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Abstract
Background: The remarkable advance of metagenomics presents significant new challenges in
data analysis. Metagenomic datasets (metagenomes) are large collections of sequencing reads from
anonymous species within particular environments. Computational analyses for very large
metagenomes are extremely time-consuming, and there are often many novel sequences in these
metagenomes that are not fully utilized. The number of available metagenomes is rapidly increasing,
so fast and efficient metagenome comparison methods are in great demand.

Results: The new metagenomic data analysis method Rapid Analysis of Multiple Metagenomes with
a Clustering and Annotation Pipeline (RAMMCAP) was developed using an ultra-fast sequence
clustering algorithm, fast protein family annotation tools, and a novel statistical metagenome
comparison method that employs a unique graphic interface. RAMMCAP processes extremely
large datasets with only moderate computational effort. It identifies raw read clusters and protein
clusters that may include novel gene families, and compares metagenomes using clusters or
functional annotations calculated by RAMMCAP. In this study, RAMMCAP was applied to the two
largest available metagenomic collections, the "Global Ocean Sampling" and the "Metagenomic
Profiling of Nine Biomes".

Conclusion: RAMMCAP is a very fast method that can cluster and annotate one million
metagenomic reads in only hundreds of CPU hours. It is available from http://
tools.camera.calit2.net/camera/rammcap/.

Background
The emerging field of metagenomics enables a more com-
prehensive understanding of environmental microbial
communities [1-9]. However, metagenomic data consists
of enormous numbers of fragmented sequences that chal-
lenge data analysis methodologically and computation-
ally. To address these challenges, new methods and
resources have been developed, such as simulated data-
sets[10], IMG/M[11], CAMERA[12], MG-RAST[13], tax-
onomy tools[14,15], statistical comparison[16],

functional diversity analysis[17], binning [18-20] and so
on.

The Rapid Analysis of Multiple Metagenomes with a Clus-
tering and Annotation Pipeline (RAMMCAP) presented
herein aims to address the particular computational chal-
lenges imposed by the huge size and great diversity of
metagenomic data. The primary goal is to significantly
reduce the computational effort in sequence comparison,
as large-scale comparison of metagenomic sequences has
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become extremely time-consuming. For example, the pro-
tein analysis of the Global Ocean Sampling (GOS)
study[2] took more than one million CPU hours.

Metagenomic datasets may contain many novel genes that
don't show any homology to existing genes. For example,
only ~10% of the sequences in the "Metagenomic Profil-
ing of Nine Biomes" (BIOME) study [9] match known
functional genes. Novel genes in metagenomic datasets
have not been used in many studies with homology-based
gene prediction and analysis, so the second goal of RAM-
MCAP is to explore whole datasets and make use of the
novel sequences. Because the ab initio gene finding
approaches developed for complete genomes work poorly
with fragmented DNA sequences, recently, several new
gene prediction methods were developed for short DNA
sequences with high sensitivity and specificity, such as
Metagene[21], MetageneAnnotator[22], and Neural Net-
works[23]. In RAMMCAP, ORFs are called with either
Metagene or simple six reading frame translation; both
methods can identify novel genes.

Since more and more metagenomes will be available in
the future, the third goal of RAMMCAP is to provide a new
way to compare metagenomes from various environmen-
tal conditions and to identity and visualize the statistically
significant differences between metagenomes.

In this paper, RAMMCAP was implemented and applied
to the two largest metagenomic collections. The first set,
GOS [1,2], features 7.7 million ~800 base Sanger reads
from 44 samples. A second, the Biomes [9] set, has 14.6
million ~100 base 454 reads from 45 microbiomes and
42 viromes samples. With moderate computational effort,
RAMMCAP can quickly analyzed these huge datasets and
obtained many novel results that could not be achieved by
other existing methods.

Results and Discussion
Implementation
RAMMCAP is illustrated in Figure 1. Cluster analysis is a
key approach in this pipeline. Our previous ultra-fast
sequence clustering algorithm CD-HIT [24-26] was mod-
ified to handle large metagenomic datasets. Using the
DNA version of CD-HIT, the metagenomic reads from one
or more metagenomes are clustered together at 95%
sequence identity over 80% of length (clustering parame-
ters can be adjusted by users) to identify clusters of unique
genomic sequences, referred to as read clusters. It takes ~1
hour to cluster a million 200 base reads.

ORFs are collected from sequence reads with ORF_finder,
a ORF calling program implemented here by six reading
frame translation in a similar way as the GOS study[2].
Within each reading frame, an ORF starts at the beginning

of a read or the first ATG after a previous stop codon; it
ends at the first stop codon or the end of that read. The
minimal length of ORFs can be specified by users. ORFs
can also be called from sequence reads with program
Metagene[21]. Since these sequence reads are short, a pre-
dicted ORF maybe a portion of a complete ORF. An ORF
may also be a translation from a non-coding frame: such
an ORF is called a spurious ORF, as defined in the original
GOS study [2]. The GOS study also introduced a spurious
ORF detection method using nonsynonymous to synony-
mous substitution test, which is available along with a
recent GOS clustering study [27]. This method is not inte-
grated within RAMMCAP, but it can be used independ-
ently to identify the spurious ORFs predicted here.

