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Abstract
Background: The regulation of many cell functions is inherently linked to cell-cell contact
interactions. However, effects of contact interactions among adherent cells can be difficult to
detect with global summary statistics due to the localized nature and noise inherent to cell-cell
interactions. The lack of informatics approaches specific for detecting cell-cell interactions is a
limitation in the analysis of large sets of cell image data, including traditional and combinatorial or
high-throughput studies. Here we introduce a novel histogram-based data analysis strategy, termed
local cell metrics (LCMs), which addresses this shortcoming.

Results: The new LCM method is demonstrated via a study of contact inhibition of proliferation
of MC3T3-E1 osteoblasts. We describe how LCMs can be used to quantify the local environment
of cells and how LCMs are decomposed mathematically into metrics specific to each cell type in a
culture, e.g., differently-labelled cells in fluorescence imaging. Using this approach, a quantitative,
probabilistic description of the contact inhibition effects in MC3T3-E1 cultures has been achieved.
We also show how LCMs are related to the naïve Bayes model. Namely, LCMs are Bayes class-
conditional probability functions, suggesting their use for data mining and classification.

Conclusion: LCMs are successful in robust detection of cell contact inhibition in situations where
conventional global statistics fail to do so. The noise due to the random features of cell behavior
was suppressed significantly as a result of the focus on local distances, providing sensitive detection
of cell-cell contact effects. The methodology can be extended to any quantifiable feature that can
be obtained from imaging of cell cultures or tissue samples, including optical, fluorescent, and
confocal microscopy. This approach may prove useful in interpreting culture and histological data
in fields where cell-cell interactions play a critical role in determining cell fate, e.g., cancer,
developmental biology, and tissue regeneration.

Background
Cell-cell recognition is critical to a wide range of problems
in biology and medicine [1-16]. The development of
experimental approaches associated with cell-cell recogni-

tion has promoted advances in understanding these
effects, e.g., biochemical assays for protein binding and
transcription,. However, less attention has been focused
on developing algorithms for the detection of cell-cell rec-
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ognition from the structure and spatial distribution of
cells. Such methods would offer complimentary benefits
to biochemical assays, due to the relative ease of collecting
microscopy data from cell cultures and tissues. This would
be useful also in combinatorial and high-throughput
screening of cell-cell and cell-material interactions [17-
23]. In adhesion dependent cells, cell-cell recognition is
known to be a crucial step in initiating contact inhibition
(CI) of cell migration[24,25] and proliferation[14]. CI
plays an important role in the proliferation, invasion, and
metastasis of cancer cells, [26-28] cardiovascular tissue
homeostasis and development, [5,29] embryonic devel-
opment, [1] and wound healing, [16] among many other
biological phenomena. Conversely, it has also been
shown that under certain conditions cell-cell contact can
promote cell proliferation, known as "density-dependent"
contact stimulation of cell proliferation[12,30-32]. The
investigation of mechanisms relating cell contact, cell pro-
liferation, migration, and differentiation, in which cell
adhesion molecules play a major role, is a rich area of
research. Cadherins, e.g., VE-cadherin, [3] E-cadherin[13]
and N-cadherin, [8,9,15,33] and notch proteins[1] have
been shown to mediate contact-dependent phenomena in
a wide variety of cell types.

Here, CI of proliferation, a known cell-cell recognition
phenomenon, is used as a model system for developing
algorithms for the analysis of cell-cell recognition from
microscopy data. Usually, the effects of cell density on
proliferation are studied as relationships between global
descriptions, such as average cell density, proliferation rate,
and protein expression level[2,11,12,14]. However, as we
demonstrate below, these summary-statistic descriptions
are only sensitive to the effects of very large changes in cell
density. As a result, global metrics do not illuminate all of
the information available from image data for cell contact
phenomena. This is because cell-cell contacts are local
interactions and are very sensitive to short-range cell-to-cell
distance. When global metrics are used, such as cell den-
sity in a set of images, all cell-to-cell distances are treated
equally. Critical information pertaining to nearest-neigh-
bor cell-to-cell distances is "diluted" by the many other
cell-to-cell distances in the data set, which is observed as
noise in the data. Furthermore, the stochastic characteris-
tics of cell behavior add to the noise so that only major
trends of the responses of cells to neighbors is distinguish-
able over very large changes in cell density[15]. To address
this "dilution" effect, Nelson and Chen studied contact
stimulation effects on the growth of a single pair of cells
by using specially-designed surfaces to decouple the
effects of cell-cell contact from others[12].

