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Abstract
Background: RNA-protein interactions are important for a wide range of biological processes.
Current computational methods to predict interacting residues in RNA-protein interfaces
predominately rely on sequence data. It is, however, known that interface residue propensity is
closely correlated with structural properties. In this paper we systematically study information
obtained from sequences and structures and compare their contributions in this prediction
problem. Particularly, different geometrical and network topological properties of protein
structures are evaluated to improve interface residue prediction accuracy.

Results: We have quantified the impact of structural information on the prediction accuracy in
comparison to the purely sequence based approach using two machine learning techniques: Naïve
Bayes classifiers and Support Vector Machines. The highest AUC of 0.83 was achieved by a Support
Vector Machine, exploiting PSI-BLAST profile, accessible surface area, betweenness-centrality and
retention coefficient as input features. Taking into account that our results are based on a larger
non-redundant data set, the prediction accuracy is considerably higher than reported in previous,
comparable studies. A protein-RNA interface predictor (PRIP) and the data set have been made
available at http://www.qfab.org/PRIP.

Conclusion: Graph-theoretic properties of residue contact maps derived from protein structures
such as betweenness-centrality can supplement sequence or structure features to improve the
prediction accuracy for binding residues in RNA-protein interactions. While Support Vector
Machines perform better on this task, Naïve Bayes classifiers also have been found to achieve good
prediction accuracies but require much less training time and are an attractive choice for large scale
predictions.

Background
RNA-protein interactions are pivotal for many fundamen-
tal cellular functions such as transcriptional regulation,
splicing and protein synthesis. Thus the identification of
RNA binding sites is essential for the understanding of a
variety of biological processes. In general, computational

methods to predict interface residues for an individual
protein fall into two major categories: sequence-based
and structure-based. Most published studies have exten-
sively used the information derived from protein
sequence.
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One of the earliest attempts to predict binding residues in
RNA-protein interfaces was performed by Jeong et al. [1].
They utilized a neural network with amino acid type and
secondary structure information as input features. The
method achieved a Matthews correlation coefficient
(MCC) of 0.29 for 10-fold cross-validation on a data set
with 96 chains from 58 protein-complexes. A post
processing step (state shifting and filtering) improved the
accuracy further but required information usually not
available in the query phase [2].

Furthermore, Jeong et al. [3] studied different methods to
calculate profiles and improved their previous results [1]
by utilizing weighted PSI-BLAST profiles to a MCC of
0.41. However, they used a data set containing 86 proteins
with sequence similarities up to 70% and the accuracy was
not calculated via strict cross-validation tests.

Wang et al. [4] applied support vector machines (SVMs)
with RBF kernels and artificial neural networks (ANNs) to
predict DNA and RNA binding residues. Sequence fea-
tures such as side chain pKa value, the Kyte-Dolittle hydro-
phobicity scale and molecular mass were exploited. They
reported a specificity of 69.9% and a sensitivity of 66.3%
with five-fold cross-validation on residue-level. By includ-
ing additional features such as accessible surface area and
conservation score [5], they improved their previous
results. Using SVMs, an AUC of 0.75 (65.8% sensitivity,
75.7% specificity) on a data set of 107 non-redundant
protein chains was achieved. Down-sampling was applied
to balance positive and negative samples of the data set,
which resulted in better performance in comparison to
the unbalanced case.

Kim et al. [6] studied the propensities of individual amino
acids and amino acid pairs in RNA-protein interfaces.
They reported 50% sensitivity and 57% specificity for a
method that combined averaged singlet and doublet pro-
pensities.

A recent predictor by Terribilini et al. [2,7] utilized a Naive
Bayes classifier to predict the residues involved in RNA-
protein interaction based on amino acid propensities. On
a larger data set, with lower sequence similarity than
Jeong's [1], a correlation coefficient of 0.35 was achieved
(specificity: 51%, sensitivity: 38%). Surprisingly, addi-
tional information such as secondary structure, relative
accessible surface area, sequence entropy, hydrophobicity
or electrostatic potential was not found to improve the
prediction accuracy. In a comparison of Terribilini's and
Jeong's methods, both predictors achieved very similar
accuracies on Jeong's data set.

Kumar et al. [8], using a SVM with a second order polyno-
mial kernel and PSI-BLAST [9] profiles as input features,

achieved an MCC of 0.45 (specificity: 89.6%, sensitivity:
53.0%) on Jeong's data set [1] (86 protein chains). On a
larger, more recent data set (107 protein chains) with
lower sequence similarity (25%) by Wang et al. [4], a sig-
nificantly lower MCC of 0.32 was reached due to the over-
estimation on a redundant data set.

The focus of a recent paper by Shazman et al. [10] was on
the differentiation of non-binding and RNA-binding pro-
teins based on electrostatic properties - not on the predic-
tion of binding residues per se. However, they also
measured the overlap between positively charged surface
patches and the actual binding sites and found dramatic
variations ranging from 0% to 100%, indicating that pos-
itive charge alone is a comparitvely weak predictor for
binding residues.

A very high prediction accuracy, with a MCC of 0.50, has
been reported very recently by Spriggs et al. [11] on a data
set comprised of 81 RNA-binding proteins (RNAset81),
derived from Kumar's data set [8]. It is however to note
that this data set is small and only weakly redundancy
reduced (up to 70% sequence similarity). A SVM with an
RBF kernel was utilized to analyze input features such as
sequence profiles, interface propensities, accessibility and
hydrophobicity. On an independent test set the predictor
achieved a MCC of 0.41.

