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Abstract
Background: In the context of systems biology, few sparse approaches have been proposed so
far to integrate several data sets. It is however an important and fundamental issue that will be
widely encountered in post genomic studies, when simultaneously analyzing transcriptomics,
proteomics and metabolomics data using different platforms, so as to understand the mutual
interactions between the different data sets. In this high dimensional setting, variable selection is
crucial to give interpretable results. We focus on a sparse Partial Least Squares approach (sPLS) to
handle two-block data sets, where the relationship between the two types of variables is known to
be symmetric. Sparse PLS has been developed either for a regression or a canonical correlation
framework and includes a built-in procedure to select variables while integrating data. To illustrate
the canonical mode approach, we analyzed the NCI60 data sets, where two different platforms
(cDNA and Affymetrix chips) were used to study the transcriptome of sixty cancer cell lines.

Results: We compare the results obtained with two other sparse or related canonical correlation
approaches: CCA with Elastic Net penalization (CCA-EN) and Co-Inertia Analysis (CIA). The latter
does not include a built-in procedure for variable selection and requires a two-step analysis. We
stress the lack of statistical criteria to evaluate canonical correlation methods, which makes
biological interpretation absolutely necessary to compare the different gene selections. We also
propose comprehensive graphical representations of both samples and variables to facilitate the
interpretation of the results.

Conclusion: sPLS and CCA-EN selected highly relevant genes and complementary findings from
the two data sets, which enabled a detailed understanding of the molecular characteristics of
several groups of cell lines. These two approaches were found to bring similar results, although
they highlighted the same phenomenons with a different priority. They outperformed CIA that
tended to select redundant information.
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Background
In systems biology, it is particularly important to simulta-
neously analyze different types of data sets, specifically if
the different kind of biological variables are measured on
the same samples. Such an analysis enables a real under-
standing on the relationships between these different
types of variables, for example when analyzing transcrip-
tomics, proteomics or metabolomics data using different
platforms. Few approaches exists to deal with these high
throughput data sets. The application of linear multivari-
ate models such as Partial Least Squares regression (PLS,
[1]) and Canonical Correlation Analysis (CCA, [2]), are
often limited by the size of the data set (ill-posed prob-
lems, CCA), the noisy and the multicollinearity character-
istics of the data (CCA), but also the lack of
interpretability (PLS). However, these approaches still
remain extremely interesting for integrating data sets.
First, because they allow for the compression of the data
into 2 to 3 dimensions for a more powerful and global
view. And second, because their resulting components
and loading vectors capture dominant and latent proper-
ties of the studied process. They may hence provide a bet-
ter understanding of the underlying biological systems,
for example by revealing groups of samples that were pre-
viously unknown or uncertain. PLS is an algorithmic
approach that has often been criticized for its lack of the-
oretical justifications. Much work still needs to be done to
demonstrate all statistical properties of the PLS (see for
example [3,4] who recently addressed some theoretical
developments of the PLS). Nevertheless, this computa-
tional and exploratory approach is extremely popular
thanks to its efficiency.

Recent integrative biological studies applied Principal
Component Analysis, or PLS [5,6], but for a regression
framework, where prior biological knowledge indicates
which type of omic data is expected to explain the other
type (for example transcripts and metabolites). Here, we
specifically focus on a canonical correlation framework,
when there is either no assumption on the relationship
between the two sets of variables (exploratory approach),
or when a reciprocal relationship between the two sets is
expected (e.g. cross platform comparisons). Our interests
lie in integrating these two high dimensional data sets and
perform variable selection simultaneously. Some sparse
associated integrative approaches have recently been
developed to include a built-in selection procedure. They
adapt lasso penalty [7] or combine lasso and ridge penal-
ties (Elastic Net, [8]) for feature selection in integration
studies.

In this study, we propose to apply a sparse canonical
approach called "sparse PLS" (sPLS) for the integration of
high throughput data sets. Methodological aspects and
evaluation of sPLS in a regression framework were pre-

sented in [9]. This novel computational method provides
variable selection of two-block data sets in a one step pro-
cedure, while integrating variables of two types.

When applying canonical correlation-based methods,
most validation criteria used in a regression context are
not statistically meaningful. Instead, the biological rele-
vancy of the results should be evaluated during the valida-
tion process. In this context, we compare sparse PLS with
two other canonical approaches: penalized CCA adapted
with Elastic Net (CCA-EN [10]), which is a sparse method
that was applied to relate gene expression with gene copy
numbers in human gliomas, and Co-Inertia Analysis
(CIA, [11]) that was first developed for ecological data,
and then for canonical high-throughput biological studies
[12]. This latter approach does not include feature selec-
tion, which has to be performed in a two-step procedure.
This comparative study has two aims. First to better under-
stand the main differences between each of these
approaches and to identify which method would be
appropriate to answer the biological question, second to
highlight how each method is able to reveal the underly-
ing biological processes inherent to the data. This type of
comparative analysis renders biological interpretation
mandatory to strengthen the statistical hypothesis, espe-
cially when there is a lack of statistical criteria to assess the
validity of the results. We first recall some canonical cor-
relation-based methods among which the two sparse
methods, sPLS and CCA-EN will be compared with CIA
on the NCI60 cell lines data set. We propose to use appro-
priate graphical representations to discuss the results. The
different gene lists are assessed, first with some statistical
criteria, and then with a detailed biological interpretation.
Finally, we discuss the pros and cons of each approach
before concluding.