In this paper, we introduce a complementary approach
that allows focused analysis on nearest-neighbor cells, but
permits sampling from cultures with high cell densities

and use of any type of surface. We had previously applied
this technique to screen large image databases from cell
cultures on combinatorial libraries of biomateri-
als[22,23]. Here, we outline the details of this method and
discuss it's generalization to Bayesian modelling. The
method is based upon defining local cell metrics (LCMs),
which are histograms of cell properties. The use of these
local variables expands the sample space considerably and
allows separation of arbitrarily-defined short- and long-
range effects. We show how the local cell metrics are then
incorporated into a Bayesian model. The new method and
model are examined quantitatively and compared with
traditional summary approaches in a study of contact
inhibition of osteoblast proliferation.

Methods
Experimental
Surface Preparation
Poly (DL-lactic-glycolic acid) (PLGA, block copolymer,
50:50 ratio of PGA and PLA, 40,000~75,000 Da) and poly
(-caprolactone) (PCL, 114,000 Da, Mw/Mn = 1.43) were
obtained from Sigma Aldrich, St Louis, MO. PLGA and
PCL, respectively, were dissolved in chloroform to 8% and
5% mass and spin coated on silicon chips (22 × 22 mm).
To provide adhesion of these polymers to the silicon dur-
ing cell culture, the silicon was pretreated with a Piranha
etch (70% H2SO4/21% H2O/9% H2O2 at 80°C for 1 h)
followed by 1 min in a HF acid bath and a final rinse in
DI water (filtered at 0.2 m).

Cell Culture
Established from newborn mouse calvaria, [34] the
MC3T3-E1 cell line has been shown capable of differenti-
ating into osteoblast and osteocytes in vitro[35]. MC3T3-
E1 cells have been shown to exhibit specific bone related
protein expression patterns, under different developmen-
tal stages, similar to primary mouse calvaria cells[35,36].
This cell line is thus a suitable in vitro model for investigat-
ing cell behaviors, regulations of such behaviors, and
underlying mechanisms in different osteoblast matura-
tion stages[37]. Since the original MC3T3-E1 cell line has
been found phenotypically heterogeneous with regard to
cell differentiation, more homogeneous subclones have
been established[38]. In this work, MC3T3-E1 subclone 4
(from ATCC, VA), which shows homogenous capabilities
of osteogenesis both in vitro and in vivo, [38] was chosen
in order to minimize variations due to phenotypical het-
erogeneities.

Cell proliferation was assayed by BrdU immunohisto-
chemistry. Briefly, PLGA- and PCL-coated wafers were
mounted into Costar® 6-Well TC-Treated Microplates
(Corning, NY). The tissue culture treated polystyrene
(TCPS) surfaces of the microplate wells were used as con-
trols. After sterilization (70% ethanol solution, 30 min),
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MC3T3-E1 cells (passage 6) were seeded onto the coated
wafers at 4 × 104 cells/cm2. This relatively high seeding
density was selected to highlight the effects of contact
inhibition of cell growth and other space-sensitive cell-to-
cell interactions. After seeding, microplates were shaken
for 10 min on a shaker (Instrument model, operation fre-
quency) to obtain uniform seeding. Cells were cultured in
DMEM (Cellgro® Dulbecco's Modification of Eagle's
Medium, Mediatech, Inc., VA) with 10% fetal bovine
serum (ATCC® SCRC-1002™, ATCC, VA), L-glutamine and
streptomycin at 37°C in a humidified 5% CO2 atmos-
phere. At 5 h post seeding, surfaces were washed with Dul-
becco's Phosphate-Buffered Saline (DPBS, with Ca++ and
Mg++) to remove non-attached cells, and fresh culture
medium was then added. At 18 h post seeding, 2 mM
BrdU (5-bromo-2--deoxyuridine, Sigma, MO) in PBS
was added to the culture medium to reach a final concen-
tration of 20 M. After 6 h of BrdU incorporation, cells
were fixed with 3.6% paraformaldehyde and BrdU incor-
poration was assayed by immunohistochemistry (primary
antibody: mouse anti-BrdU, BD Biosciences, CA; second-
ary antibody: goat anti-mouse, Rhodamine conjugated,
Rockland Immunochemicals, Inc., PA; counter staining:
Hoechst 33342, Molecular Probes, Invitrogen Corpora-
tion, CA).