With the constantly increasing number of known 3D
structures of RNA binding proteins, it is possible to use
more and more structural features to leverage accurate
prediction. Recently, Chen and Lim [12] investigated
physicochemical and geometrical properties, together
with conservation score obtained from sequence align-
ments, to predict RNA-binding sites. However, it is diffi-
cult to compare this approach with previous methods
based on prediction performance.

In this study, we systematically study sequential, graph-
topological and spatial features with respect to their pre-
dictive power for the identification of residues involved in
RNA-protein interaction. We have implemented two
methods based on Naïve Bayes classifiers and Support
Vector Machines, using residue PSI-BLAST profiles and
sequential neighbors as input to predict RNA binding
sites. The accuracy of these classifiers serves as a baseline
that reflects the performance of sequence-based methods.

Secondly, we study different graph-theoretic properties
that may be associated with interface residues, where pro-
tein structures are represented as graphs derived from res-
idue contacts. Features such as closeness centrality and
betweenness centrality were found to be useful in predict-
ing enzyme active sites and ligand-binding sites [13],
identifying critical residues for protein function [14] and
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analyzing protein-protein interactions [15,16]. However,
it is not known yet what types of graph-theoretic features
are correlated with protein-RNA interaction and therefore
contributing to the prediction.

By carefully examining seven topological features, we
found betweenness centrality to be the most predictive
feature, which can be used to enhance prediction accu-
racy. Instead of using sequential neighbors to encode the
input feature vector as in sequence-based methods, we uti-
lize structural information by taking into account network
topological or spatial neighbors to improve the prediction
performance. The prediction accuracy of our method has
been evaluated on two large, non-redundant data sets and
a peak AUC of 0.83 was reached (five-fold cross-valida-
tion). We furthermore created a new independent test set
(RB36), where our method achieved an AUC of 0.77.

Results and Discussion
We have investigated sequential, graph-theoretic and spa-
tial features that are predictive for binding residues in
RNA-protein interfaces. In particular, we were interested
in estimating the impact of structural information on the
prediction accuracy in comparison to a purely sequence
based approach.

Predictive power of amino acid indices
As a first step, we measured the predictive power for bind-
ing residues of all amino acid indices, available in the
AAIndex database [17]. For each residue in a protein chain
the corresponding value within an AAIndex scale was
selected. The predictive power of a scale was then calcu-
lated as the Area under the ROC curve (AUC) [18] over all
residues within the RB144 data set, which contains 144
Protein-RNA complexes with annotated binding residues.
Note that no classifier and therefore no cross-validation
scheme is required to compute the AUC estimates at this
stage. The ten scales with the highest AUCs are listed in
Table 1. Residues involved in RNA-protein interfaces are
known to show a preference for hydrophobic amino acids

[2,6], which is reflected by the results in Table 1.
COWR900101, JURD980101 and ROSM880102 are
essentially hydrophobicity scales. Similarly, scales that
discriminate between inside and outside residues
(RADA880107, CHOC760103, OLSK800101) and scales
related to the partition coefficient (GUYH850105,
GARJ730101), which is a measure for lipophilicity [19],
are most predictive for interface residues.

Scale TANS770106 is derived from a one-dimensional
short-range interaction model for specific sequence copol-
ymers of amino acids and is related to protein conforma-
tion [20]. It may appear as a high ranking scale due to a
bias of the sample set toward aminoacyl-tRNA syn-
thetases, many of which are allosteric in nature.

The highest ranking scale GUOD860101 [21] describes
the retention coefficient (a coefficient related to the parti-
tion coefficient) for Peptide Nucleic Acids (PNAs), which
are synthetic biopolymers chemically similar to DNA and
RNA.

Although Table 1 does not reveal novel characteristics of
interface residues, it establishes a base line for the predic-
tion accuracy of classifiers based on single residue fea-
tures. Previous work has shown that taking the
neighborhood of an interface residue into account signif-
icantly improves the accuracy for classifying a residue as
interacting or non-interacting [2]. Consequently we stud-
ied three different types of neighborhood patches
(sequential, topological and spatial, see Figure 1) to incor-
porate neighboring residues and evaluated the prediction
performance in dependence of the patch size and patch
type.

Predictive power of residue patches
Sequential patches (or sequence sliding windows) of size n
for sequential data are constructed by extracting the n res-
idues nearest (sequential distance) to the residue (center
residue), which is to be classified. For topological and spa-

Table 1: Predictive power of amino acid indices.

AUC ID Description

0.646 GUOD860101 Retention coefficient at pH 2
0.644 GUYH850105 Apparent partition energies calculated from Chothia index
0.643 RADA880107 Energy transfer from out to in
0.643 CHOC760103 Proportion of residues 95% buried
0.642 OLSK800101 Average internal preferences
0.640 COWR900101 Hydrophobicity index, 3.0 pH
0.639 JURD980101 Modified Kyte-Doolittle hydrophobicity scale
0.639 ROSM880102 Side chain hydropathy, corrected for solvation
0.638 TANS770106 Normalized frequency of chain reversal D
0.637 GARJ730101 Partition coefficient

Table of the ten amino acid indices with the highest predictive power (AUC) on the RB144 data set.
Page 3 of 14
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:341 http://www.biomedcentral.com/1471-2105/10/341
tial features the definition of a patch of neighboring resi-
dues requires more consideration. We define a spatial
patch of size n as the set of the n residues with the smallest
euclidean distance between their C-atoms and the C-
atom of the residue in the center of the patch. This
approach was also used by Tjong and Zhou to predict pro-
tein-DNA binding sites [22]. A topological patch is similarly
defined by the n vertices with the smallest geodesic dis-
tances (shortest paths) to the center vertex. The underlying
graph is thereby derived from a map of residue contacts
(see Material and Methods and Figure 2).

