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Abstract

Background: Many proteins are highly modular, being assembled from globular domains and
segments of natively disordered polypeptides. Linear motifs, short sequence modules functioning
independently of protein tertiary structure, are most abundant in natively disordered polypeptides
but are also found in accessible parts of globular domains, such as exposed loops. The prediction
of novel occurrences of known linear motifs attempts the difficult task of distinguishing functional
matches from stochastically occurring non-functional matches. Although functionality can only be
confirmed experimentally, confidence in a putative motif is increased if a motif exhibits attributes
associated with functional instances such as occurrence in the correct taxonomic range, cellular
compartment, conservation in homologues and accessibility to interacting partners. Several tools
now use these attributes to classify putative motifs based on confidence of functionality.

Results: Current methods assessing motif accessibility do not consider much of the information
available, either predicting accessibility from primary sequence or regarding any motif occurring in
a globular region as low confidence. We present a method considering accessibility and secondary
structural context derived from experimentally solved protein structures to rectify this situation.
Putatively functional motif occurrences are mapped onto a representative domain, given that a high
quality reference SCOP domain structure is available for the protein itself or a close relative.
Candidate motifs can then be scored for solvent-accessibility and secondary structure context. The
scores are calibrated on a benchmark set of experimentally verified motif instances compared with
a set of random matches. A combined score yields 3-fold enrichment for functional motifs assigned
to high confidence classifications and 2.5-fold enrichment for random motifs assigned to low
confidence classifications. The structure filter is implemented as a pipeline with both a graphical
interface via the ELM resource http://elm.eu.org/ and through a Web Service protocol.

Conclusion: New occurrences of known linear motifs require experimental validation as the
bioinformatics tools currently have limited reliability. The ELM structure filter will aid users
assessing candidate motifs presenting in globular structural regions. Most importantly, it will help
users to decide whether to expend their valuable time and resources on experimental testing of
interesting motif candidates.
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Background

In recent years it has become clear that proteins with
highly modular architectures possess numerous short
peptide motifs that are essential to their function [1-5].
Such peptides are termed Linear Motifs (LM) as, in con-
trast to the globular domains, their function is independ-
ent of tertiary structure and encoded solely by the amino
acid sequence. They are found in a diverse range of pro-
teins, such as membrane receptors, adaptors, scaffolds
and transcription factors, and mediate numerous tasks,
which can be as disparate as directing subcellular localiza-
tion or acting as sites of cleavage. Well-known LMs
include peptides binding SH3, Cyclin, PDZ and WW
domains [6-10] and phosphorylated peptides interacting
with SH2, PTB, BRCT and FHA phosphopeptide-binding
domains [11-17]. The biological properties and range of
functions mediated by LMs are reviewed in detail else-
where [4,18-20].

In order to deconvolute the functional components of
modular protein architectures, it is necessary to identify
the set of LMs as well as the folded components. However,
this is not straightforward because simple searches with
short sequence patterns, known to act as functional mod-
ules, are uninformative - returning a flood of false positive
matches. Several tools have been developed to rank motifs
based on confidence of functionality by classifying puta-
tive motifs based on the hypothesis that functional motifs
will have attributes similar to experimentally discovered
motifs. Although classification tools cannot definitely
confirm a motif as functional (only experimental analysis
can achieve this) they can be used to attach a level of con-
fidence to a motif. For example motifs which occur in an
incorrect cellular compartment, or outside the known tax-
onomic range, are unlikely to be functional as are those
which are not conserved in closely related proteins or bur-
ied in a globular domain inaccessible for interaction.
Available motif discovery tools vary in their implementa-
tion of confidence-related metrics. ScanProsite [21], the
web-based tool for detecting PROSITE [22] signature
matches in protein sequences, recently integrated
ProRules [23], a database containing additional informa-
tion about PROSITE profiles, with the aim of increasing
the discriminatory power of PROSITE profiles to facilitate
function determination and provide biologically relevant
information for the annotation of proteins. MnM [24,25],
a motif database and a web-based tool for identifying can-
didate motif occurrences in proteins, addresses the issue
of non-functional false positives by implementing evolu-
tionary conservation, surface prediction and frequency
scores to rank motif occurrences in a protein query. The
Eukaryotic Linear Motif (ELM) resource filters implausi-
ble motif occurrences according to cell compartment and
taxonomic range [2]. It also indicates less likely matches
that lie within globular domains annotated in the SMART
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[26] and Pfam [27] resources and contrasts these with
intrinsically unstructured polypeptide (IUP) regions pre-
dicted by GlobPlot [28] that are more likely to be motif-
rich [5]. DILIMOT and SLiMFinder - tools designed for
discovery of candidate novel peptide patterns significantly
enriched in protein interaction datasets - also use some of
these techniques to improve confidence in returned
motifs [29,30]. Sequence conservation has also been
shown to be effective in up-weighting true motifs relative
to false positive matches [31-33].

In the intracellular milieu, LMs are found to be particu-
larly abundant in segments of IUP where they are readily
accessible [34]. Accessibility is a basic requirement of LM
function which is almost always mediated by direct inter-
action with globular domain ligands. Extracellular pro-
teins tend to have much less natively disordered
polypeptide and therefore the extracellular linear motifs
such as N-glycosylation sites [35] and the integrin-bind-
ing RGD motif [36] usually occur within globular
domains, most often residing in exposed loop regions.
LMs are also regularly found in globular regions of intrac-
ellular proteins - for example phosphorylation sites are
common in flexible loops [37]. However, close inspection
of the literature also reveals many instances of candidate
motifs falsely reported as functional on the basis of loss of
function mutagenesis and out-of-context peptide-binding
experiments, despite the motif being well structured and
sometimes deeply buried in a globular domain [38-41].

This observation suggests that stringent examination of
motif structural context should be an essential processing
step for experimental analysis. It also advocates the
importance of high quality tools to identify such cases, as
the cost associated with failure is detrimental both in
terms of effort and quality of the literature. Despite this,
neither the ELM globular domain classification nor the
MnM surface prediction score take advantage of all the
information available to them in the form of the plethora
of experimentally solved protein structures. ELM globular
domain classification is overly strict, classifying motifs
occurring in these regions as low confidence. The MnM
surface prediction score uses primary sequence based pre-
diction both in those cases where a structure is available
and in regions where a disorder predictor will render sec-
ondary structure prediction unnecessary.