Low calcium concentration suppresses contact inhibition
of cell growth by deactivating calcium-dependent cadher-
ins[7,39]. This phenomenon was used in this study to val-
idate the local cell metrics, and at the same time the
dependency of contact inhibition on calcium was quanti-
tatively studied. In order to investigate the role of Ca++ on
cell spreading and proliferation, BrdU incorporation
experiments in low Ca++ medium were performed on
TCPS surfaces. Fifteen minutes before the introduction of
BrdU, cells were rinsed twice with DPBS (without Ca++

and Mg++) and afterword cultured in the low Ca++

medium (0.5% FBS in Ca++ and Mg++ free DPBS)[39]. The
rest of the protocol was the same as previously described.

Image Acquisition
Cell locations and proliferation were quantified using flu-
orescent microscopy (Olympus BX51 Clinical Micro-
scope). A robotic translation stage was used to image
predetermined locations on each culture surface using a
MicroFire™ monochromic digital camera (SKU S99826,
Optronics, CA). The image locations were fixed on a 16 ×
20 grid with horizontal and vertical spacing of 1280 m
and vertical spacing of 960 m. For each location a 1189
× 892 m2 BrdU staining image and Hoechst counter
staining image were acquired at a resolution of 1600 ×
1200 pixels2. All images and contextual information were
organized and stored in an Oracle® 10 g (Oracle, CA) data-
base for further image processing and data analysis.

Image Processing
The Image Processing Toolbox of Matlab™ R14 (Math-
Works, MA) was employed for image processing. Due to
the volume of image data dynamic, self-adapting algo-
rithms were developed for automated image processing.
Binary images of both surface lateral patterns of cell nuclei
counter staining were obtained from raw grayscale micro-
scopic images by a variation-adjusted iterative selection
method (VAIS), which was modified from the original iter-
ative selection method [40-45] (details in the BrdU
thresholding part below).

Binary images of cell nuclei were segmented by the
marker-controlled watershed method[42] to separate images
of closely-spaced cell nuclei. This process was critical
because the nuclei of a pair of recently-proliferated cells
were often too close to be distinguished with thresholding
alone. Resultant black-and-white cell nuclei images were
used as masks by overlaying them with corresponding
BrdU staining images to determine the fluorescence inten-
sity of incorporated BrdU. The histogram of BrdU staining
intensity per nucleus [see Additional File 1: Figure S.1] is
composed of two major peaks: the low intensity peak
(background) represents cells at rest, while the high inten-
sity peak (foreground) indicates proliferating cells. The
optimal threshold between these two peaks was deter-
mined automatically by VAIS. Briefly, starting at an initial
threshold Ti = 0.5, the histogram was divided into resting
(background) and proliferating (foreground) parts.
Means and standard deviations of the foreground and
background, respectively denoted as Mbi, Mfi, bi, and fi,
were determined by fitting each peak to a Gaussian curve.
A new threshold was calculated as Ti+1 = (fiMfi + biMbi)/
(fi + bi) and was repeated until convergence on a stable
threshold. Compared with more common iterative selec-
tion methods, which use a simple mean intensity, the
modified VAIS procedure is more robust when back-
ground and foreground intensities have different vari-
ances. Indeed, the variance of the BrdU signal intensity
from non-proliferating cells was significantly greater than
that of the proliferating cells [see Additional File 1: Figure
S.1]. During image processing, data washing in the form
of median filtering was performed to remove noise below
a certain threshold. Image processing was supervised in
order to assure the performance of self-adaptive algo-
rithms and images of poor quality not permitting quanti-
fication were occasionally discarded. Proliferation
behaviors were determined for every cell and stored in the
database along with the cell location on the surfaces.

Methodologies of Data Analysis
Global Metrics
Cell density and proliferation were described with sum-
mary statistics such as number of resting and proliferated
cells computed for each image. This provides a set of glo-
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bal metrics for features in each image. As indicated in Fig-
ure 1a, global metrics are most naturally understood in
terms of conventional summary-statistics, exploratory
data analysis, and well-known methods for estimating
confidence and significance levels based on an assumed
probability distribution. The ability to detect contact inhi-
bition of cell proliferation, a known phenomenon, was
used as an indicator of the effectiveness of the global met-
rics cell density and proliferation averages.