Canonical correlation-based methods
We focus on two-block data matrices denoted X(n × p)
and Y (n × q), where the p variables xj and q variables yk are
of two types and measured on the same samples or indi-
viduals n, for j = 1 ... p and k = 1 ... q. Prior biological
knowledge on these data allows us to settle into a canon-
ical framework, i.e. there exists a reciprocal relationship
between the X variables and the Y variables. In the case of
high throughput biological data, the large number of var-
iables may affect the exploratory method, due to numeri-
cal issues (as it is the case for example with CCA), or lack
of interpretability (PLS).

We next recall three types of multivariate methods
(CCA, PLS, CIA). For CCA and PLS, we describe the asso-
ciated sparse approaches that were proposed, either to
select variables from each set or to deal with the ill-
posed problem commonly encountered in high dimen-
sional data sets.
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CCA
Canonical Correlation Analysis [2] studies the relation-
ship between two sets of data. The CCA n-dimensional
score vectors (Xah, Ybh) come in pairs to solve the objective
function:

where the p- and q-dimensional vectors ah and bh are called

canonical factors, or loading vectors, and h is the CCA
chosen dimension. As cor(Xah, Ybh) = cov(Xah, Ybh)/

, the aim of CCA is to simultane-

ously maximize cov(Xah, Ybh) and minimize the variances

of Xah and Ybh. It is known that the CCA loadings are not

directly interpretable [13]. It is however very instructive to
interpret these components by calculating the correlation
between the original data set X and {a1, ..., aH} and simi-

larly between Y and {b1, ..., bH}, to project variables onto

correlation circles. Easier interpretable graphics are then
obtained, as shown in the R package cca [14].

In the p + q >> n framework, CCA suffers from high
dimensionality as it requires the computation of the
inverse of two covariance matrices XX' and YY ' that are
singular. This implies numerical difficulties, since the
canonical correlation coefficients are not uniquely
defined. One solution proposed by [15] was to ntroduce
l2 penalties in a ridge CCA (rCCA) on the covariance
matrices, so as to make them invertible. rCCA was recently
applied to genomic data [16], but was not adapted in our
study as it does not perform feature selection. We focused
instead of another variant called CCA with Elastic Net
penalization (see below).

PLS
Partial Least Squares regression [1] is based on the simul-
taneous decomposition of X and Y into latent variables
and associated loading vectors. The latent variables meth-
ods (e.g. PLS, Principal Component Regression) assume
that the studied system is driven by a small number of n-
dimensional vectors called latent variables. These latter
may correspond to some biological underlying phenome-
nons which are related to the study [17]. Like CCA, the
PLS latent variables are linear combinations of the varia-
bles, but the objective function differs as it is based on the
maximization of the covariance:

where Xh-1 is the residual (deflated) X matrix for each PLS
dimension h. We denote h and h the n-dimensional vec-
tors called "latent variables" which are associated to each

loading vector ah and bh. In contrary to CCA, the loading
vectors (ah, bh) are interpretable and can give information
about how the xj and yk variables combine to explain the
relationships between X and Y. Furthermore, the PLS
latent variables ( h, h) indicate the similarities or dissimi-
larities between the individuals, related to the loading vec-
tors.

Many PLS algorithms exist, not only for different shapes
of data (SIMPLS, [18], PLS1 and PLS2 [1], PLS-SVD [19])
but also for different aims (predictive, like PLS2, or mod-
elling, like PLS-mode A, see [10,20,21]). In this study we
especially focus on a modelling aim ("canonical mode")
between the two data sets, by deflating X and Y in a sym-
metric way (see Additional file 1).

CCA-EN
[10] proposed a sparse penalized variant of CCA using
Elastic Net [8,22] for a canonical framework. To do so, the
authors used the PLS-mode A formulation [20,21] to
introduce penalties. Note that Elastic Net is well adapted
to this particular context. It combines the advantages of
the ridge regression, that penalizes the covariance matri-
ces XX' and YY' which become non singular, and the lasso
[7] that allows variable selection, in a one step procedure.
However, when p + q is very large, the resolution of the
optimization problem requires intensive computations,
and [8,10] proposed instead to perform a univariate
thresholding, that leaves only the lasso estimates to com-
pute (see Additional file 1).

sparse PLS
[9] proposed a sparse PLS approach (sPLS) based on a
PLS-SVD variant, so as to penalize both loading vectors ah
and bh simultaneously.