In the present manuscript, we address the issue of LM
accessibility when the matches occur within globular
domains for which a reference three-dimensional (3D)
structure is available. Development and calibration of a
structure filter is currently not straightforward as there are
relatively few available structures for most motif classes
(an obvious exception being N-glycosylation sites), plac-
ing limitations on the training and benchmarking possi-
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bilities. Nevertheless, we have been able to develop a
protocol in which reference domain structures are selected
and then the matched motifs evaluated using accessibility
and secondary structure parameters.

Benchmarking of the structure filter suggests that deeply
buried LM candidates are unlikely to be functional, and
that the likelihood of motif matches being valid func-
tional sites improves with accessibility. In this way, the
new filter can aid researchers to decide whether they wish
to invest effort inexperimentaltesting of candidate motifs.
The structure filter pipeline is implemented in a publicly
available Python program accessible via a web-service
interface [42]. The structure filter is fully integrated into
the ELM server [43], providing graphical representation of
the results in the context of the other filters.

Results

The ELM structure filter scoring scheme

Structural analysis of true motif instances annotated in
ELM supported what is expected from LM biology [3], i.e.
that they tend to lie on the surface of protein domains and
prefer unstructured and loop regions (See below "Analysis
of the ELM 3D benchmarking dataset"). Figure 1 shows
two examples of motifs lying on domain interfaces
whereas Figure 2 reports cases of motif instances whose
functional residues protrude outwards from the domain
surface and hence are accessible to the solvent. This obser-
vation was further supported by the comparison between
the accessibility and secondary structure distributions of
true motifs vs random matches (determined as described
in Methods) in our datasets (Figure 3), which highlights
that true motifs are on average more accessible than ran-
dom matches (p-value = 1.9e-55); moreover, loops are
more represented (p-value = 1.13e-35) in true motifs than
in random matches and both alpha-helices and strands
are less represented in true motifs than in random
matches (p-value = 3.69e-12 and 2.66e-16, respectively).
These results convinced us to base the structure filter scor-
ing scheme on accessibility and secondary structure
assignments.

The aim of the scoring procedure is to assign a score to LM
candidates in the user query sequence given that a refer-
ence structure is available. In order to do this, the structure
filter scans the LM match 3D context position by position,
evaluates the relative accessibility and the secondary struc-
ture of each single position i, and assigns an accessibility
score (Qacc) and a secondary structure score (Qsse) to the
motif match as the normalized sums of its single position
scores.

More specifically, the score of a motif match is calculated
on the non-wildcard positions of the regular expression
pattern for the motif as:

http://www.biomedcentral.com/1471-2105/10/351

Figure |

Two examples of linear motifs packed into struc-
tured domains. a) PDB 2D07: Sumo-interacting motif
(orange) of TDG domain (green) bound to SUMO-3 protein
(cyan); b) PDB 2PTK: closed conformation of the proto-
oncogene tyrosine-protein kinase Src. Blue: SH2 domain;
red: SH3 domain; green: protein kinase; orange: pTyr-527;
yellow: linkers; yellow spheres: SH3 binding peptide. All
structure views were prepared with PyMOL http://

www.pymol.org/.

N
Q(match) = % Yy ico
i=1

where N is the number of non-wildcard positions of a
match, i.e. the number of non-wildcard residues in a LM
occurrence, i is the ith position along the match, i € Q
means that the sum is limited to the set of non-wildcard
positions, Q, and ¢(i) is the positional score of position i.
Note that Q,..and Q,,, were also calculated for all LM posi-
tions (i.e. not limiting the sum to the set of non-wildcard
positions) and found to be marginally less discriminating
than those only based on non-wildcard positions. In this
regard, Figure 3 shows that the accessibility differences
between wildcard and non-wildcard positions are statisti-
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Figure 2

Examples of linear motifs with functional residues protruding outwards from the structural domain surface. a)
A very exposed instance (in white) of LIG_RGD in a loop of SCOP domain dI mfn_2; b) An instance (in violet) of LIG_RGD in
a region outside a domain (SCOP dlssua_); c) An instance (in pink) of MOD_SUMO in an exposed loop of the dlkpsd_ SCOP
domain; d) The MOD_CMANNOS C-Mannosylation site (in magenta) in the SCOP domain dlk2aa_; e) The two MOD_N-
GLC_I N-glycosylation sites (in yellow) in the SCOP domain dlqm3a_; f) The N-glycosylation site (in red) in the SCOP
domain dIfl7b_; g), h) The N-glycosylation site (in green) in the SCOP domain dlo7ae2 and (in red) in the SCOP domain
dIn2éal.
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Figure 3

Secondary structure frequency and accessibility distribution for true motif instances and for random matches.
3a) Boxplots representing the accessibility distributions of true motif instances (orange) and of random matches (yellow), cal-
culated for all motif positions (all positions), non-wildcard positions only (non-wildcard) and wildcard positions only (wildcard).
The solid box lower and upper bounds represent the 25th and 75th percentile, respectively. Circles represent outliers; 3b)
frequencies of each secondary structure element type in true motif instances and in random matches, calculated for all motif
positions, for non-wildcard positions only and for wildcard positions only.
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cally significant in the case of true motifs (t-test's confi-
dence level = 0.99, p-value = 3.058e-05) (Figure 3a) and
that true motif non-wildcard positions have a more pro-
nounced tendency to be in loops and a less marked dispo-
sition to be in helices and strands as opposed to the
frequencies both of true motifs for all positions and for
wildcard positions, even if none of these differences is sta-
tistically significant (Figure 3b). For further details see
additional file 1, additional file 2 (Figure S1) and addi-
tional file 3 (Figure S2).