Definition of Local Cell Metrics
Source codes that implement the algorithms presented in
this section have been made available by the authors. [see
Additional File 2] Consider that the collection of all cells
(A) is composed of either proliferated (P) or resting cells
(R), such that A = P + R. The symbol A represents any cell
chosen at random, regardless of proliferative status. The
proliferating-resting cell distance, PR, is used here to illus-
trate the definition and properties of local cell metrics, as
indicated in Figure 1b. The definitions below are general-

izable to any type of cell-cell distance, or any other spatial
or temporal metric of cells. Assume that in the kth image
the number of P-class and R-class cells is nPk and nRk, the
distance PRijk between the centroids of the nuclei of the ith

P-cell and the jth R-cell can be calculated readily from the
results of image analysis. In the kth image, the set of all
such distances, PRk is defined as

And for all images an overall set PR can be defined as

A set of N+1 distance bins is defined as

PR PR i n j nk ijk Pk Rk= = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅{ }| , , ; , , .1 2 1 2

PR PRk

k

= .

bin d d d d d ddist N N= ⋅ ⋅ ⋅{ }−[ , ),[ , ), ,[ , ]0 1 1 2 1

Schematic comparing global versus local metricsFigure 1
Schematic comparing global versus local metrics. Schematic comparing global versus local metrics. (a) global point of 
view leading to summary statistics, illustrated by bar graph, (b) local or individual-cell point of view leading to histograms, illus-
trated by frequency plot.
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where d0, d1, ..., dN is a user-defined distance scale over
which analysis is to be performed. The centroid of each
interval in bindist is defined as

and the resultant centroid set for bindist is

The bindist is used to sort set PR into an N-bin histogram

where  is the number of PR distances that fall in

the interval [di-1, di), which is centered at .

The total number of elements in set PR is

After normalizing by nPR, the frequency function LCM is

and  represents the R-type cell environment of the

P-type cells observed over distances . Frequency func-

tions, denoted as , , , and

, may also calculated for cell-to-cell distances PP,

AA, RR, and PA in similar manner.

LCM Normalization

Normalization is necessary to interpret LCMs in a mean-
ingful manner and to compare the probability of cell
responses under different cell environments. One method
of normalization is to relate observed occurrences to ran-
dom occurrences. Given the finite image size and gener-
ally non-overlapping nature of cultured cells, the
distribution of random cell occurrences is not Gaussian.
The random distribution for cell-cell distance, fstd, was cal-

culated as the any cell-any cell distribution (fAA) of 1× 1010

randomly-chosen nuclei positions on a simulated image

1600 pixels by 1200 pixels. The normalized LCM 

is

Other LCMs (fAA, fPA, fRR) are normalized similarly, which
allows direct comparisons of different types of cell dis-
tances on different surfaces.

In addition to normalizing by the standard distribution,
fstd, direct ratios between LCMs are used also in our analy-
sis, in which case fstd cancels, as indicated in the next equa-
tion.

The ratio rPR|PA highlights the specific effects of non-prolif-

erated cells on the central proliferating cell relative to the
effects of any given cell. Thus, the probability of cell
responses under different cell environments can be com-
pared meaningfully. Furthermore, each set of cell-to-cell
distances can be decomposed into subsets, which allows
investigation of the contribution of each subset to the
overall effect. Therefore, ratios of cell backgrounds may be
constructed and used as classifiers for screening and iden-
tifying significant cell environment patterns. These ratios
also define posterior odds (PO) of observing certain prolif-

eration behaviors. For example, consider , and

using the subscript i to signify the evaluation at a certain

distance , the ratio is calculated as

where

Applying equations (12) and (13) to equation (11),
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Thus,  is a posterior odds that quantifies how

the probability of cell proliferation is changed by the pres-

ence of a second cell located at distance , relative to the

average proliferation for all cell-cell distances. Computa-
tionally, to promote the efficiency of the codes, we
defined Ak = {Pk, Rk}={P1k, P2k, ..., PNPk, R1k, R2k, ..., RNRk},

and removed self-to-self cell pairs (PAijk where i = j) and

identical cell pairs (PAijk where i >j) from PA.