To construct a feature vector with ordered elements from
a spatial or topological patch, the features associated with
the residues or nodes of the patch were sorted according

to distance. For a topological patch the geodesic distances,
and for a spatial patch the euclidean distances to the patch
center were employed. In the case of equal distances, the
sequential distance within the primary sequence was used
as an additional criterion.

To achieve optimal classification accuracy and to identify
the typical size of the neighborhood that contributes to
the binding propensity of an interface residue, we meas-
ured the prediction accuracy for the different patch types
for patch sizes varying from 1 to 30 residues.

Figure 3 shows the five-fold cross-validation prediction
accuracy (AUC) of a Naive Bayes classifier over increasing
patch sizes for the three patch types on the RB144 data set.
We chose a Naive Bayes classifier for this step of the study,
since the method is fast, has no control parameters that
require optimization, and has shown good performance
for this classification problem [2,7]. Similarly, we chose
profile information as input, which Jeong et al. [1] has
exploited with good success. In all the three types of
patches, each residue was encoded by its PSI-Blast profile,
resulting in a feature vector with 21 times the patch size
elements. The performance curve of the sequential patch
in Figure 3 shows a peak AUC for a patch size of 11 resi-
dues and then declines quickly due to border effects and
the inclusion of more and more spatially unrelated resi-
dues into the patch. While the size is critical for the
sequential patch, the performance of the topological and
the spatial patch is clearly less sensitive to larger patch
sizes. Furthermore is the maximum AUC of the topologi-
cal and the spatial patch higher than that of the sequential
patch. Both reach a plateau for a patch size of roughly 19
residues, with the spatial patch achieving a top AUC of
0.79. Naive Bayes classifiers assume statistical independ-
ence of their input features. It is known however that there
is a bias in the types of amino acids surrounding an inter-
face residue [2]. Consequently, more advanced machine
learning methods, with less strict independence assump-
tions, such as SVMs can be expected to achieve higher pre-
diction accuracies. To validate this expectation, we trained
SVMs with RBF-kernels for the three patch types, utilizing
the optimal patch sizes determined above.

Table 2 compares the achieved prediction accuracies of
the Naive Bayes classifiers and the SVMs with respect to
patch type. All results are five-fold cross-validated on
chain level for the RB144 data set. C-value (1.0) and -fac-
tor (0.01) for the SVM were optimized on a subset of the
RB144 data set. Since the data set is heavily unbalanced,
the cost factor (sample weights) for the classifiers was set
to 5.7 in accordance to the proportion of binding and
non-binding residues.

Visualization of patch typesFigure 1
Visualization of patch types. Cartoon of a sequential 
(top), topological (center) and spatial (bottom) patch of size 
five.
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The results confirm that the SVMs significantly (p < 0.05)
outperform the Naive Bayes approach. Furthermore, the
spatial patch performed generally better than the topolog-
ical patch, which performed better than the sequential
patch. However, the differences in prediction accuracy
were small, which can be explained by the fact that there
is a considerable overlap of residues between the different
patch types. For instance, in the case of the topological
and spatial patch 80% of the patch residues overlap.

The highest AUC of 0.80 (Sensitivity 80%, Specificity
65%) was achieved by a SVM with a spatial patch. While
the absolute improvements in AUC in relation to the
Naive Bayes approach are small, the MCC is increased by
approximately 10%. However, taking into account that

the SVM is several orders of magnitude slower to train and
test, the Naive Bayes approach is a valid alternative for
large scale data analysis.

Predictive power of graph-theoretical and geometrical 
features
Here, we aimed to identify features besides the profile that
have high predictive power for interface residues, with the
final goal to improve performance by combining highly
predictive features. For this purpose we compared the pre-
diction accuracy of the best amino acid propensity scale,
the retention coefficient (RC) (see Table 1), with struc-
tural and topological features, such as accessible surface
area (ASA) and betweenness centrality (BC).

Contact graph and tertiary structure of 1R3E:AFigure 2
Contact graph and tertiary structure of 1R3E:A. Contact graph and tertiary structure of 1R3E:A. Binding residues are 
marked in yellow within the graph and the structure. RNA is displayed as cartoon in orange. Graph layout according to the 
Kamada-Kawai algorithm [33] and generated by the JUNG library. Node size proportional to averaged betweenness centrality 
(spatial patch with size 19). Note that edge lengths and node positions are not related to the spatial location of residues in the 
3D structure.
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The results presented in Figure 3 indicate a higher per-
formance for features that consider the neighborhood of
the residue to classify. In addition to feature values for
individual residues we therefore also calculated averaged
feature values over patches of residues. Note that in both
cases only a single feature value for the residue of interest
is computed. Consequently, the predictive power (AUC)
of a feature could be calculated without involvement of a
classifier and time-consuming cross-validation tests. Table
3 lists the prediction performance (AUC) of the features
evaluated on the RB144 data set. Taking the peak values
from Figure 3, we chose a patch size of 11 residues for
sequential patches and a size of 19 for topological or spa-

tial patches. Patch types and sizes are annotated in the
related table columns. A patch size of one indicates the
evaluation of a feature for the center residue only (no
patch is used and no average is calculated).