We adopted as accessibility positional score, qacc(i), of
position i, the normalized solvent exposure value of the
residue in i, which ranges between 0 (non exposed) and
1.5. Thus, the higher the residue exposure, the more the
corresponding position is rewarded. The secondary struc-
ture positional score, gsse(i), was determined in a more
complex manner. The analysis of LM instances on struc-
tural domains showed that they occur more frequently in
loops and unstructured regions than expected by chance.
In order to quantify this observation, we calculated, for
each secondary structure element (SSE) type (loop, helix,
strand, 3/10 helix - see Methods), the ratio between the
SSE type frequency (v) among true motif instances and
among random matches. The corresponding values are
reported in Table 1.

Thus, the secondary structure score of a position i whose
SSE assignment is loop (or 3/10 helix, helix, strand), is the
ratio between the frequency of loops (or 3/10 helices, hel-
ices, strands) in the instance dataset and the frequency of
loops (or 3/10 helices, helices, strands) in the random
dataset.

Assessing the predictive ability of the ELM structure filter

In order to assess the predictive ability of the ELM struc-
ture filter scoring scheme, we made use of five strategies,
each introducing useful parameters for the evaluation of
the discrimination power of our procedure: 1) we plotted
ROC curves and calculated AUCs; 2) we assigned a p-value

Table I: Frequency of secondary structure elements in true and
in random motifs

loop 3/10 helix helix strand
™ 0.72 0.04 0.18 0.06
Random 0.48 0.03 0.33 0.17
TM/ Random ¢, (i) 1.50 1.33 0.55 0.35

The table reports the secondary structure type frequencies observed
in motifs of the benchmark and random datasets calculated
considering only non-wildcard positions. TM: frequency in the true
motif instance dataset; Random: frequency in the random match
dataset; g, (i) = secondary structure score of position i.

http://www.biomedcentral.com/1471-2105/10/351

to predictions; 3) we built LM-specific background distri-
butions; 4) we identified sparse/neutral/enriched score
intervals; 5) we carried out a 5-fold cross validation in
order to determine sensitivity, specificity and accuracy.

In order that the structure filter may be a useful guide to
the ELM resource user, we propose that the values of the
above-mentioned parameters are used as decision-making
tools in evaluating the score of LM predictions. In partic-
ular, since having high accessibility and belonging to loop
regions is not a prerogative of LMs alone and the random
match dataset might in principle be "contaminated" by
not yet annotated spurious true motifs, we suggest using
as many indicators as possible in evaluating a prediction
score and not relying on each single tool as a unique cri-
terion for retaining/rejecting a prediction.

1) ROC curves and AUCs

In order to establish if one score is more discriminative
than the others, we assigned an accessibility score (Q,..), a
secondary structure score (Q,,) and a combined score
(Quug = Qe + Qy,) to the true positive instances of our
dataset and to the random matches of the random dataset,
plotted cumulative score distributions and ROC curves
and calculated the area under the ROC curves (AUCs). In
calculating the ROC curves, we assumed that random
matches are all negative matches. Figure 4 shows that the
cumulative distribution of true motifs is clearly separated
from that of random matches for each score type. Moreo-
ver, the ROC curves (Figure 5) show that all three score
types are able to discriminate between the true motif and
random match sets and that both Q,. and Q,,; perform
better than Q,,; the AUC values for the three scores are
0.73 (Que), 0.66 (Q,,) and 0.72 (Q,,4); notice that, even
though the AUC for Q,,,, is slightly lower than that of Q,.,
Q,nq Performs similarly or better than Q,, in the range cor-
responding to the 20% of the ROC x-axis values.

2) p-value

We determined the distribution of random matches and
use it to assign a p-value to the score of each ELM predic-
tion. This p-value, which is implemented both in the Web
Server and in the Web Service, is calculated using a Z-test
and is a conservative estimate of the probability that a LM
prediction with a given score is a true positive; more spe-
cifically it is the probability of obtaining a random match
with a score at least as high as the one that was actually
observed, and therefore we expect it to be very stringent.

3) LM-specific background score distributions

Due to the paucity of true motif instance data, we cannot
build a true motif score distribution for each ELM motif
(and therefore we cannot build a LM-specific structure fil-
ter yet) and compare it to the corresponding random
motif score distribution. However, we built, and dis-
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Figure 4

Cumulative score distributions. a) The cumulative distribution of (a) Q, ., (b) Q.. and (c) Q,,4 = Q. + Q. Scores calcu-
lated for true motif matches (true motifs), and for random matches (random matches) in non-wildcard positions. Red dashed
lines indicate the percentile cut-off ensuring that the lower 40% random matches fall in the "sparse” bin. The consequent per-
centage of true motifs falling in the "sparse" bin is about 15% (accessibility) and 20% (secondary structure). This cut-off corre-
sponds to Q,.~0.3 and Q.~0.7. Black dotted lines indicate the percentile cut-off that guarantees that the enriched bin collects
at least the top 30% true motifs. This cut-off corresponds to Q,..= 0.76, Q.. = 1.5, and Q,,,= 2.243.
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played in the ELM web server output page, LM-specific
random score distributions (as described in Methods) in
order to use them as background score contexts, telling
the users something about the average behavior (in terms
of accessibility, secondary structure and combined
scores), on a large dataset of structures, of each single LM.
These background distributions are only intended as a
supplementary guideline for the web users to evaluate
whether or not the score assigned to a LM match is reason-
ably higher than the random match score average for that
LM.