LCM Decomposition
Furthermore, each set of cell-to-cell distances can be
decomposed into subsets, which allows isolation of each
subset's contribution. For example, consider rPR|PA defined
above. As described graphically in Figure 2, since the
denominator PA = PP  PR (the union of distance sets PP
and PR) and PP  PR =  ( = the empty set), one may
remove the PR component from PA, and the denominator
becomes PP. The result is that the ratio rPR|PA is trans-
formed into rPR|PP. By removing the shared, or overlap-
ping, component PR from the denominator, rPR|PP has
higher "contrast" for observing effects of R-cells on P-cells
than rPR|PA.

Connection of LCMs to Bayesian Statistics
Local cell metrics are naturally connected to Bayesian
analysis, which is a powerful statistical method used for

classification[46,47]. Specifically for the PR distance, the
Bayesian approach allows one to quantify the local envi-
ronment of P cells, as the conditional probability of find-
ing an R cell a certain distance PR from a P cell. Based on
the definition of fPR in equation (8), a naïve Bayes model
can be established as follows. Consider a "test" cell chosen
at random. It is desired to predict the possibility this cell
will be in proliferating status, based upon the local envi-
ronment of non-proliferating cells, which is given by the
following conditional probability function

where  represents the probability of finding a non-

proliferating cell at a distance of  from the central, ran-

domly chosen, test cell. Using Bayes's theorem,

In the above function, the components

p( ) and p(prolif) are constants that can be

determined from their frequency in the data. The only
non-constant component, the class-conditional probabil-
ity, is given by

Assuming the occurrence probabilities around the non-

proliferating cell distances  are condition-

ally independent (uncorrelated), then

 where i  j (the naïve

Bayes assumption). Hence, equation (17) reduces to

A key development is to notice that

, which means that under the

naïve Bayes assumption the LCM is in fact a class-condi-

tional probability function. The term p( )

represents the probability of locating the R cells at dis-
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Schematic indicating the decomposition of local metricsFigure 2
Schematic indicating the decomposition of local met-
rics. Schematic indicating the decomposition of local metrics 
into groups of cell-cell distances based on cell proliferative 
status. A = any cell, P = proliferated cell, R = resting cell 
(nonproliferated).
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tances ( ) from any cell, which is .

Hence, the Bayes conditional probability function from
equation (16) becomes

The naïve Bayes model allows prediction of the probabil-

ity of proliferation as a function of the LCMs,  and

, which are easily computed from a training data

set, as is p(prolif). The evaluation of this modeling
approach will be the subject of forthcoming work.

Results and Discussion
Traditional metrics
To provide a benchmark for establishing the effectiveness
of local metrics, contact inhibition of cell proliferation
was studied using global analysis first. For each image in
the database, the overall cell proliferation is plotted versus
cell density, shown in Figure 3 and Table 1. Although a
trend towards lower proliferation at higher cell density is
somewhat apparent in Figure 3, global analysis, does not
allow for quantitative detection of CI effects on cell prolif-
eration at a statistically-significant level. The linear regres-
sion (Table 1) yields in an adjusted R2 of 0.128 (on PLGA)
or 0.109 (on PCL), indicating that the contact inhibition
effect masked by "noise" in the data. Furthermore, it is
obvious that in Figure 3, no regression function can be fit
satisfactorily to the global statistics, since the noise is too
high relative to the CI effects. The use of a larger range may
allow the global analysis to distinguish contact effects
from natural variance in cell properties. This has been
demonstrated in repeated experiments on PLGA, PCL,
and TCPS surfaces. [see Additional File 1: Figures S.2, S.3,
S.4]. However, there are drawbacks to the use of larger
ranges, such as the introduction of seeding-density effects
that mask or alter the cell-cell interactions.

