 
each transcription factor in human, mouse and rat genome.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-339-S2.PDF]

Additional file 3
Distribution of dependent mates for each transcription factor in 
human, mouse and rat genome, including cluster information about 
similarity between binding sites.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-339-S3.PDF]

Additional file 4
Distribution of GC content in the human, mouse and rat promoters. 
File containing 3 histograms and corresponding fitted normal distribu-
tions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-339-S4.PDF]

Additional file 5
Scanning promoter sequences. File containing a table that represents a 
general form of output after scanning promoter sequences for the given 
combination of transcription factors A and B.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-339-S5.PDF]

Additional file 6
Distributions of GC content in human promoters, represented by a 
histogram of 50 bins. File containing 3 histograms of 50 bins each.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-339-S6.PDF]

Additional file 7
Representation of higher order dependencies between transcription 
factors A, B and C. File containing fully connected graph (represents full 
3-order dependencies) and not fully connected graph (represents partial 
3-order dependencies).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-339-S7.PDF]
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