The background score distributions for 103/112 motifs
are shown in the additional file 4 (Figure S3).Correspond-
ences between x-axis labels and ELM names are reported
in the additional file 5

http://www.biomedcentral.com/1471-2105/10/351

4) Sparse/neutrallenriched score intervals

We chose two score thresholds for each score type aimed
at defining three score intervals (or "bins"), one "sparse”,
lacking in true motifs and enriched in random matches,
one identifying "neutral" matches, and one lacking in ran-
dom matches and enriched in true motifs. We consider
that such a three-interval scheme might effectively help
the user in deciding whether to retain or reject a predic-
tion. In fact it is based on the idea that a predicted match
that is assigned a score in the "enriched" interval will be
indicated by our procedure as a good true motif candidate
(i.e. likely to be a valid functional site), motif matches
scoring in the bottom interval ("sparse" interval) as
unlikely to be valid functional sites and those ranking in
the middle one as "neutral". The score thresholds were
chosen on the basis of the cumulative distributions of Fig-
ure 4 by selecting two cut-offs (one in the percentile range
0-50% and one in the percentile range 50%-100%),
roughly corresponding to the inflection points of the ran-
dom match cumulative distributions, and guaranteeing
that at least the top 30% true motifs are retained in the
enriched bin and at least the lower 40% random matches
fall in the sparse bin. The "neutral" bin is delimited by the
"sparse” and ‘"enriched" cut-offs and contains the
medium quality matches. Table 2 reports Q,., Q,, and
Qi thresholds defining the three bins. From Figure 4 and
Table 3, it can be seen that, in the case of the accessibility
score (Figure 4a), the cut-off on the top 30% of true motifs
implies that only 10% of random matches are retained in
the enriched bin and that the cut-off on the lower 40%
random matches implies that only 15% true motifs incor-
rectly fall in the "sparse" bin. In contrast, Q,,, thresholds
(Figure 4b) actually assign about the top 60% true motifs
and 32% random matches to the enriched bin (see Table
3). This is due to the fact that the top 60% true motifs (and
32% random matches) uniformly get the highest score.
Finally, in the case of Q,,,; (Figure 4c), only 9% random
matches are retained in the enriched bin and only 16% of
true motifs fall in the sparse bin (Table 3). This gives to the
users a measure of the percentage of false hits that they can
expect in the enriched bin and of the percentage of true
hits that they would miss if discarding all the predictions
falling in the sparse interval.

Table 2: Score thresholds defining the "sparse”, "neutral” and "enriched" bins

Bin Qacc ste and
sparse <0.3 <0.9 <I.173
neutral > 0.30 and < 0.755 >09and< |.5 > 1.173 and < 2.243

enriched >0.755

>1.5 >2.243

Q.- accessibility score; Q,.: secondary structure score; Qg = Quec + Quse -
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Table 3: Number and percentage of true and random motifs assigned to each bin by the different score types

Score type bin ™ %TM random %random ratio
Quec sparse 24 15.19 8835 40.05 0.3793
neutral 86 54.43 11106 50.34 1.0812

enriched 48 30.38 2119 9.61 3.1613

Qe sparse 33 20.89 8910 40.39 05172
neutral 30 18.99 6004 27.22 0.6976

enriched 95 60.13 7146 32.39 1.8564
Qund sparse 26 16.46 8821 39.99 0.4116
neutral 84 53.16 11263 51.06 1.0411
enriched 48 30.38 1976 8.96 3.3906

Score type: can be based on accessibility (Q,.) only, on secondary structure only (Q,,.) or on a combination of them (Qg,y = Quec + Qse); TM

(random): number of sparse/neutral/enriched true motif (random) matches; %TM (%random): percentage of sparse/neutral/enriched true motif
(random) matches; ratio: %TM/%random. The scoring scheme implemented both in the Web Server and in the Web Service is marked in bold.

5) 5-fold cross validation

In order to establish more rigorously the predictive ability
of the structure filter in the enriched and sparse intervals,
we carried out a 5-fold cross validation experiment. Refer-
ring to score calibration and within the limits of the 5-fold
cross validation experiment only, we defined two intervals
instead of the three implemented in the ELM Web Server,
by incorporating the neutral interval first into the
enriched one and then into the sparse one. This made it
possible to properly determine sensitivity and specificity
values in two different situations: the first accounting for
an enrichment of sensitivity and the second for an enrich-
ment of specificity.

We defined the positive dataset as the one made up of the
ELM true instances and the negative dataset as the set of
all the un-annotated random matches. We split both the
positive and the negative datasets into five subsets by ran-
dom sampling the datasets without replacement, thus
obtaining five non-overlapping positive and five non-
overlapping negative training sets. Five positive (negative)
test sets were determined by depriving cyclically the whole
positive (negative) dataset of each of the five positive
(negative) training sets.

We built the scoring schemes as described in the section
"The ELM structure filter scoring scheme" and set up score
acceptance/rejection thresholds on the training sets as
explained above (subsection "Sparse/neutral/enriched
score intervals"). Then, we validated them on the corre-

sponding test sets by calculating sensitivity (S,), specifi-
city (S,,), and accuracy defined as:

P
Sp=—"—
TP+FN
TN
Sp=r——
TN+FP
TP+TN
Accuracy = ———————
TP+FP+FN+TN

In evaluating S,, S, and Accuracy, we assumed that a match
belonging to the negative set and scoring above the
"accept” threshold, is a FP and one scoring below, is a TN;
a true instance scoring above the "accept" threshold is a TP
and one scoring below is a FN.

Sensitivity (S,) and specificity (S,) and accuracy averaged
over the five sets are reported in Table 4. Since the struc-
ture filter is designed as a guide to experimentation, we
consider that sensitivity should be privileged over specifi-
city - for not missing too many true motifs. Based on this
viewpoint, it can be observed in Tables 3 (last column)
and 4 that the best performing scoring schemes - in terms
of a trade-off between sensitivity, specificity, the percent-
age of true motifs erroneously discarded and the percent-
age of true motifs correctly retained - are Q.. and Q.

Notice that the Accuracy values reported in Table 4 might
be affected by the fact that the positive and negative data-
sets are unbalanced.
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Table 4: Sensitivity, specificity and accuracy obtained with the 5-
fold cross validation experiment.

score type <S> <S> <Accuracy>

enriched + neutral merged

Qacc 0.843 £ 0.017 0.400 + 0.003 0.404 £ 0.003

Qsse 0.780 + 0.019 0.422 + 0.022 0.425 + 0.022

Qand 0.818 +0.018 0.399 + 0.003 0.402 + 0.003
sparse + neutral merged

Qacc 0.295 + 0.052 0.907 + 0.006 0.902 + 0.005

Qsse 0.61 +0.025 0.662 + 0.01 0.661 £ 0.01

Qand 0.288 + 0.049 0911 £ 0.004 0.907 + 0.004

Sensitivity, specificity and accuracy are averaged over the five datasets
defined in the 5-fold cross validation experiment for: a) the neutral
interval incorporated into the enriched one and b) the neutral interval
incorporated into the sparse one. <S_>: average sensitivity; <Sp>:
average specificity; <Accuracy>: average accuracy.