Local Cell Based Metrics
The noise level inherent to proliferation measurements,
which are normally carried out over a small seeding den-
sity range, make contact inhibition a robust test-case for
comparing local vs. global metrics. A contact phenome-
non is detected when a relevant metric changes signifi-
cantly relative to the data sampling noise. For global
statistics, the assumed distribution (usually Normal) pro-
vides the random noise reference. For local metrics, the
random cell-cell distance frequency distribution was cal-
culated using a Monte-Carlo approach, termed the stand-
ard frequency distribution, fstd. The reference fstd is shown

in Figure 4 together with the experimental fAA for MC3T3-
E1 osteoblasts on PLGA. The profile of fstd is similar to a
beta- or chi-distribution with asymmetry due to the non-
overlapping nature of the nuclei centers at close distances.
The computed fstd distribution is nearly identical to the

ˆ , ˆ ,..., ˆd d dN1 2 f dRA
ˆ( )

p prolif R R R p prolif
fPR di
fRA di

d d dN
i

| , , , ( )
( )

( )1 2
1

⋅ ⋅ ⋅( ) = ⋅
=

NN

∏

f dPR
ˆ( )

f dRA
ˆ( )

Effects of global cell density on global cell proliferationFigure 3
Effects of global cell density on global cell prolifera-
tion. Effects of global cell density on global cell proliferation 
ratio for MC3T3-E1 cultured on (a) PLGA and (b) PCL. 
Number of images used was (a) 353 and (b) 288.
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Table 1: Linear Regression from Global Analysis Results from 
Figure 3

Surface Coeff. SSE R2 RMSE Adj R2

PCL -6.106 × 10-4 0.5314 0.1312 0.04396 0.1280
PLGA -5.237 × 10-4 1.846 0.1111 0.07251 0.1086

*SSE = Sum of squared error, RMSE = root mean squared error, R2 = 
linear correlation coefficients
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experimental fAA distribution at large distances (> 100
m). This is expected since fAA indicates the likelihood of
finding any two cells (whether proliferating or not) sepa-
rated by a given distance, which should in principle be
random. Figure 4 also shows the distance distribution fPA,
which is the likelihood of finding a proliferated cell a cer-
tain distance from any cell. If cell-cell distance has any
relation to proliferative status then fPA and fAA should dif-
fer from one another and from fstd, but only at close dis-
tances where cell-cell contact is likely to occur.

Figures 5, 6, and 7, which show the normalized distribu-
tions fPA/fstd, fAA/fstd and fPP/fstd at close distances, indicate
the non-random effects of contact inhibition when the
values become less than one. Specifically, CI occurs when
the distance between cell nuclei becomes less than about
50 m. The typical mean cell area was around 2500 m2,
resulting in a mean diameter of 56 m, which corre-
sponds closely to the onset of CI. Representative images of
cultured MC3T3-E1 cells on these surfaces have been pre-
sented in previous work[22,23]. In addition, local fine
structure in the contact inhibition region is observed as a
local maximum peak between 10 and 20 m. This peak

indicates enhanced local proliferation at very close dis-
tance, even when overall proliferation is being inhibited.
Interestingly the local peak magnitudes at 10 to 20 m
always follow the order fPP >fAA >fPA on each of the three
surfaces examined, TCPS, PLGA and PCL. We hypothesize
that the local enhancement peak is due to two daughter
cells (from the same parent cell) that are very close, which
have not had enough time to migrate away during the
BrdU staining time period. If so, then this cell division
peak should appear on the fPP curve but not the fPR curve,
which was observed comparing Figures 5, 6, and 7 (fPP) to
Figures 8, 9, 10, and 11 (fPR). In addition, in the Monte
Carlo simulation of random cell positions (fstd), with no
proliferation, this local peak is absent.)

Direct ratios between experimentally-determined distri-
butions can be chosen specifically to illuminate the CI
phenomena of interest. Specifically, common compo-
nents in the numerator and denominator not related to CI
phenomena may be removed, thus isolating the phenom-
ena of interest. This process is examined in Figures 8, 9,
10, and 11. Figure 8 shows the rPA|AA profile, which is clas-
sified into two regions: the proliferation suppressed region (0

Comparison of experimental and calculated distributionsFigure 4
Comparison of experimental and calculated distribu-
tions. Comparison of experimentally determined fAA and fPA 
for MC3T3-E1 on a PLGA surface and the computed stand-
ard curve, fstd. These data represent the frequency at which 
any cell is located a certain distance from any other cell (fAA) 
or from a proliferated cell (fPA) in the experiments. The 
standard curve was computed from a Monte Carlo simula-
tion and represents a uniformly random probability of locat-
ing any cell a given distance from any other cell on the same 
sized area as our microscope images. Number of images used 
was 353.
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Normalized distributions for cells on PLGA surfacesFigure 5
Normalized distributions for cells on PLGA surfaces. 
Normalized distributions for any cell-any cell (AA), prolifer-
ating-any cell (PA) and proliferating-proliferating cell (PP) on 

a PLGA surface: , , and . Normaliza-

tion was performed by dividing the experimental frequency 
distribution by fstd, the random cell-cell distribution deter-
mined from Monte Carlo simulation. Number of images used 
was 353.