While the optimal patch sizes identified in Figure 3 are
likely to be a reasonable choice, they are not necessarily
optimal for features other than PSI-Blast profiles. How-
ever, to allow for a stringent comparison of different fea-
tures, we limited our study to these two patch sizes and
did not optimize the patch sizes individually for all the
features explored.

Note that topological features, such as betweenness cen-
trality (BC) for instance, are calculated based on the entire
contact map of a protein chain. If a patch is used, the fea-
ture value for the center residue is computed as the aver-
age over all BC values of the patch residues. A detailed
description of the evaluated features is provided in the
Material and Methods section.

The results in Table 3 show that features averaged over
patches generally achieve AUCs higher than or compara-
ble to features for individual residues (patch size one).
The only exceptions are the accessible surface area (ASA)
and the relative accessible surface area (rASA), which both
show slightly better performance for individual residues.

Performance comparison patch types and sizesFigure 3
Performance comparison patch types and sizes. Prediction accuracy (AUC) on the RB144 data set for three patch types 
and varying patch sizes. Prediction by a Naive Bayes classifier with PSI-Blast profiles as residue features.
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Table 2: Prediction performance for different patch types.

Classifier Patch type AUC 95 MCC SN[%] SP[%]

NB sequential 0.77 0.016 0.30 73.6 66.8
NB topological 0.78 0.016 0.31 75.4 65.7
NB spatial 0.79 0.016 0.32 75.4 67.1

SVM sequential 0.79 0.021 0.34 78.4 65.8
SVM topological 0.80 0.021 0.34 79.9 64.4
SVM spatial 0.80 0.021 0.36 80.0 65.6

Prediction performance for different patch types (sequential, 
topological, spatial) and classifiers (NB, SVM) on RB144 data set, 
tested by five-fold cross-validation. C-value for SVM was 1.0 and -
value of RBF-kernel was 0.01. Cost factor was assigned as 5.7 to 
compensate for the unbalanced class distribution.
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We also compared the performance of averaged retention
coefficients (saRC, taRC, aRC) for the different patch types
and the results show that spatial and topological patches
are superior (AUC = 0.69) to the same feature calculated
over the sequential patch (AUC = 0.66).

The solvent accessible surface area (ASA) measures
whether a residue is located on protein surface and has
been proven to be highly correlated with interface resi-
dues [23]. We have examined four different versions of
accessible surface area: ASA and rASA for individual resi-
dues (patch size equals one) or averaged over a spatial
patch (arASA, aASA). We found that the utility of the
absolute ASA for individual residues yields the best result
(AUC = 0.70).

Table 3 compares a number of graph theoretic properties.
The topological feature with the highest predictive power
was the averaged betweenness centrality (aBC) with an
AUC of 0.71. Betweenness centrality reflects how heavily
a residue is involved in the communication of residues
(shortest paths), demonstrating its central role in the net-
work. Interestingly the predictive power of betweenness
centrality is very low for individual residues (BC) but is
highly predictive when averaged over a patch of neighbor-
ing residues. This may suggest that a number of residues
with higher betweenness centralities form a community
to play a significant role in protein-RNA interaction. Fig-
ure 4 shows the contact graph of tRNA Pseudouridine
Synthase (PDB ID: 1R3E). Previous work [15] suggested

that betweenness centrality is associated with hot spot res-
idues in protein-protein interfaces. Similarly, our study
strongly suggests that this feature may also reflect the
organization of residues located at protein-RNA inter-
faces.

Because a sole feature cannot accurately predict interface
residues, combining features with high predictive power is
a standard method to improve the overall accuracy. How-
ever, such a combination is only successful if the features
to combine are not redundant. All graph-theoretic fea-
tures in Table 3 are essentially centrality measures, which
are typically highly correlated. We therefore picked only
averaged betweenness centrality (aBC) and calculated the
correlation coefficients between aBC and the two other
top ranking features, such as ASA and aRC. The highest
correlation coefficient of 0.33 was identified between ASA
and aRC. ASA and aBC showed the lowest correlation
(0.04), and the correlation coefficient for aBC and aRC
was 0.17. The correlation between the three features was
regarded as sufficiently low to justify their combination.

Combination of highly predictive features
We studied the predictive power of features by averaging
over patches of residues, which may not fully reflect their
power, but is an effective way for feature selection. To gain
an increase in prediction accuracy, we used machine
learning methods such as Naive Bayes classifiers and Sup-
port Vector Machines to combine the feature values of the
residues within a patch.

Table 3: Predictive power of features on RB144 data set.