For any matrix M (p × q) of rank r, the SVD of M is given
by:

M = AΔB',

where the columns of A (p × r) and B(q × r) are orthonor-
mal and contain the eigenvectors of MM' and M'M, Δ (r ×
r) is a diagonal matrix of the squared eigenvalues of MM'
or M'M. Now if M = X'Y, then the column vectors of A
(resp. B) correspond to the loading vectors of the PLS ah
(resp. bh). Sparsity can then be introduced by iteratively
penalizing ah and bh with a soft-thresholding penalization,
as [23] proposed for a sparse PCA using SVD computa-
tion. Both regression and canonical deflation modes were
proposed for sPLS [9]. In this paper, we will focus on the
canonical mode only (see Additional file 1 for more
details of the algorithm). The regression mode has already
been discussed in [9] with a thorough biological interpre-
tation of the results.

arg max ( , ), ... ,
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h h
h h h h

cor Xa Yb h H
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CIA
Co-Inertia analysis (CIA) was first introduced by [11] in
the context of ecological data, before being applied to
high throughput biological data by [12]. CIA is suitable
for a canonical framework, as it is adapted for a symmetric
analysis. It involves analyzing each data set separately
either with principal component analyses, or with corre-
spondence analyses, such that the covariance between the
two new sets of projected scores vectors (that maximize
either the projected variability or inertia) is maximal. This
results in two sets of axes, where the first pair of axes are
maximally co-variant, and are orthogonal to the next pair
[24]. CIA does not propose a built-in variable selection,
but we can perform instead a two-step procedure by order-
ing the weight vector (loadings) for each CIA dimension
and by selecting the top variables.

Differences between the approaches
These three canonical based approaches, CCA-EN, sPLS
and CIA profoundly differ in their construction, and
hence their aims. On the one hand, CCA-EN looks for
canonical variate pairs (Xah, Ybh), such that a penalized
version of the canonical correlation is maximized. This
explains why a non monotonic decreasing trend in the
canonical correlation can sometimes be obtained [10].
On the other hand, sPLS (canonical mode) and CIA aim
at maximizing the covariance between the scores vectors,
so that there is a strong symmetric relationship between
both sets. However, here CIA is based on the construction
of two Correspondence Analyses, whereas sPLS is based
on a PLS analysis.

Parameters tuning
In CCA-EN, the authors proposed to tune the penalty
parameters for each dimension, such that the canonical
correlation cor(Xah, Ybh) is maximized. In practice, they
showed that the correlation did not change much when
more variables were added in the selection. Therefore, an
appropriate way of tuning the parameters would be to
choose instead the degree of sparsity (i.e. the number of
variables to select), as previously proposed for sparse PCA
by [22,23]-see the elasticnet R package for example, and
hence to rely on the biologists needs. Thus, depending on
the aim of the study (focus on few genes or on groups of
genes such as whole pathways) and on the ability to per-
form follow-up studies, the size of the selection can be
adapted. When focusing on groups of genes (e.g. path-
ways, transcription factor targets, variables involved in the
same biological process), we believe that the selection
should be large enough to avoid missing specific func-
tions or annotations. The same strategy will be used for
sPLS (see also [9] where the issue of tuning sPLS parame-
ters is addressed). No other parameters than the number
of selected variables is needed in CIA either.

Outputs
Graphical representations are crucial to help interpreting
the results. We therefore propose to homogenize all out-
puts to enable their comparison.

Samples are represented with the scores or latent variable
vectors, in a superimposed manner, as proposed in the R
package ade4 [25], first to show how samples are clustered
based on their biological characteristics, and second to
measure if both data sets strongly agree according to the
applied approach. In these graphical representations, each
sample is indicated using an arrow. The start of the arrow
indicates the location of the sample in the X data set in
one plot, and the tip of the arrow the location of the sam-
ple in the Y data set in the other plot. Thus, short (long)
arrows indicate if both data sets strongly agree (disagree)
between the two data sets.

Variables are represented on correlation circles, as previ-
ously proposed by [14]. Correlations between the original
data sets and the score or latent variable vectors are com-
puted so that highly correlated variables cluster together in
the resulting graphics. Only the selected variables in each
dimension are represented. This type of graphic not only
allows for the identification of interactions between the two
types of variables, but also for identifying the relationship
between variable clusters and associated sample clusters.
Note that for large variable selections, the use of interactive
plotting, color codes or representations limited to user-
selected variables may be required to simplify the outputs.

Cross-platform study
Data sets and relevance for a canonical correlation analysis
We chose to compare the three canonical correlation-
based methods (CCA-EN, CIA and sPLS) for their ability
to highlight the relationships between two gene expres-
sion data sets both obtained on a panel of 60 cell lines
(NCI60) from the National Cancer Institute (NCI). This
panel consists of human tumor cell lines derived from
patients with leukaemia (LE), melanomas (ME) and can-
cers of ovarian (OV), breast (BR), prostate (PR), lung
(LU), renal (RE), colon (CO) and central nervous system
(CNS) origin. The NCI60 is used by the Developmental
Therapeutics Program (DTP) of the NCI to screen thou-
sands of chemical compounds for growth inhibition activ-
ity and it has been extensively characterized at the DNA,
mRNA, protein and functional levels. The data sets con-
sidered here have been generated using Affymetrix [26,27]
or spotted cDNA [28] platforms. These data sets are highly
relevant to an analysis in a canonical framework since 1)
there is some degree of overlap between the genes meas-
ured by the two platforms, but also a large degree of com-
plementarity through the screening of different gene sets
representing common pathways or biological functions
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[12] and 2) they play fully symmetric roles, as opposed to
a regression framework where one data set is explained by
the other. We assume that the data sets are correctly nor-
malized, as described below.