ORFs are first clustered at 90-95% identity to identify the
non-redundant sequences, which are further clustered to
families (ORF clusters) at a conservative threshold, so that
each cluster contains sequences of the same or similar
function. A 30% sequence identity indicates significant
similarities for full-length proteins. Since ORFs from
Sanger reads are long enough, so they are clustered at 30%
identity over 80% of ORF length. ORFs from 454 reads are
much shorter; they are clustered at 60% identity over 80%
of ORF length. ORF clusters are used for functional stud-
ies. The size of an ORF cluster is the number of its non-
redundant sequences. For one million ORFs, it takes a few
CPU hours to cluster at 60% identity and ~100 CPU hours
at 30% identity.

The clustering method in RAMMCAP is quite different
from the clustering method in the GOS study [2] and its
incremental update [27], which generated core clusters by
all-against-all BLAST search and then merged core clusters
into final clusters using sequence profile methods. The
final clusters in the GOS study are large and contain

Metagenomic data analysis pipeline RAMMCAPFigure 1
Metagenomic data analysis pipeline RAMMCAP.
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sequences of very remote similarities, whereas the cluster-
ing method employed here only tries to generate very con-
servative clusters.

ORFs are annotated from Pfam and Tigrfam with
HMMER[28] (accelerated with Hammerhead[29]), and
from COG with RPS-BLAST[30]. Hits must be with e-val-
ues ≤ 0.001, and meet the significant scores in case of
HMMER searches. This annotation process only takes
~100 CPU hours for one million ORFs.

Optionally, ORF annotation may be performed quickly by
running only the representative sequence of each ORF
cluster and then transferring the annotation to other
members in that cluster. But transferred annotation may
be wrong in some cases, for example, where the target
ORF has fewer domains than the source ORF (the repre-
sentative). Since the annotation process is very fast, it is
preferable to run all the ORFs for more accurate annota-
tion.

Statistical comparison of metagenome
In many metagenomic projects, multiple samples from
different environmental conditions were studied. This
manuscript describes a novel way to compare metagen-
omes and visualize their differences. Since sequences from
multiple metagenomes are clustered into families or clas-
sified into reference families (Pfam, Tigrfam, or COG),
metagenomes can be compared by their occurrence pro-
files across all the families or selected families of interests.

Here, an occurrence profile coefficient, rAB = NA ∩ B/NA ∪ B,
is defined as the similarity measure between two metage-
nomes A and B. NA ∩ B is the number of families that are
found in both A and B above a minimal occurrence cutoff
(defined later) without significant difference. NA ∪ B is NA

∩ B plus the number of families that occur in one metage-
nome significantly higher than in another metagenome.
The value of rAB is between 0-1, with 0 representing no
overlap and 1 indicating a perfect match between A and B.

Let NA and NB be the number of sequences in A and B, let
HA and HB be the number of sequences that occur in fam-
ily H. One question is whether the difference between HA
and HB is statistically significant. Rodriguez-Brito et al
introduced a method to test such statistical significance of
differences between two metagenomes [16]. Rodriguez-
Brito's method used a large amount (in order of 105) of
simulations by randomly picking a certain number of
sequences from A, B, and A+B to generate distributions
and analyze it, so it is very time-consuming.

In this paper, the z test for two independent propor-
tions[31] is adopted to test the statistical significance of
differences between two metagenomes. Given NA, NB, HA,

and HB, there are three occurrence rates PA = HA/NA, PB =
HB/NB, and P = (HA+HB)/(NA+NB). The statistical signifi-
cance between A and B can be described by:

This method just needs calculation of a single equation,
but it produces near identical results as the Rodriguez-
Brito's method. Comparisons between the Rodriguez-
Brito's method and the z test method under several differ-
ent combinations of NA, NB, HA, and HB is shown in Figure
2.

In this manuscript, HA is considered significantly higher
than HB if both (1) the z score satisfied a user defined con-
fidence level such as 0.95, and (2) PA ≥ f × PB, where f (f>1)
is also a user defined parameter, called significant factor.

The statistical significance cannot be established at very
low occurrences, so the low occurrence families are
excluded from NA ∩ B in calculation of rAB. The minimal
occurrence cutoff of a family H within metagenome A is
defined as the minimal number of HA to produce a signif-
icant z score when A is compared to another metagenome
B where NA = NB and HB = 0. It can be obtained that:

Since 2NA >>z2, the minimal cutoff of HA is 4 at 0.95 con-
fidence level (z = 1.96), and 7 at 0.99 confidence level (z
= 2.58).