AUC Type Size Feature

0.65 - 1 Retention coefficient (RC)
0.66 sequential 11 Averaged retention coefficient (saRC)
0.69 topological 19 Averaged retention coefficient (taRC)
0.69 spatial 19 Averaged retention coefficient (aRC)
0.70 - 1 Accessible surface area (ASA)
0.69 spatial 19 Averaged Accessible surface area (aASA)
0.69 - 1 Relative accessible surface area (rASA)
0.68 spatial 19 Averaged Relative accessible surface area (arASA)
0.66 spatial 19 Density (D)
0.56 - 1 Betweenness centrality (BC)
0.71 topological 19 Averaged betweenness centrality (aBC)
0.69 - 1 Status (S)
0.69 topological 19 Averaged Status (aS)
0.62 - 1 Cluster coefficient (CC)
0.64 topological 19 Averaged cluster coefficient (aCC)
0.64 - 1 Degree (G)
0.64 topological 19 Averaged degree (aG)
0.63 - 1 Eccentricity (E)
0.64 topological 19 Averaged eccentricity (aE)
0.62 - 1 Closeness (C)
0.64 topological 19 Averaged closeness (aC)

Predictive power (AUC) of features on RB144 data set. Patch type and patch size are listed in columns two and three. A missing patch type and 
patch size of one indicate features evaluated for individual residues (no patch used).
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This is achieved by encoding a patch of residues as a fea-
ture vector, where each residue within the patch is repre-
sented by the corresponding feature value or values. For
instance, a patch of size 11 with PSI-BLAST profile and
retention coefficient as features is encoded as a vector con-
taining 11 × (21 + 1) = 242 elements. As described in Sec-
tion Methods, the residues (and consequently the features
within the vector) are sorted according to their distance to
the center residue.

We have observed changes in prediction accuracy when
including more and more information, starting with
information that can be derived from the primary

sequence only, over topological information, up to struc-
tural information. To this purpose we assessed the predic-
tion accuracy of different combinations of the PSI-BLAST
profile feature with the three best performing features
(ASA, aRC, aBC), identified in the previous section. Table
4 shows the results of this comparison, using a Naive
Bayes classifier (NB) and Support Vector Machine (SVM)
with an RBF-Kernel (C-value = 1.0, -value = 0.01, cost fac-
tor = 5.7). From Table 4 three trends become obvious.
Firstly, as expected, the more information is included the
higher is the prediction accuracy. Secondly, the Support
Vector Machine consistently outperforms (higher AUC)
the Naive Bayes classifier (significant on the 0.05 level).

Binding residue prediction for 1R3E:AFigure 4
Binding residue prediction for 1R3E:A. Top row shows the front and bottom row shows the back of 1R3E:A (tRNA 
pseudouridine synthase. Left column: Protein structure and true binding site (yellow). Center column: Predicted binding site 
(yellow) by the Support Vector Machine (all features). Right column: Residue classification of 1R3E:A by the Support Vector 
Machine (all features), MCC 0.51, AUC 0.81, SN 71%, SP 90%. True positives are in yellow, true negatives are in gray, false pos-
itives are in blue and false negatives are in red. Diagrams are genereated with JMol http://jmol.sourceforge.net/.
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And thirdly, by combining information from different
sources, higher prediction accuracy can be obtained.

The maximal AUC of 0.83 was achieved by a SVM, exploit-
ing PSI-BLAST profiles, ASA, BC and RC as input features
(Figure 4 shows an example prediction). This is a signifi-
cantly (p < 0.05) higher accuracy than the best AUC of
0.80, accomplished by using profile information only (see
last row of Table 2). Figure 5 displays the ROC curves for
these two models. All other performance measures also
show significant improvement: MCC increased from 0.36
to 0.39, sensitivity from 80.0% to 82.0%, and specificity
raised from 65.6% to 66.8%.

There is no statistically significant difference in AUC
between classifiers that utilize profile information only,
and classifiers that take profiles and the retention coeffi-
cient as input - though the latter achieve marginally higher
AUCs. This is explained by the fact that the profile already
describes the amino acid propensity of interface residues
and the additional retention coefficient, therefore, con-
tributes little. We also evaluated the prediction perform-
ance of other classifiers such as KNN, C4.5, linear SVM
and polynomial SVM but found the SVM with the RBF-
Kernel to perform best (data not shown). In addition, we
studied methods to balance the sample set by removal of
redundant samples, down-sampling or both methods
combined. But while the training time could be reduced,
the resulting prediction accuracies were clearly inferior
(data not shown).

Comparison with other methods
The RB144 data set is larger and more diverse in content,
and the prediction accuracies are therefore typically lower
than those for smaller data sets with higher sequence sim-
ilarity that are utilized in most other studies. To compare
our results with previous evaluations we measured the
performance of our classifier on the RB106 data set, which
is almost identical to the RB109 data set used by Terri-
bilini et al. [2,7] and Cheng et al. [24], and similar in size

and sequence similarity to a data set consisting of 107
chains used by Kumar et al. [8] and other authors.

We furthermore submitted the sequences of our inde-
pendent RB36 data set to the PPrint prediction server,
developed by Kumar et al. [8]. An evaluation of the pre-
diction performance of the RNABindR server [7] on the
RB36 data set was omitted, since RNABindR matches a
query sequence against a database of all known structures
(including RB36), resulting in next to perfect predictions
for known sequences.

Table 5 shows the prediction performance of our classifier
with different inputs on two data sets and the results
reported by other authors on similar data sets. Terribilini
et al. [2,7] achieved a MCC of 0.35, utilizing a Naive Bayes
classifier with amino acid frequencies as input. And
Kumar et al. [8] reported a MCC of 0.28 (five-fold cross-
validated), with an SVM and PSI-BLAST profiles as input
on a dataset of 107 sequences.