The Ross Data set
[28] used spotted cDNA microarrays containing 9,703
human cDNAs to profile each of the 60 cell line in the
NCI60 panel [28]. Here, we used a subset of 1,375 genes
that has been selected using both non-specific and specific
filters described in [29]. In particular, genes with more
than 15% of missing values were removed and the
remaining missing values were imputed by k-nearest
neighbours [12]. The pre-processed data set containing
log ratio values is available in [12].

The Staunton Data set
Hu6800 Affymetrix microarrays containing 7,129 probe
sets were used to screen each of the 60 cell lines in another
study [26,27]. Pre-processing steps are described in [27]
and [12]. They include 1) replacing average difference val-
ues less than 100 by an expression value of 100, 2) elimi-
nating genes whose expression was invariant across all 60
cell lines and 3) selecting the subset of genes displaying a
minimum change in expression across all 60 cell lines of
at least 500 average difference units. The final analyzed
data set contained the average difference values for 1,517
probe sets, and is available in [12].

Application of the three sparse canonical correlation-based methods
We applied CCA-EN, CIA and sPLS to the Ross (X) and
Staunton (Y) data sets. For each dimension h, h = 1 ... 3,
we selected 100 genes from each data set. The number of
dimensions was arbitrarily chosen, as when H ≥ 4, the
analysis of the results becomes difficult given the high
number of graphical outputs. Indeed, for higher dimen-
sions, the cell lines did not cluster by their tissue of origin,
which made their interpretation more difficult. The size of
the selection (100) was judged small enough to allow for
the identification of individual relevant genes and large
enough to reveal gene groups belonging to the same func-
tional category or pathway.

Results and Discussion
We apply the three canonical correlation-based
approaches to the NCI60 data set and assess the results in
two different ways. First we examine some statistical crite-
ria, then we provide a biological interpretation of the
results from each method, using graphical representations
along with database mining.

How to assess the results?
Canonical correlation-based methods are statistically dif-
ficult to assess. Firstly, because they do not fit into a regres-
sion/prediction framework, meaning that the prediction
error cannot be estimated using cross-validation to evalu-

ate the quality of the model. Secondly, because in many
two-block biological studies, the number of samples n is
very small compared to the number of variables p + q. This
makes any statistical criteria difficult to compute or esti-
mate. This is why graphical outputs are important to help
analyze the results (see for example [12,20]).

When working with biological data, a new way of assess-
ing the results should be to strongly rely on biological
interpretation. Indeed, our aim is to show that each
approach is applicable and to assess whether they answer
the biological question. We therefore propose to base
most of our comparative study on the biological interpre-
tation of the results by using appropriate graphical repre-
sentations of the samples and the selected variables.

Link between two-block data sets
Variance explained by each component
[20] proposed to estimate the variance explained in each
data set X and Y in relation to the "opposite" component
score or latent variables ( 1, ..., H) and ( 1, ..., H), where h =
Xah and h = Ybh in all approaches. The redundancy criterion
Rd, or part of explained variance, is computed as follows:

Similarly, one can compute the variance explained in each
component in relation with its associated data set:

Figure 1 displays the Rd criterion for h = 1 ... 3 for each set
of components ( 1, 2, 3) ( 1, 2, 3) and for each approach.
While there seems to be a great difference in the first
dimension between CCA and the other methods, the
components in dimensions 2 and 3 explain the same
amount of variance in both X and Y for CCA-EN and sPLS.
This suggests a strong similarity between these two
approaches at this stage. However, CIA differs from these
two methods. The components computed from the
"opposite" set explain more variance than CCA/sPLS, and
less in their respective set. Overall, we can observe that
more information seems to be present in the X (Ross)
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rather than in the Y (Staunton) data set. Indeed, similarly
to [12], we noticed that a hierarchical clustering of the
samples from the Ross data set allows a better clustering
of the cell lines based on their tissue of origin than from
the Staunton data set (Figure 2).

Correlations between each component
The canonical correlations between the pair of score vec-
tors or latent variables were very high (>0.93) for any
approach and in any dimension (see Table 1). This con-
firms our hypothesis regarding the canonical aim of each
method. The non monotonic decreasing trend of the
canonical correlations in CCA-EN is not what can be
expected from a CCA variant. This fact was also pointed
out by [10] as the optimization criterion in CCA-EN dif-
fers from ordinary CCA. However, the computations of
the Rd criterion (Figure 1) seem to indicate that the cumu-
lative variance explained by the latent variables increases
with h. sPLS and CIA also highlight very strongly corre-
lated components, as their aim is to maximize the covari-

ance. This suggests that the associated loading vectors may
also bring related information regarding the variables
(genes) from both data sets. The maximal canonical cor-
relation (. 0.97) is obtained on the first dimension for
CCA-EN, and surprisingly, only on the second dimension
for CIA and sPLS. In the next sections, we show that, in
fact, CCA-EN and sPLS permute their components
between the first and second dimensions.