The analysis of the ROC curves, of the cumulative distri-
butions and of the filter performance in the three score
bins suggests a more relevant role of the accessibility in
discriminating true from false motifs than the secondary
structure assignment. This observation is biologically
sound since, while a buried motif is unlikely to be a gen-
uine functional site, an exposed motif lying e.g. on a helix
can in any case possess an interaction ability. Finally, our
results show that the combined score is slightly more
effective than the accessibility score and markedly better
than the secondary structure score. The combined score
Q4 is implemented in both the Web Server and Web
Service.

Usage of the ELM structure filter

For practical purposes, the filter exploits available infor-
mation on protein structures to answer the question "Is it
worth testing this motif candidate experimentally?" rather
than to categorically tell the users whether they have a real
motif or not.

In deciding if a prediction is a good experimental candi-
date, the user should give more weight to accessibility
score than to secondary structure score since a buried
motif is unlikely to carry a function, whereas an exposed
motif may function properly even if it is part of a beta
strand or belongs to a helix (see examples in the bench-
marking dataset, additional file 6 (Table S1).

The main exception to well buried candidates being non-
functional concerns allosteric rearrangements [44]. If the

http://www.biomedcentral.com/1471-2105/10/351

motif is in the core of a well-known domain like SH3 or a
TIM barrel, a review of the accumulated structural knowl-
edge will allow the user to conclude that the chance of
valid function is negligible. If there is evidence of allos-
tery, however, depending on which parts of the structure
are flexible, this might support or invalidate the motif. If
nothing is known, then it should be kept in mind that
most parts of most globular domains do not undergo
major rearrangements, hence candidates from the sparse
bin should not be eyed with hope.

The user should also consider overall context in assessing
the structure filter results. Is the cell compartment correct:
An exposed RGD motif with a significant p-value in an
extracellular protein is a very good integrin-binding candi-
date: one in a nuclear protein is worthless. Is the motif
conserved, at least within a phylogenetic lineage such as
mammals, tetrapods or vertebrates: the motif should be
conserved in such groups if it is functional in a regulatory
system common to related organisms. Is the biological
context sensible: Is the query protein in some way func-
tionally associated with the ligand protein; Are they in the
same regulatory pathway; Are they in the same protein
complex?

Structural analysis of LMs: Classification and examples of
motifs in protein structures

Globular Domains as the structural unit for LM evaluation

Before the structural context of LMs can be evaluated, it is
necessary to define and select the structural unit. Structure
files may contain large protein complexes, single proteins,
single or multiple chains, single globular domains and
many other types of molecule. LMs may be bound to their
ligands or in an unliganded state. Figure 1a shows the
Sumo-Interacting Motif (SIM) of TDG bound to SUMO-3
by beta augmentation but also well packed into the main
TDG domain. Clearly we need to measure accessibility of
the SIM in the absence of the SUMO protein. The open
(active) and closed (inactive) conformations of the Src
kinase are dependent on the phosphorylation states of
several tyrosines. In particular, the closed conformation is
specified by an interaction between the Src SH2 domain
and the C-terminal pTyr-527 and an interaction between
the Src SH3 domain with a peptide linking the SH2 and
kinase domains. Figure 1b shows the closed conformation
with these elements highlighted. In particular, the SH3
binding peptide is fully buried, even though it is not part
of a globular domain. In the open conformation this pep-
tide is much more accessible, as is the C-terminal peptide
which is released from the SH2 domain (e.g. 1Y57, [45]).
The dependency of LM accessibility on globular domain
rearrangements implies that multi-domain structures are
not a suitable structural unit for structure filtering. The
appropriate units therefore in the cases of LMs would be
the individual globular domains themselves. At least for
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domains that do not undergo allosteric rearrangement, a
motif which is buried in the core of a structural domain
unit is unlikely to be a true one. Therefore we chose the
SCOP [46] protein domain definition as provided by the
ASTRAL resource [47] as the structure dataset to be used to
implement the structure filter.

Analysis of the ELM 3D benchmarking dataset

The inception of this work required the collection and
analysis of the 3D occurrences of LM instances annotated
in the ELM resource [1]. Here we present a discussion of
our benchmark dataset. Many details and specific exam-
ples are reported in the supplementary information (addi-
tional file 1). As described in Methods, we obtained a set
of 158 3D non-redundant instances from 36 different LM
entries (reported in additional file 6 (Table S1) from the
ELM resource release June 2007. Sixteen motifs match
only one instance and twenty match two or more.

Motifs in loops and flexible regions

The majority (~60%) of LM instances are made up of res-
idues whose relative accessibility to the solvent is at least
50% and are located entirely in loop, turn or unstructured
regions. Figure 2 shows two typical examples (LIG_RGD
and MOD_SUMO) of a motif in a very exposed loop of a
domain (2a and 2¢) and a motif in a flexible region which
is not in a domain (LIG_RGD, Figure 2b). LIG_RGD is a
short peptide ligand motif which interacts directly with
extracellular domains of integrins whereas MOD_SUMO
is a motif recognised for modification by SUMO-1. The
SUMO proteins are Small Ubiquitin-related MOdifiers
that are covalently conjugated onto lysine residues within
target sequences.