�� �� ���

���

���

���

���

�

*���������&��
����

+

��
���

�

�

�

��������
��������
��������
���������

f dAA( ) f dPA( ) f dPP( )
Page 8 of 13
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:350 http://www.biomedcentral.com/1471-2105/10/350

Page 9 of 13
(page number not for citation purposes)

Normalized distributions for cells on PCL surfacesFigure 6
Normalized distributions for cells on PCL surfaces. 
Normalized distributions as described in Figure 5 on a PCL 

surface: , , and . Number of images 

used was 288.
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Normalized distributions for cells on TCPS surfacesFigure 7
Normalized distributions for cells on TCPS surfaces. 
Normalized distributions as described in Figure 5 on a TCPS 

surface: , , and . Number of images 

used was 291.
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Ratio of distributions PA/RR on PLGA surfacesFigure 8
Ratio of distributions PA/RR on PLGA surfaces. Ratio 

of distributions  on a PLGA surface. 

Number of images used was 353.
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Ratio of distributions PR/RR on PLGA surfacesFigure 9
Ratio of distributions PR/RR on PLGA surfaces. Ratio 

of distributions  on a PLGA Surface. 

Number of images used was 353.
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to 40 m) where cell proliferation was suppressed up to 6
fold (rPA|AA falls to ~1/6) and the null region (beyond 40
m) where cell proliferation was not noticeably affected
by the contact of other cells. Based on the discussion for
Figure 7, the ratio rPA|AA does not fully decouple the divi-
sion and daughter-cell migration phenomena (indicated
by PP) from the proliferation phenomena (indicated by
PR), since PP  PA. We illustrate how separation of the PP
and PR components enhances the detection of contact
inhibition of proliferation. By definition the various dis-
tances are related as follows

with

where  is the empty set. The two shared components of
AA and PA are PP and PR. The PP distance component rep-
resents distances between cells that have both prolifer-
ated, i.e., proliferation in those pairs was not contact inhibited.
Removal of the common PP component from the numer-
ator and denominator of rPA|AA leads to rPR|RR, shown in
Figures 9, 10, and 11 for the PLGA, PCL, and TCPS sur-
faces, respectively. By definition rPR|RR should be more
sensitive to CI of proliferation, because non contact inhib-

ited cell pairs have been removed. In Figure 9, the rPR|RR
ratio is classified into two regions: the NaN region (below
5 m) where few pairs occur, and the contact inhibition
region (5 to 40 m). In the contact inhibition region, a clear
trend of decreasing probability of finding a neighboring
cell is seen as the distance between cells decreases. A min-
imum is observed at dmin = 8 m, where contact inhibition
effects are maximized. To our knowledge, this is the first
time both the magnitude and the range of contact inhibition of
cell proliferation have been determined quantitatively in a
single function.

The physical meaning of the LCM ratio rPR|RR can be can be
illustrated by recognizing that it is the posterior odds (PO)
of proliferation as a function of cell-cell distance. Con-
sider two cells that are well-separated at 40 m, and
another two cells that are at a close distance of 8 m,
where the extreme in contact inhibition behavior is found
(minimum rPR|RR in Figure 9). The PO that one of the
closely-spaced cells has proliferated is POPR/RR = rPR|RR (8)/
rPR|RR (40) = 1/32. This means there is a 32 fold lower

PA PP PR

RA RR PR

AA PP RR PR

=
=
=



 ( )

PR RR

PP PR




= ∅
= ∅

Ratio of distributions PR/RR on PCL surfacesFigure 10
Ratio of distributions PR/RR on PCL surfaces. Ratio of 
distributions rPR|RR on a PCL surface. Number of images used 
was 288.