Interpretation of the observed cell line clusters
Graphical representation of the samples
Figures 3 and 4 display the graphical representations of
the samples in dimension 1 and 2 (a), or 1 and 3 (b) for
CCA-EN (Figure 3) and sPLS (Figure 4). CIA showed sim-
ilar patterns to sPLS and to those presented in [12]. All
graphics show that both data sets are strongly related
(short arrows), but the components differ, depending on
the applied method. In dimension 1, the pair ( 1, 1) tends
to separate the melanoma cell lines from the other cell
lines in CCA-EN (Figure 3(a)), whereas sPLS and CIA tend

RdFigure 1
Rd. Cumulative explained variance (Rd criterion) of each data set in relation to its component score (CCA-EN, CIA) or latent 
variable (sPLS).
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to separate the LE and CO cell lines on one side from the
RE and CNS cell lines on the other side (Figure 4(a)). As
previously proposed by [12], we interpreted this latter
clustering as the separation of cell lines with epithelial
characteristics (mainly LE and CO) from those with mes-
enchymal characteristics (in particular RE and CNS). Epi-
thelial cells generally form layers by making junctions
between them and interacting with the extracellular

matrix (ECM), whereas mesenchymal cells are able to
migrate through the ECM and are found in the connective
tissues. In dimension 2, we observe the opposite ten-
dency: the CCA-EN score vectors ( 2, 2) separates the cell
lines with epithelial characteristics from the cell lines with
mesenchymal characteristics (Figure 3(a)), while the sPLS
or CIA pair ( 2, 2) separates the melanoma samples from
the other samples (Figure 4(a), not shown for CIA).

Hierarchical clustering of the two data sets using all expression profilesFigure 2
Hierarchical clustering of the two data sets using all expression profiles. Hierarchical clustering of the cell lines with 
Ward method and correlation distance using the expression profiles from the Ross (left) and Staunton (right) data sets. The 
tissues of origin of the cell lines are coded as BR = Breast, CNS = Central Nervous System, CO = Colon, LE = Leukaemia, ME 
= Melanoma, LU = Lung, OV = Ovarian, PR = Prostate, RE = Renal. The Ward method maximizes the between-cluster inertia 
and minimizes the within-cluster inertia for each step of the clustering algorithm. Height represents the loss of between-cluster 
inertia for each clustering step. Dashed lines cut the dendrograms to highlight the three main clusters.
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Finally, in dimension 3 all three methods separate the LE
from the CO cell lines.

Hierarchical clustering of the samples
To further understand this difference between the meth-
ods, we separately performed hierarchical clustering of the

60 cell lines for each data set (Figure 2). The main clusters
that we identified corresponded to the three groups of cell
lines which were previously highlighted by the three
methods (Figures 3 and 4):

1) cell lines with epithelial characteristics (mainly LE and
CO),

2) cell lines with mesenchymal characteristics (in particu-
lar RE and CNS) and

3) ME cell lines which systematically clustered with
MDA_N and MDA_MB435. These latter cell lines are
indeed melanoma metastases derived from a patient diag-
nosed with breast cancer. As previously reported
[12,28,29], ME cell lines (including MDA_N and

Table 1: Correlations. Correlations between the score vectors 
(CCA-EN, CIA) or between latent variables (sPLS) for each 
dimension.

CCA-EN CIA sPLS

cor( 1, 1) 0.967 0.935 0.938
cor( 2, 2) 0.937 0.967 0.964
cor( 3, 3) 0.953 0.955 0.944

Graphical representations of the samples using CCA-ENFigure 3
Graphical representations of the samples using CCA-EN. Graphical representations of the cell lines by plotting the 
component scores from CCA-EN from dimension 1 and 2 (a) or 1 and 3 (b). The component scores computed on each data 
set are displayed in a superimposed manner, where the start of the arrow shows the location of the Ross samples, and the tip 
the Staunton samples. Short arrows indicate if both data sets strongly agree. The colors indicate the tissues of origin of the cell 
lines with BR = Breast, CNS = Central Nervous System, CO = Colon, LE = Leukaemia, ME = Melanoma, LU = Lung, OV = 
Ovarian, PR = Prostate, RE = Renal.
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MDA_MB435) form a compact and homogeneous cluster
which is strictly identical between the two data sets. Only
the LOXIMVI cell line, which lacks melanin and several
typical markers of melanoma cells [30] did not cluster
with all ME cell lines (Figure 2). CCA-EN first focused on
separating ME vs. the other cell lines, a cluster that seems
consistent in both data sets. In contrast, sPLS and CIA first
focused on the separation between epithelial vs. mesen-
chymal cell lines characteristics, even though most OV
and LU cell lines clustered either with the mesenchymal-
like cell lines (Ross data set) or with the epithelial-like cell
lines (Staunton data set) in Figure 2. This illustrates an
important difference between CCA-EN and sPLS/CIA: by
maximizing the correlation, CCA-EN first focuses on the
most conserved clusters between the two data sets. To

evaluate this hypothesis, we artificially reduced the con-
sistency in the ME clustering by permuting some of the
labels of the melanoma cell lines with other randomly
selected cell lines in one of the data set. The resulting
graphics in CCA-EN happened to be similar to those
obtained for sPLS and CIA in the absence of permutation
(Figure 3(a)), separating epithelial-like vs. mesenchymal-
like cell lines on the first dimension. By contrast, sPLS and
CIA graphics remained the same after the permutations.
Thus it seems that the maximal correlation can only be
obtained through a high consistency of the clusterings
between the two data sets. However, CCA-EN may be
more strongly affected by the few samples that would not
cluster similarly in the two data sets, that is, by a low con-
sistency between the two data sets.