Motifs in more structured regions

Eight out of 36 LM entries have at least one instance which
is entirely or almost entirely in helical conformation while
two entries have at least one instance almost entirely in a
strand conformation. Notwithstanding the greater rigidity
of helices as opposed to loops and unstructured regions,
LMs found in helical conformation are not necessarily
prevented from being exposed to the solvent and carrying
out their functions. Two clear examples are shown in Fig-
ure 2d and 2e. Figure 2d shows an instance of the
MOD_CMANNOS motif, which is part of a helix and is
partly hidden by the C-term of the protein. C-Mannosyla-
tion is a type of protein glycosylation involving the attach-
ment of a mannosyl residue to a tryptophan. In this
particular case, the most buried residues are those corre-
sponding to wildcard positions in the MOD_MANNOS
regular expression (W..W), whereas the conserved tryp-
tophan needed for the mannose attachment is protruding
outwards from the domain surface. Figure 2e reports two
MOD_N-GLC_1 N-glycosylation sites on the same
domain. N-linked glycosylation is a co-translational proc-
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ess involving the transfer of an oligosaccharide chain to an
asparagine residue in the protein. In this case, one site is
part of a well exposed helix whereas the other one consists
of a loop with small helix overlap and it is very exposed.

Figure 2f, g and 2h show cases of LMs in partly buried beta
strands. In figure 2f an instance of the MOD_N-GLC_1
motif is in a long edge beta strand, slightly disrupted, and
quite exposed. The N-glycosylation sites of figures 2g and
2h are two examples of motifs lying on partially hidden
beta strands but whose modified asparagine (involved in
the functional activity) side chain is exposed to the sol-
vent.

Motifs with low accessibility

In our benchmarking dataset, 29/158 instances belonging
to 11 different LMs [marked in dark orange in additional
file 6 (Table S1)] have a very low average accessibility. In
15/29 of these instances, however, residues belonging to
non-wildcard positions in the LM regular expression (e.g.
the two tryptophans in the C-Mannosylation site regular
expression W..W) display equal or higher accessibility val-
ues as opposed to wildcard positions (marked in bold in
the acc_nwc column of Table S1, additional file 6). This
seems reasonable since LMs are involved in protein inter-
actions and the non-wildcard positions specify LM func-
tion. Importantly, this trend is not seen in the case of LM
false positive matches, an observation which helped us to
improve the benchmark set as it brought to light some
poorly annotated instances. See additional file 1 for
details.

Buried motifs

In the benchmark dataset there are a few cases (10/158) of
almost completely buried true motif instances, i.e. dis-
playing an average relative accessibility < 0.2 on the non-
wildcard positions. We analysed them one by one by
manual inspection and concluded that they fall in one of
two situations: either their functional residue(s), or at
least their side chains, are favourably oriented outwards
from the domain surface (see additional file 1, additional
file 6, and Figure 2g and 2h), or an allosteric effect is either
known or reasonable to hypothesize. Additional file 1
reports details and specific examples.

Discussion

We have set up a procedure to help in the discrimination
of true from false positive LM matches, that is based on
the information coming from two important features
inherent to the 3D structure of proteins: accessibility to
the solvent and secondary structure element. The fact that
functional LMs tend to be in flexible and accessible
regions of proteins is biologically sound and is further-
more supported by the structural analysis of experimen-
tally validated instances of LMs carried out in this work.
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As a consequence, our approach will advise a user against
considering a match as a true motif if it resides in an unfa-
vourable structural context. Nevertheless, the function of
proteins can be regulated by an assortment of different
mechanisms, and allosteric modifications or unusual LM
position and/or conformation are infrequent but possi-
ble. In this sense, we encourage the user to carefully eval-
uate the possibility that a hidden motif can become
exposed upon protein interaction and to use the ELM
structure filter cum grano salis, i.e. not as a deterministic
predictor but rather by exploiting the supplied 3D infor-
mation on LM predictions as a supplement to a prior
knowledge of the LM biological context.

The ELM resource now provides three ways to aid the user
about structural context for the query sequence. The disor-
der predictor GlobPlot highlights potential motif-rich
regions that are likely to be intrinsically unstructured.
SMART and Pfam domains define regions of well-defined
globular structure where LMs are expected to be rare.
Where it can be applied, the new structure filter now pro-
vides a benchmarked estimate of LM likelihood. MnM has
taken a different approach to structural context, a single
score for each pattern match being provided by an acces-
sibility prediction algorithm, SPS [24,48]. While MnM
does not supply domain and tertiary structural informa-
tion that is highly informative to the user, an accessibility
predictor does have a unique value for a substantial frac-
tion of protein sequence space that is predicted to be glob-
ular but is not known to be related to a solved domain
structure. In future, we may also consider introducing a
predictive accessibility filter into ELM for poorly charac-
terised globular peptide segments. There are many algo-
rithms in the literature, with the current best performing
reported to be NetSurfP and Real_SPINE [49,50].

Besides the results on the structure filter discrimination
power presented in this work, we want to point out that
the process of developing the structure filter has already
proven of value to the ELM resource. The structural analy-
sis of annotated motifs reported in section 2.1 highlighted
a number of questionable motifs that turned out to be
incorrectly annotated with weak or conflicting support in
the literature. In this regard, experimentalists should be
aware that accurate annotation of LMs concurs with devel-
oping effective methodologies aimed at identifying new
putative motifs and that inference of shortlists of candi-
date true motifs is especially useful to reduce the number
of assays needed to experimentally validate a new LM.
Thus, the experimental strategy adopted to detect func-
tional motifs plays a fundamental role and incorporating
some simple stratagems in experimental protocols might
crucially help in reducing the number of false motifs in
the literature. We consider a pair of much too rarely
undertaken controls to be especially important when can-
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didate motifs are mutated [4]: (1) Check if the motif
mutation unfolds the protein by cloning in a tagged
expression construct that allows fast and easy purification
of the protein and examine folding status by e.g. circular
dichroism (or NMR if available); (2) When transfecting
with mutated proteins, examine the cells by microscopy
for intracellular amyloid caused by massive overexpres-
sion of unfolded protein and, if it is present, then reason
out why the assay is misleading (e.g. remember that amy-
loids are not subject to ubiquitin-mediated destruction
processes so destruction box and degron motif mutation
assays give misleading results).