Using profile information over a sequential patch on
RB106 our SVM based classifier achieves a MCC of 0.36
(AUC = 0.81), which may be comparable with the
reported MCC of 0.35 [2]. However, their value was opti-
mized by tuning a threshold for classifying RNA binding
residues. Accordingly, the specificity and sensitivity were
51% and 38%. In contrast, our simulations obtained the
specificity 76% and the sensitivity 70%, which are consid-
erably better than the above reported results.

In comparison to Kumar's result our performance esti-
mates are clearly higher, which we attribute to differences
in data sets and a comprehensive optimization of patch
size and classifier parameters. When all features (Pro-
file+ASA+aBC+aRC) are exploited and a spatial patch of
size 19 is used, the prediction accuracy of our SVM based
classifier increases to a MCC of 0.43 (AUC = 0.84).

Table 4: Predictive power of combined features on RB144 data set.

AUC MCC SN[%] SP[%] Classifier Patch type Features

0.77 0.30 73.8 67.1 NB sequential Profile+aRC
0.78 0.33 84.6 54.8 NB topological Profile+aRC+aBC
0.79 0.32 76.9 65.7 NB spatial Profile+ASA
0.79 0.34 84.3 56.2 NB spatial Profile+ASA+aBC+aRC

0.79 0.34 78.4 66.0 SVM sequential Profile+aRC
0.81 0.36 81.1 65.1 SVM topological Profile+aRC+aBC
0.82 0.38 81.1 66.7 SVM spatial Profile+ASA
0.83 0.39 82.0 66.8 SVM spatial Profile+ASA+aBC+aRC

Predictive power of combined features on RB144 data set using five-fold cross-validation tests. C-value for SVM was 1.0 and -value of RBF-kernel 
was 0.01. Cost factor was 5.7.
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The prediction results of the PPrint server [8] on the RB36
data set highlight how difficult the comparison of classi-
fier performances is. PPrint achieves an MCC of 0.34,
which is much higher than our MCC of 0.25, but both
classifiers are of very similar architecture (SVM, profiles as
input). The MCC however represents only a single work-
ing point on the ROC curve and the AUC (a more robust

measure of prediction performance) of our classifier is
considerably higher (0.74) than the AUC of 0.67 achieved
by PPrint. PPrint allows the user to define a threshold to
shift the working point, e.g. to balance sensitivity and spe-
cificity. We noted however that the classifier showed very
high specificity despite the fact that we used the default
setting (-0.2), which was reported to balance sensitivity

Comparison of classifiers with different input featuresFigure 5
Comparison of classifiers with different input features. ROC curves for SVM classifiers with profile and with all input 
features on the RB144 data set.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

 

 

Profile
Profile+ASA+BC+RC

Table 5: Predictor comparison with other authors.

AUC MCC SN[%] SP[%] Classifier Data set Ref. Features

0.79 0.34 68 75 NB RB106 - Profile
0.79 0.34 68 75 NB RB106 - Profile+aRC
0.80 0.38 58 85 NB RB106 - Profile+ASA+aBC+aRC

0.81 0.36 70 76 SVM RB106 - Profile
0.81 0.37 70 77 SVM RB106 - Profile+aRC
0.84 0.43 71 81 SVM RB106 - Profile+ASA+aBC+aRC

0.74 0.25 52 82 SVM RB36 - Profile
0.75 0.27 54 83 SVM RB36 - Profile+aRC
0.77 0.30 52 87 SVM RB36 - Profile+ASA+aBC+aRC

0.67 0.34 54 95 SVM RB36 PPrint [8] Profile
0.86 0.50 56 93 SVM RNAset81 [11] Profile+IP+pA+H

- 0.28 66 74 SVM 107 [8] Profile
- 0.35 - - NB RB109 [2] Amino Acid

Comparison with other authors for data sets similar to RB109. Sequential patch for Profile and Profile+RC, spatial patch for Profile+ASA+BC+RC.
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and specificity [8]. To interpret the discrepancy in per-
formance, it furthermore has to be taken into account that
the RB36 data set is redundancy reduced against the train-
ing set of our classifier, which is not the case for the
sequence set utilized by PPrint, possibly causing an
advantageous bias for PPrint in this comparison.

The second highest prediction performance with an MCC
of 0.5 has been reported by Spriggs et al. [11] using a SVM
with an RBF kernel and only sequence features as inputs
such as sequence profiles, interface propensities (IP), pre-
dicted accessibility (pA) and hydrophobicity (H). The cor-
responding AUC of 0.86 is even higher than the best AUC
of 0.84 our classifier achieves, despite the fact that we
exploit structural information in addition to sequence
data and using an identical classifier architecture. The dis-
crepancy in performance can be traced back to the data the
classifier is evaluated on. The RNAset81 utilized by
Spriggs et al. is smaller and only weekly redundancy
reduced (up to 70% sequence similarity) while the RB106
data set used to train our classifier is larger and strongly
redundancy reduced, with no more than 30% sequence
similarity.

The effect of redundancy reduction (and choice of data
set) on prediction accuracy is documented by Cheng et al.
[24]. They compared the performance of their classifier on
three data sets (RBP86, RBP109, RBP107) with different
degrees of redundancy reduction, confirming that the pre-
diction accuracy increases with the degree of sequence
similarity.