� �� �� ��
*���������&��
����

� �
	
�	
	

�

��	�		
���

0.1

1

0.05

Ratio of distributions PR/RR on TCPS surfacesFigure 11
Ratio of distributions PR/RR on TCPS surfaces. Ratio 
of distributions rPR|RR on a TCPS surface. Number of images 
used was 291.

Table 2: Minima in rPR|RR Curve Indicating Maximum Contact 
Inhibition

Surface 1/rPR|RR, min dmin(m)

PLGA 31.6 8
PCL 15.8 9
TCPS 35.5 6
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chance of proliferation at 8 m than at a distance of 40
m.

The profiles of rPR/RR from the other polymer surfaces are
shown in Figure 10 (PCL surface) and Figure 11 (TCPS
surface). The ratios are similar in shape but have different
magnitudes for the minimum point as a function of the
surface. Table 2 summarizes the variation of rPR|RR, min and
dmin on the different surfaces. The different location and
strength of contact inhibition might be due to surface fea-
tures such as roughness, crystallinity, hydrophobicity, sur-
face charge, or protein adsorption, factors which are
known to influence osteoblast proliferation[48]. For
example, the surface roughness increases in the order
TCPS < PLGA < PCL, and at the same time the POPP/PR is
decreasing, and the dmin is increasing. We illustrate this
point, however, not to make a definite mechanistic argu-
ment about surface effects on proliferation, which is cer-
tainly more complicated than roughness alone. Rather,
the point made is that the LCM method is capable of sen-
sitive detection of differences in proliferation for cells cul-
tured on different surfaces.

The effect of calcium depletion on LCMs is presented in

Figure 12. The  distribution of the control (calcium

+) was significantly lower than the low calcium (calcium
-) case. In addition, the 'calcium -' curve stays close to

unity except at very close distances, less than 20 m,

whereas the 'calcium +' curve falls below unity at 50 m.

Hence, the LCM  detects the expected result: that

low calcium should inhibit the cell-cell self-avoidance
and contact inhibition[7,39]. This effect is seen more
clearly in examining the ratio rPR/RR, in Figure 13. Contact

inhibition was very strong within a cell-to-cell distance of

30 m when cells were cultured under physiological cal-
cium concentration (calcium +). However, contact inhibi-
tion disappeared when calcium was depleted (calcium -).

Conclusion
We have shown that global summary statistics are not ade-
quate metrics for detecting local cell interactions, due to
noise and non-local effects inherent to cell-cell contact
phenomena. A novel data analysis strategy, local cell met-
rics, has been introduced in this paper. LCMs, which are
cell-cell distance histograms, describe cell environments
from the "point of view" of individual cells. These metrics
allow focusing of analysis onto arbitrarily-defined close
distances. In addition, LCMs can be 'tuned' to be sensitive
to specific contact phenomena by decomposing the distri-
butions into specific cell-types (proliferating vs. nonpro-
liferating) and removing unwanted components. Local
metrics as defined herein are not limited to proliferation
analysis, nor to cell-cell interactions alone. The metrics are
generic and can be, in principle, applied to any type of

f dAA( )

f dAA( )

Effects of calcium depletion: loss of contact inhibitionFigure 12
Effects of calcium depletion: loss of contact inhibi-

tion. Normalized distribution  examining effects of 

calcium depletion on proliferation of MC3T3-E1 cultured on 
TCPS surfaces. Number of images used was 198.
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Effects of calcium depletion: loss of contact inhibitionFigure 13
Effects of calcium depletion: loss of contact inhibi-
tion. Ratio of distributions rPR|RR examining effects of calcium 
depletion on proliferation of MC3T3-E1 cultured on TCPS 
surfaces. Number of images used was 204.
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quantifiable cell assay, and can be applied to cell-bioma-
terial and cell-tissue interactions as well. We have also
shown how LCMs are related to the naïve Bayes model,
which makes them useful for data mining and classifica-
tion (the subject of forthcoming work.)

We have demonstrated the new local metrics by consider-
ing the contact inhibition of proliferation of the osteob-
last cell line MC3T3-E1. A quantitative and probabilistic
description of the contact inhibition effect as a function of
cell-cell distance has been achieved. In fact, the probabil-
ity of proliferation is shown to be strongly dependent on
the distance to, and proliferative state of, neighboring
cells. The LCMs were also sensitive to effects of the culture
surface, and of calcium composition in the culture media,
on proliferation.
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