We expect that the predictive power of the structure filter
can be improved as more data becomes available. For
example, one might devise a procedure trained on the
structural data of specific motifs and qualified to make
predictions only for those motifs. We investigated this
approach and concluded that it would currently be appli-
cable only to the very few LMs that have enough instances
in the database. For the great majority of LMs, appropriate
training and tests cannot be carried out and predictions
turned out to be unacceptably stringent: An effective pro-
cedure should be based on many more instances per LM
and these are not available at the moment. We believe that
in the future, as an increasing number of protein struc-
tures become available and the quantity of ELM annota-
tion data grows, it will be possible to appropriately train
and test motif-specific structure filters for a significant
number of LMs.

Conclusion

In conclusion, LMs are subject to enormous over-predic-
tion, so that the few true motifs are lost amongst the many
false positives. Whenever a query can be modelled on a
structure, the structure filter can help in discriminating
true from false positive matches of LMs. Moreover, since
the number of solved structures is rapidly increasing, a
benchmark set of true positive structures is going to be
available for an increasing number of motifs, thus allow-
ing more reliable tests and consistent score threshold set-
ups. As a consequence, the structure filter, which can be
considered to all intents and purposes as a precursor in
the use of structural information for short LM false posi-
tive discrimination, is going to become increasingly indis-
pensable for the ELM resource's filtering framework in the
structural genomics era.

Methods

Dataset of structural instances

The ELM database ([1], release June 2007) collected 112
LM, 93 of which have annotated instances. The set of 1898
annotated instances in 1037 sequences from the 93 differ-
ent LMs obtained from the ELM database represented our
initial dataset. In our vocabulary, "instance" means a true
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annotated LM occurrence, whereas "match" indicates any
regular expression hit on a query sequence. The instances
were modeled onto SCOP domains [46] by BLAST align-
ment [51] of the sequence containing the instance to the
reference domain sequence extracted from the PDB entry
[52]. In order to assign a "sequence instance" to a "struc-
ture instance", the aligned sequences must have at least
70% global identity (over the domain) and 100% local
identity (i.e. along the instance positions). The final data-
set of structural instances comprised of 185 3D instances
from 37 different LMs. Redundancy was removed at the
structure level: if two or more instances mapped on iden-
tical 3D sites, all but one were discarded, thus reducing
the dataset to 158 3D instances from 36 different LMs.

For each position of a 3D instance, the solvent accessibil-
ity and secondary structure values are collected from the
DSSP [53] file of the target structure mapping the
instance. For the solvent exposure of a residue, a relative
(normalized) value is calculated as the ratio of the resi-
due's DSSP accessibility value to the residue accessible
surface area value as defined by Miller and co-workers
[54] and which is calculated for the residue in a Gly-Xaa-
Gly tripeptide in extended conformation.

The DSSP secondary structure types are: H = alpha helix, B
= residue in isolated beta-bridge, E = extended strand (par-
ticipates in beta ladder), G = 3-helix (3/10 helix), I = 5
helix (pi helix), T = hydrogen bonded turn, and S = bend.
Unstructured regions are marked as U. In our study we
grouped the SSE types in four categories: 1) helices (H, I);
2) 3/10 helices (G); 3) strand (E); 4) loops (B, T, S, U). Pi
helices are usually attached to larger alpha helices; there-
fore we grouped them with helices. 3/10 helices are often
poorly conserved as part of a larger loop but sometimes
they are continuously linked to a larger helix and so we
decided to treat them separately. B, T, S and U are grouped
together because they usually belong to 3D flexible loop-
like regions.

The non-redundant instance dataset is reported in Table
S1 (additional file 6).

Random structural matches

Since the aim of our study was to set up a scoring scheme
and to establish accessibility and secondary structure
score thresholds for discriminating true motifs among
random (mostly FP) matches, we performed a pattern
search using all the LM regular expressions available in the
ELM database (112) in the 1037 sequences known for
having at least one true annotated instance. True motif
instances were filtered out from the resulting list of
matches. Applying the same sequence-to-structure map-
ping procedure used for true motif instances, the
sequences of random matches were modeled onto SCOP
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domains, resulting in 22,058 3D non-identical matches
from 105 motifs.

LM-specific background score distributions

Background score distributions have been obtained by
scanning the 13,582 sequences of a non redundant PDB
dataset (<50% sequence identity, downloaded from PDB
clusters [55]) with the regular expressions of the 112 ELM
motifs (total number of available motifs), mapping the
323,5412 matches onto SCOP domains and assigning
them an accessibility score and a secondary structure
score. Score distributions (for each feature) were then
plotted for 103 LMs: score distributions for the 9 LMs with
less than 10 matches are not reported. LM-specific score
distributions are shown in additional file 4 (Figure S3).

The ELM structure filter pipeline

The user query sequence submitted through either the
Web Interface or the Web Service is first scanned for LM
matches and then aligned to the database of ASTRAL
sequences [47] derived from SCOP domains [46]. The hit
with the highest sequence identity and coverage to the
query sequence is selected as a reference structure. If more
than one hit has the same sequence identity and coverage
to the query sequence, the structure with the best experi-
mental resolution is taken as reference and, for the same
resolution, one hit is chosen randomly. This approach
may result, for example, in the organism of the reference
structure being different from the source organism of the
user query sequence. However, since proteins with identi-
cal sequences fold into identical structures, the procedure
for the selection of the reference structure does not intro-
duce any bias in the calculation of solvent accessibility
and secondary structure values. For the structure filter to

User query sequence

| Sequence mapping onto structural domain(s) ]

lYES l NO

NO
| Check if the match falls on a domain | - SF not applicable

lYES

l Retrieve SA and SSE values of the individual positions of the LM match ‘

l

Score the LM match

score Nh[ﬁy w< treshold

enrtchedfneutrai sparse

Figure 6
The Structure Filter (SF) pipeline. SA: Solvent Accessi-
bility; SSE: Secondary Structure Element.
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Feature 4
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MOD_CK1_1 5
MOD_CK2_1 8
MOD_GSK3_1 B
MOD_PIKK_1 1
MOD_PK_1 1
MOD_PKA_1 1
MOD_PK&_2 2
MOD_PLK 2
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MOD_SUMO 1
TRG_AP2Zbeta_CARGO_1 1
TRG_LysEnd_APsAcLL_11
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oomaINS: [l SmartPfam domain
GLOBPLOT: [l GlobDom