Recently, Cheng et al. [24] introduced smoothed
sequence profiles to take the dependency between neigh-
boring residues into account and reported large improve-
ment. Smoothed profiles adopted a simple approach to
obtain their values by averaging the normal profile values
in a certain window. We applied this approach to our SVM
and Naïve Bayes classifiers. However, in both cases, we
did not observe improvements with respect to prediction
accuracy.

The highest prediction performance of our classifier with
a MCC of 0.30 and an AUC of 0.77 on the RB36 data set
was achieved, using a SVM and all features (Pro-
file+ASA+aBC+aRC). It is however to note that the
improvement in prediction accuracy by adding topologi-
cal or structural features to the purely sequence based pro-
file information is comparatively small (AUC increases
from 0.74 to 0.77).

Conclusion
Residues that participate in RNA-protein interfaces show
different characteristics, which can be derived from
sequence, structure, graph-topology, and physicochemi-

cal properties. Previous work studied different residue
properties in protein-RNA interfaces, such as the amino
acid doublet propensity [6], electrostatics, conservation
and surface cleft arrangement [12], as well as atomic pack-
ing patterns [25]. In addition, many authors used
machine learning methods to predict protein RNA-bind-
ing sites directly from sequences and their performance
has been strictly examined on large data sets with cross-
validation or on independent data sets. Aggregation of
these types of features with already developed sequence-
based methods will gain higher prediction performance.

In this study, we particularly examined the graph-theo-
retic properties of residue contact maps derived from pro-
tein structures and found a number of features, such as
betweenness centrality and status, which show higher or
compatible predictive power to already known structural
features such as the ASA. Taking them into account,
sequence-based methods can improve prediction accu-
racy, and the highest AUC of 0.83 (MCC = 0.39) was
achieved by a Support Vector Machine with an RBF-Ker-
nel, using a spatial patch of size 19, and profiles, accessi-
ble surface area, betweenness-centrality and retention
coefficient as input. The blind test, deemed as the most
strict test, using newly solved protein-RNA complexes to
test the prediction performance gives an AUC of 0.77
(MCC = 0.30) on the RB36 data set.

We also compared the prediction performance of Naive
Bayes classifiers and Support Vector Machines and found
that the latter generally improve accuracies (AUC) by
about 5%. However, the Naïve Bayes method requires less
computing time and therefore remains an attractive
choice for large scale data analysis. We implemented a
web application (PRIP) to predict binding residues in Pro-
tein-RNA interfaces from sequence information http://
www.qfab.org/PRIP. The data sets we generated and uti-
lized for our experiments can be downloaded from the
same web page.

RNA-protein recognition is known to be a surprisingly
complicated and diverse process, which has been investi-
gated by different experimental techniques and theoreti-
cal methods. Those studies provide a variety of
information on different aspects, useful to build up a sys-
temic description of this important protein function. In
this study, one one hand, we exploit different resources to
improve the prediction accuracy. On the other hand, we
employ network theory to describe the collective proper-
ties of interface residues, which may more accurately
reflect the nature of binding process as different interac-
tions in the interfaces are largely responsible for binding
affinity and specificity. Finding more accurate interpreta-
tion of those interactions is crucial for this problem,
which forms our future research.
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Methods
Data sets
We downloaded the RB147 and the RB109 data sets cre-
ated by Terribilini et al. [2,7] from the RNABindR web
server at http://bindr.gdcb.iastate.edu/RNABindR. RB147
is a redundancy reduced set (sequence similarity smaller
than 30%), composed of 147 RNA-binding protein chains
extracted from the PDB. A distance cutoff of 5 Å was used
to identify binding residues. Note that while RB147 is the
largest data set currently available it is still significantly
biased toward ribosomal proteins (77) and aminoacyl-
tRNA synthetases (19). All chains shorter than 40 residues
were removed to allow the calculation of spatial and top-
ological patches of reasonable sizes. The new data set
RB144, consists of 144 proteins, all solved before 2006,
with 4304 binding and 27932 non-binding residues.

RB109 is a smaller set of 109 RNA-binding protein chains
extracted from the PDB in 2004, which we used for com-
parison with other authors. ENTANGLE [26] was used to
identify interface residues. The data set is redundancy
reduced, with a sequence similarity threshold of 30%.
There is an overlap of 66 chains between RB109 and
RB147. For some chains of the RB109 data set short seg-
ments of the sequences in RB109 were lacking corre-
sponding structural information in the related PDB file. In
these cases, the sequence contained in the PDB file was
utilized. Similarly to RB144, chains shorter than 40 resi-
dues were removed, resulting in a new data set RB106,
with 106 chains, and 3543 binding and 20264 non-bind-
ing residues. Finally, we created a new, independent test
set RB36 by extracting all structures of Protein-RNA com-
plexes from the PDB that were added after January 2006.
We filtered for structures with a resolution better than 3.5
Å and removed all chains shorter than 40 residues. We
then performed a redundancy reduction to ensure that
none of the chains showed a sequence similarity of more
than 30% within the data set and to the RB144 data set. A
distance cutoff of 5 Å was used to annotate interface resi-
dues.