Graphical representations of the samples using sPLSFigure 4
Graphical representations of the samples using sPLS. Graphical representations of the cell lines by plotting the latent 
variable vectors from sPLS from dimension 1 and 2 (a) or 1 and 3 (b). The latent variable vectors computed on each data set 
are displayed in a superimposed manner, where the start of the arrow shows the location of the Ross samples, and the tip the 
Staunton samples. Short arrows indicate if both data sets strongly agree. The colors indicate the tissues of origin of the cell 
lines with BR = Breast, CNS = Central Nervous System, CO = Colon, LE = Leukaemia, ME = Melanoma, NS = Lung, OV = 
Ovarian, PR = Prostate, RE = Renal.
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Interpretation of the observed genes clusters
Graphical representation of the genes
We computed the correlations between the original data
sets and the scores vectors or latent variables ( 1, 2, 3) and
( 1, 2, 3) to project the selected genes onto correlation cir-
cles. Figures 5 and 6 provide an illustrative example of
these types of figures in the case of sPLS. These graphical
outputs proposed by [31] improve the interpretability of
the results in the following manner. First they allow for
the identification of correlated gene subsets from each
data set, i.e. with similar expression profiles. Second they
help revealing the correlations between gene subsets from
both data sets (by superimposing both graphics). And
third they help relating these correlated subsets to the
associated tumor cell lines by combining the information
contained in Figures 5, 6 and Figure 4(a). For example, the
genes that were selected on the second sPLS dimension for
both data sets should help discriminating melanoma
tumors from the other cell lines.

If the loading vectors are orthogonal (i.e. if cor(as, ar) = 0,
cor(bs, br) = 0, r <s), there is a small degree of overlap
between the genes selected in each dimension (Table 2).
In this case, this means that each selection focuses on a
specific aspect of the data set, for example a specific tumor
type. This valuable orthogonal property between loading
vectors is kept in the sparse methods (sPLS, CCA-EN),
which is not often the case, for example with the sparse
PCA approaches [8,23,32]. The gene lists selected with
CCA-EN and sPLS are hence almost not redundant across
all dimensions. In fact, only 0 to 2 genes are overlapping
between dimensions 1–2 and 1–3 in the Ross data set, and
between 1 to 13 genes in the Staunton data set for both
approaches (Table 2). On the contrary, there is no orthog-
onality between CIA loadings vectors, leading to a high
number of overlapping genes (up to 31 between dimen-
sions 1 and 2).

Analysis of the gene lists
Based on the interpretation of the cell line clusters, we
analysed three sets of gene lists (3 methods × 2 data sets =
6 lists of 100 genes per set, see Additional files 2, 3, 4 for
each heat map of each gene list):

-Set 1: the lists associated with the separation of cell lines
with epithelial (mainly LE and CO) vs. mesenchymal
(mainly RE and CNS) characteristics (CCA-EN dimension
2, CIA and sPLS dimension 1),

-Set 2: the lists associated with the separation of the
melanoma cell lines (ME, BR_MDAN and
BR_MDAMB435) from the other cell lines (CCA-EN
dimension 1, CIA and sPLS dimension 2),

-Set 3: the lists associated with the separation of the LE
cell lines from the CO cell lines (dimension 3 for each
method, see Figures 3(b) and 4(b)).

For each set of gene lists we evaluated the number of genes
that were commonly selected by the different methods.
For example, figure 7 displays the Venn diagrams for the
lists of genes characterizing the melanoma cell lines (Set
2). These Venn diagrams revealed a very strong similarity
between the CCA-EN and sPLS gene lists, whereas CIA
selected different genes characterizing the cell lines. Simi-
lar results were obtained for Set 1 and Set 3 and the same
trend was observed when more than 100 variables were
selected on each dimension (data not shown).

For each dimension and each method, we evaluated the
overlap between the gene lists obtained from the two ini-
tial data sets. We would expect from such canonical corre-
lation-based methods that they identify high correlations
between features selected from the two platforms, when
these features actually measure the expression of the same
gene. To evaluate this aspect, the identifiers of the features
from each platform were mapped to unique gene identifi-
ers using Ingenuity Pathways Analysis application (IPA,
http://www.ingenuity.com). For each dimension, CCA-
EN and sPLS selected approximately 20 features from the
Ross and Staunton data sets that corresponded to identi-
cal genes. In contrast, CIA selected 15 to 17 identical genes
between the two data sets. The heatmaps for each of the
18 gene lists (Additional files 2, 3, 4) illustrated well the
general finding that CCA-EN and sPLS yield highly similar
lists of genes exhibiting expression patterns which charac-
terize well the cell lines separated along each dimension.
In contrast, CIA tends to select genes with a higher vari-
ance across all cell lines compared to CCA-EN and sPLS.