2D STRUCT: ] Strand

MOTIFS:  [J Favourable Context

Figure 7
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Sequence: RAGP1_MOUSE

| | I
Structure Filter

~ MOD_SUMO
[525,528] 1
| LKSE -

I Target Domain Structure: dikpsd_
I I Accessibility Score: 0.743 I
— Structure Filter | Secondary Struct. Score: 1.5 -
___TRG NES CRM1 1 Combined Total Score: 2.243 L
[446,461] - Total Score P-value: 0.0069

N EKLLRLGPKVSVLIVQ — on
-~ Target Domain Structure: dikpsd_
| Accessibility Score: 0.347
Secondary Struct. Score: 0.708
~ | Combined Total Score: 1.055
-~ Total Score P-value: 0.3616

101

301

501 589

B Signal peptide {pred.) wees Low-complexity region wess Coiled-coil (pred.) l TM helix (pred.)

Disorder
Helix fl Loop 3/10 Helix
Sparse/Smart filtered ® Neutral [ Annotated Elm B <0< Assigned by
homology

The ELM server output page. An example of the graphical output of the ELM structure filter for the RAGP1_MOUSE

Swissprot [63] entry. The key shows the elements of the graphic. Secondary structure elements (in this case helical) are shown
as yellow boxes connected by black lines (unstructured loops that tend to be surface accessible). Mouseover of the site rectan-
gles turns on a window reporting structural information; further details of the structure filter results are available by clicking on

the site rectangle.
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be applicable, two conditions must hold: 1) the query
sequence or a region of it can be aligned to one or more
(non-overlapping) structural domains; 2) at least one LM
match falls in an aligned region, i.e. can be mapped onto
a 3D domain. The structural positions of the match are
then analysed one by one and solvent accessibility and
secondary structure values are collected and scored as
described in Methods. The structure filter pipeline for a
LM match is schematised in Figure 6 and a snapshot of the
ELM server output page, displaying results of the struc-
tural filtering procedure, is reported and described in Fig-
ure 7. This latter, shows that a solved structure of the C-
terminal domain of the RanGAP1 protein is available in
SCOP entry d1kpsd_ that is used for structure filtering.
The remainder of the sequence is filtered by the cruder
domain filter. It can be observed that mouseover of the
known sumoylation site reveals that it scores in the
enriched bin and receives a significant p-value: if we did
not already know it was a true motif, it would be an attrac-
tive candidate for experimental testing. Moreover, mouse-
over of a match to the NES motif reveals that it has poor
accessibility and is assigned to the sparse bin. The NES
motif is predominantly hydrophobic and this example,
like many others falling in globular domains, is not a
plausible functional site and experimental follow up
would be a waste of valuable experimental effort.

The ELM structure filter Web interface and Web service
As an initial step for feedback in the development process
of the structure filter pipeline methods, the ELM structure
filter functionality was implemented directly into the ELM
server. This involved integration work on both the display
representation in the graphical output in addition to links
to the more specific details of the results.

As a second step, in order to facilitate a clean encapsula-
tion of the structure filter pipeline code functionality and
to enable future remote tool integration, a SOAP Web
Service to access the functionality programmatically has
been implemented and is available at http://structurefil
ter.embl.de/webservice/structureFilter.wsdl.

At this link the user can find a detailed description of the
web service operations and an example client implemen-
tation.

The functionality provided by the web service encom-
passes the current ELM server interface functionality with
some additional options. For the ELM Server interface
functionality, all LMs in the ELM database are matched
against the query sequence and this is also the default
functionality of the Web Service. The extra options imple-
mented in the Web Service are to search the query
sequence by one or more user-specified regular expres-
sions, rather than the default ELM database regular expres-
sions, and/or by one or more user-specified ELM
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identifiers from the ELM database. Where possible, to a
limited extent, if the user-specified regular expression cor-
responds to an existing ELM this information is made
known to the user.

The WSDL (Web Service Description Language) [56] file is
WS-1 compatible. The WS-Interoperability Basic Profile
[57] proposes a set of rules to achieve interoperability of
web services between different platforms. The WSDL file
implements an XML document/literal style [58]. The
back-end code is implemented in Java and runs on Axis2
[59] inside a Tomcat servlet container [60].

Statistical Details

Score distributions turned out to be normal after visual
inspection and quantitative Shapiro-Wilk test [61] at the
0.01 significance level. The average and standard devia-
tion values from random match score distributions are
used for the dynamical calculation of the Z-score and the
corresponding one-sided p-value. The significance of the
differences observed for accessibility and secondary struc-
ture frequencies in true motifs vs random matches was
assessed through t-tests (for accessibility values) and chi-
square tests (for secondary structure assignments). All the
statistical calculations were performed with the R package
[62].

List of abbreviations

LM: Linear Motif; 3D: Three-dimensional; TM: True Motif;
FP: False Positive; regexp: regular expression; SSE: Second-
ary Structure Element; S,,: Sensitivity; S,,: Specificity.
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Additional file 2

Cumulative distributions in the case all motif position (non-wildcard
+ wildcard) scores are considered.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-351-S2.PDF]

Additional file 3

ROC curves. The file contains the ROC curves for every type of score
(Qucer Qsser Qand = Qace + Qse) and scheme (i.e. considering both non-
wildcard motif position and all motif position scores). The AUC values
corresponding to ROC curves of Q,(all positions), Q. (all positions)
and Q4 (all positions) are 0.71, 0.67 and 0.71, respectively.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-351-S3.PDF]

Additional file 4

LM-specific background score distribution plots. Boxplots representing
accessibility, secondary structure, and combined background score distri-
butions for each ELM motif.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-351-S4.PDF]

Additional file 5

Correspondences between the x-asis labels of Figure S3 (additional
file4) and ELM names.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-351-S5.PDF]

Additional file 6

The ELM dataset of structural instances. The complete set of 158 3D
non-redundant instances from 36 different LM entries from the ELM
resource release June 2007. The table reports sequence and structure infor-
mation for each instance.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-351-S6.XLS]
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