Training and testing
For training and testing a cross-validation and feature
evaluation framework in Java (1.6.0) was implemented
that utilized the Naive Bayes and the SVM classes of the
WEKA [27] library to perform predictions. A logistic
model was fitted to the output of the SVM (WEKA option
"-M") to estimate classification probabilities required to
calculate the AUC. Since the data sets are heavily unbal-
anced, training samples were weighted in accordance to
the overall ratio of positive and negative samples (cost fac-
tor 5.7). Cross-validation sets were generated by splitting
the data sets into sub sets with roughly equal numbers of
chains.

Significance and performance tests
To assess the discriminative power of a predictor the Area
under the ROC curve (AUC) [28], Matthews Correlation
Coefficient (MCC) [29], Sensitivity and Specificity were
calculated. MCC, Sensitivity (SN) and Specificity (SP) are
defined as follows [29]:

where tp is the number of true positives, fp is the number
of false positives, tn is the number of true negatives and fn
is the number of false negatives. An MCC of +1 indicates
perfect correlation between the observed and the pre-
dicted classes of the samples, a MCC of -1 perfect anti-cor-
relation, and a MCC of zero no correlation at all.

The Receiver Operating Characteristic (ROC) curve plots
the true positive rate over the false positive rate [30].
MCC, SN and SP represent a specific point on the ROC
curve and are only reported for comparison with other
work. In contrast, the AUC is a robust performance meas-
ure that is invariant to the prior probabilities of class
membership and does not depend on a specific working
point [28]. The AUC ranges from 0.5 (equivalent to ran-
dom choice) to 1.0 (perfect classification).

The variability in the calculated performance measures
over cross-validation runs were estimated by the 95% con-
fidence intervals, which are calculated as:

where m is the standard deviation of the performance
measure and n is the number of folds times the number of
repeats of the cross-validation experiment.

To assess the significance of differences in prediction accu-
racy (AUC) between models, paired two-tailed t-tests [31]
were performed:

where n is the number of runs. xi and yi are prediction

accuracies (AUCs) of the two models x and y for the i-th
input sample, and  and  are the means of xi and yi over
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all input samples. From the t-value a p-value can be
derived, and p < 0.05 indicated statistically significant dif-
ferences in the prediction performance.

Features

We compared various features with respect to their predic-
tive power for interface residues in RNA-protein binding

sites. In some cases averaged feature values (r) for resi-

dues were calculated as the mean value over the individ-
ual feature values f(ri) for the residues of a patch:

with f(ri) being the feature value for the i-th residue within
a patch of size n. In the following we describe only fea-
tures for individual residues, if not stated otherwise. Patch
bound versions of features were calculated as described
above.

Most topological features of contact graphs described in
this paper were computed utilizing the JUNG library
http://jung.sourceforge.net/. Contact graphs were derived
from the spatial coordinates of protein structures with a
cutoff distance of 8 Å between the C-atoms of the resi-
dues. We also evaluated other methods to generate con-
tact graphs based on the distance of side-chain or C-
atoms, but found no significant differences in the result-
ing prediction performances.

Sequence profiles encode evolutionary information about
amino acids and have successfully been employed for
binding site prediction before [8]. A sequence profile is
described by n vectors of length 20 that represent the log-
likelihood for different amino acids in a specific sequence
position, with n being the length of the sequence. Profiles
were generated by PSI-BLAST [9] with three iterations and
an expectation value of 0.001.

Amino acid indices express the propensity of amino acids
for specific physicochemical or structural environments.
They range from simply hydrophobicity indices to scales
derived from tertiary protein information. We down-
loaded 544 amino acid propensity scales from Release 9.1
of the AAIndex database [17] and evaluated their predic-
tive power for RNA-protein binding sites (see Section
Methods). The Accessible surface area (ASA) was calcu-
lated using the DSSP [32] software. It represents the resi-
due water exposed surface in Å2. The relative Accessible
surface area (rASA) is the ASA, normalized by the values
derived from the tripeptide extended conformation of the
chain.

Density describes the spatial compactness of a patch as
the averaged euclidean distance de(·,·) between the C-
atom of the center residue rc and the C-atoms of all other
patch residues ri. For a patch of size n the Density D(rc) is
computed as

The Degree G(v) of a vertex in a topological patch is the
number of edges that connect the vertex with its neighbor
vertices.

Betweenness centrality measures how frequently a vertex
is on the shortest path between all other vertex pairs
within the contact graph of a protein chain of length n.
Since the chains vary in length the normalized Between-
ness centrality BC(·) for a vertex v is calculated, which is
defined as

with V is the set of vertices, st is the number of shortest
paths from s to t, and st(v) is the number of shortest paths
from s to t that pass through vertex v.

The Status S(·) is the sum over all geodesic distances
dg(·,·) between the vertex of interest v and all other verti-
ces vi within the contact graph of a protein chain with n
residues:

The Eccentricity E(·) is the greatest geodesic distances
dg(·,·) between the vertex of interest v and any other ver-
tex vi within the contact graph of a protein chain:

Closeness C(·) is calculated as the mean geodesic dis-
tance dg(·,·) between the vertex of interest v and any
other vertex vi within the contact graph of a protein chain
of length n:

The Cluster coefficient CC(·) for a vertex v is the propor-
tion of edges between its direct neighbors divided by the
number of all possible edges between them. It is calcu-
lated as
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with k is the number of neighbors of vertex v and ne is the
number of edges between the neighbors.
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