Analysis of the gene lists with IPA
Finally, we evaluated the biological relevance of the genes
selected by each method. The 3 sets of gene lists were
loaded into IPA along with their corresponding log ratios
(i.e. Set 1: mean expression in LE+CO/mean expression in
RE+CNS, Set 2: mean expression in ME+BR MDAN+BR
MDAMB435/mean expression in the other cell lines, Set
3: mean expression in LE/mean expression in CO). We
focused on:

1) biological functions that were significantly over-repre-
sented (right-tailed Fisher's exact test) in the gene lists
compared to the initial data sets,

2) canonical pathways in which the selected genes were sig-
nificantly over-represented compared to the genes in the
initial data sets and
Page 10 of 17
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Graphical representations of the variables selected by sPLS, Ross data setFigure 5
Graphical representations of the variables selected by sPLS, Ross data set. Example of graphical representation of 
the genes selected on the first two sPLS dimensions. The coordinates of each gene are obtained by computing the correlation 
between the latent variable vectors ( 1, 2) and the original Ross data set. The selected cDNAs are then projected onto corre-
lation circles where highly correlated cDNAs cluster together. These graphics help identifying correlated genes between the 
two platforms (by superimposing graphics from Figures 5 and 6). They also allow for the association between the gene clusters 
and a type of tumor cell lines by combining the information contained in Figure 4. The labels of the cDNAs can be plotted 
interactively in R to facilitate their identification. Subsets of the selected genes may also be displayed alone to focus on specific, 
user-defined, gene groups.
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Graphical representations of the variables selected by sPLS, Staunton data setFigure 6
Graphical representations of the variables selected by sPLS, Staunton data set. Example of graphical representation 
of the genes selected on the first two sPLS dimensions. The coordinates of each gene are obtained by computing the correla-
tion between the latent variable vectors ( 1, 2) and the original Staunton data set. The selected Affymetrix probes are then pro-
jected onto correlation circles where highly correlated probes cluster together. These graphics help identifying correlated 
genes between the two platforms (by superimposing graphics from Figures 5 and 6). They also allow for the association 
between the gene clusters and a type of tumor cell lines by combining the information contained in Figure 4. The labels of the 
Affymetrix probes can be plotted interactively in R to facilitate their identification. Subsets of the selected genes may also be 
displayed alone to focus on specific, user-defined, gene groups.
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3) the first networks generated by IPA from the gene selec-
tions. These networks are built by combining the genes
into small networks (35 molecules maximum) that maxi-
mize their specific connectivity [33]. This results in highly-
interconnected networks.

Over-represented biological functions
For the three methods, the over-represented biological
functions in the different gene lists were generally relevant
to the cell lines separated along each corresponding

dimensions. The epithelial to mesenchymal transition
(EMT, Set 1), a key process for tissue remodelling during
embryonic development, could contribute to establish the
metastatic potential of carcinoma cells [34]. Studying the
events underlying the EMT is thus of primary importance
to better understand tumor malignancy. During the EMT,
cells acquire morphological and biochemical characteris-
tics that enables them to limit their contacts with neigh-
bouring cells and to invade the extracellular matrix.
Accordingly, for Set 1, the three methods identified bio-

Table 2: Comparisons between gene lists.

X: dim 1–2 dim 1–3 dim 2–3 dim 1–2–3 Y: dim 1–2 dim 1–3 dim 2–3 dim 1–2–3

CCA-EN 0 2 2 0 1 3 13 1
CIA 20 17 31 2 14 21 24 1
sPLS 0 0 2 0 0 8 1 0

Number of genes commonly selected (overlap) between all dimensions for each approach for X = Ross-cDNA data set (left-hand side of the table) 
and for Y = Staunton-Affymetrix data set (right-hand side of the table).

Venn DiagramsFigure 7
Venn Diagrams. Venn diagrams for 100 selected genes associated to melanoma vs. the other cell lines for each data set (top). 
These lists were then decomposed into up and down regulated genes (bottom).
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logical functions related to cellular movement, connective
tissue development and cell-to-cell signalling and interac-
tion (see Additional files 5 and 6) which directly relate to
the EMT. Melanomas (Set 2) originate from skin melano-
cytes which are pigment cells producing melanin, the syn-
thesis of which involves the amino acids tyrosine and
cysteine. Accordingly, for Set 2, the different methods
identified biological functions related to skin biology and
to amino acid metabolism (not shown). Finally, LE cell
lines represent leukaemia which result from the abnormal
proliferation of blood cells while CO cell lines represent
colon carcinomas which originate from epithelial cells of
the colon (Set 3). Not surprisingly, the different methods
identified lists of genes linked to the functions and dis-
eases of the haematological and immunological systems
which were differentially expressed between LE and CO
cell lines (not shown).

The three methods extracted complementary findings
from the two data sets. Particularly, they frequently iden-
tified similar biological functions supported by different
genes from the two platforms.

One major finding from this analysis was that CIA identi-
fied many more significant biological functions compared
to CCA-EN/sPLS. For example for the Ross/Set 1 data,
CCA-EN and sPLS identified 7 functions with p < 0:001
while CIA identified 21 different functions using the same
threshold. However, the functions identified by CIA were
highly redundant between the three sets, as a result of
important overlaps in the gene lists selected by this
method (Table 2). Additionally, CIA recurrently identified
categories representing relatively general functions for
tumor cells such as cell death, cancer or cell morphology.
Overall, the findings obtained by CCA-EN and sPLS were
much more specific and allowed a deeper understanding
of the biological processes characterizing the different cell
lines.

Canonical pathways
In accordance with this observation CCA-EN and sPLS
generally found more significant canonical pathways
compared to CIA. This likely results from redundant and
less specific genes contained in the CIA gene selections,
hence limiting the enrichment of a sufficient number of
genes in a given pathway. In particular, the integrin and
actin sytoskeleton pathways were only identified by CCA-
EN and sPLS for Set 1. These two pathways are central to
cellular movement and for the interactions with the extra-
cellular matrix. Consistently, several genes from these
pathways, including integrins  and , caveolin, -actinin
and vinculin are over-expressed in RE and CNS cell lines
(mesenchymal) compared to LE and CO cell lines (epithe-
lial). For Set 2, all three methods identified the overex-
pression of genes from the tyrosine metabolism pathway

in melanoma cell lines, in particular tyrosinase, tyrosinase
related proteins 1 and 2 and dopachrome tautoisomerase
which are involved in melanin synthesis. However, only
CCA-EN and sPLS identified glycosphingolipid (ganglio-
side and globosid) biosynthesis pathways as characteriz-
ing the melanoma cell lines. Melanoma tumors are
known to be rich in these glycosphingolipids [35].
Indeed, their presence at the cell membrane makes them
interesting targets for immunotherapy and vaccination
strategies [30]. Among the pathways identified for Set 3,
only sPLS identified the tight junction signalling pathway
(in particular Claudin 4 and Zona occludens 1) as charac-
terizing CO cell lines compared to LE cell lines. This is
consistent with the typical epithelial characteristics of the
CO cell lines.

Networks
We explored the networks generated by IPA from each
gene list. For Set 1, the first networks for each method
were highly connected and were mainly related to cellular
movement. Interestingly, all networks pointed to the
extracellular signal-regulated kinase (ERK) as a central
player in the expression of the selected genes, which is
consistent with the role of the ERK pathway in cell migra-
tion [36]. When we merged the first networks obtained
from the three methods, highly similar networks were
obtained for the two platforms (Additional files 7 and 8)
but only the Staunton data set highlighted the transform-
ing growth factor-  (TGF- ) pathway, which is thought to
be a primary inducer of the EMT [34]. Despite this differ-
ence, the most connected nodes (including integrins  and
, -actinin, connective tissue growth factor, fibronectin 1,
SERPINE1, plasminogen activator urokinase, Ras or ERK)
were found in both networks. These likely represent cen-
tral players in establishing the different phenotypes of LE
and CO cell lines on one hand and of RE and CNS cell
lines on the other hand. The networks characterizing
melanoma cell lines (Set 2, not shown) highlighted sev-
eral markers used for the diagnosis of melanomas includ-
ing the over expressed MITF, vimentin, S-100A1, S-100B
and Melan-A and the under expressed keratins 7, 8, 18
and 19. Finally, the networks generated for Set 3 high-
lighted many genes involved in cell-cell contacts, cell
adhesion and cellular movement which were generally
expressed at higher levels in CO compared to LE cell lines.

Conclusion
The analysis of the NCI60 data sets with CCA-EN, CIA and
sPLS evidenced the main differences between these meth-
ods.

CIA
CIA does not propose a built-in variable selection proce-
dure and requires a two-step analysis to perform variable
selection. The main individual effects were identified.
Page 14 of 17
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:34 http://www.biomedcentral.com/1471-2105/10/34
However, the loadings or weight vectors obtained were
not orthogonal, in contrary to CCA-EN and sPLS. This
resulted in some redundancy in the gene selections, which
may be a limitation for the biological interpretation, as it
led to less specific results.

CCA-EN
CCA-EN first captured the main robust effect on the indi-
viduals that was present in the two data sets. As a conse-
quence, it may hide strongest individual effects that are
present in only one data set. We observed a strong similar-
ity between CCA-EN and sPLS in the gene selections,
except that the first two axes were permuted. In fact, we
believe that CCA-EN can be considered as a sparse PLS
variant with a canonical mode. Indeed, the elastic net is
approximated with a univariate threshold, which is simi-
lar to a lasso soft-thresholding penalization, and the
whole algorithm uses PLS and not CCA computations.
This explains why the canonical correlations do not
monotonically decrease. The only difference that distin-
guishes sPLS canonical mode from CCA-EN is the initial-
ization of the algorithm for each dimension. CCA-EN
maximizes the correlation between the latent variables,
whereas sPLS maximizes the covariance.

sPLS
We found that sPLS made a good compromise between all
these approaches. It includes variable selection and the
loading vectors are orthogonal. Although sPLS and CCA-
EN do not order the axis in the same manner, both
approaches were highly similar, except for slight but sig-
nificant differences when studying LE vs. CO (Set 3). In
this particular case, the resulting gene lists clearly pro-
vided complementary information.

Based on the present study, we would primarily recom-
mend the use of CCA-EN or sPLS when gene selection is
an issue. Like CCA-EN, sPLS includes a built-in variable
selection procedure but captured subtle individual effects.
Therefore, these two approaches may differ when comput-
ing the fist axes. All approaches are easy to use and fast to
compute. These approaches would benefit from the devel-
opment of an R package to harmonize their inputs and
outputs so as to facilitate their use and their comparison.
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Genes from Set 1 are displayed for each method.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-34-S2.jpeg]

Additional File 3
Hierarchical clusterings, melanoma (Set 2). Heat map displays of hier-
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