The occurrence profile coefficients are calculated for all
the metagenome pairs, and the output matrix is used to
hierarchically cluster the metagenomes.

Performance of ORF prediction
ORF_finder and Metagene [21] were evaluated with simu-
lated metagenomic reads generated with MetaSim soft-
ware[32] from the completed microbial genomes released
between January and May 2009 from NCBI. Four datasets
(Sim100, Sim200, Sim400 and Sim800) of 1 million
reads each with average length of 100, 200, 400 and 800
bases were generated to simulate the current sequencing
techniques. The error rates for both 454 (>3%) and Sanger
(1~2%) defined by MetaSim are much higher than the
reported error rates [33,34], so the exact model with
default parameters were used in MetaSim for all simulated
datasets. If a simulated read overlaps with an annotated
ORF by NCBI at least 30 amino acid, the overlapped part
is used as a true ORF. A predicted ORF by either
ORF_finder or Metagene is a true-positive if at least 50%
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of it overlaps with a true ORF within the same reading
frame. The ratios of true-positives relative to all true ORFs
(sensitivity) and to predicted ORFs (specificity) were used
as a performance measure (Table 1). Four ORF cutoff
lengths (30, 40, 50, and 60 amino acids) were applied for
ORF_finder. This analyses show that Metagene has high

sensitivity and specificity (~94% and ~92%) for reads of
at least 200 bases. But its sensitivity drops to 59% for 100
base sequences. ORF_finder has very high sensitivity
(>99%) and very low specificity (<37%) at 30 amino acid
cut off length; a longer cutoff length produces a higher
specificity but lowers the sensitivity.

Comparison between Rodriguez-Brito's method and z test methodFigure 2
Comparison between Rodriguez-Brito's method and z test method. The x-axis and y-axis are occurrence rate PA and 
PB of two samples A and B. The 4 plots are made with different combination of sample size NA and NB as indicated in each plot. 
Red lines and green lines are calculated with Rodriguez-Brito's method and z test method respectively. Difference of A and B 
outside the area enclosed by a pair of red (or green) lines is statistically significant at 0.95 confidence level. This figure shows 
that when PA and PB become big enough (such as >0.001), a very small difference between them will be counted as significant.
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Table 1: Sensitivity and specificity of Metagene and ORF_finder on simulated metagenomic datasets

Sensitivity/specificity (%)

Datasets
Method

Sim100 Sim200 Sim400 Sim800

Metagene 59.07/92.58 94.31/92.32 93.84/91.91 94.02/93.25
ORF_finder, cut off = 30aa 99.93/36.56 99.74/36.73 99.78/34.49 99.92/32.83
ORF_finder, cut off = 40aa 96.74/46.65 97.89/43.81 99.13/41.54
ORF_finder, cut off = 50aa 91.65/54.82 94.04/52.51 96.88/50.21
ORF_finder, cut off = 60aa 73.66/61.27 88.94/59.84 93.34/57.98

Distribution of clusters and sequences by cluster sizeFigure 3
Distribution of clusters and sequences by cluster size. The x-axis is the cluster size X. The y-axis in left figures (a and c) 
is the number of clusters of size at least X; the y-axis in right figures (b and d) is the percentage of total sequences included in 
the clusters of size at least X. Clustering analyses were also made separately for the microbiomes and the viromes. So, 
together there are seven clustering experiments: GOS-ORF, BIOME-read, BIOME-ORF, BIOME-read-M, BIOME-read-V, 
BIOME-ORF-M, and BIOME-ORF-V (where M and V stand for microbiomes and viromes).
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Testing on clustering
RAMMCAP was applied to GOS[2] and BIOME[9], the
two largest metagenomic collections. Prior to the full
development of RAMMCAP, we clustered the 17.4 million
GOS ORFs released by the original GOS study [2] at 30%
identity and published the detailed clustering results [35].
Here the BIOME reads and BIOME ORFs, which have 14.6
and 24.6 million sequences respectively, were clustered at
95% and 60% identity (Figure 3). The previous GOS clus-
ters were added in Figure 3 to show the difference between
GOS and Biome (Figure 3a, b).

GOS ORFs have more than 1000 clusters that contain ≥
1000 non-redundant sequences; BIOME ORFs have less
than 100 such clusters. About 70% GOS ORFs, 46%
BIOME reads, and a similar percent BIOME ORFs are
found in non-singleton clusters. Within the BIOME data-
sets (Figure 3c, d), the microbiomes have more large clus-
ters compared to viromes; suggesting that microbial
sequences are more conserved than viral sequences.

Clustering analysis is a powerful tool to recover protein
families and to discover the novel ones; it helps to recog-
nize spurious ORFs. Clustering tends to put real ORFs into
large clusters and leaves spurious ones in small or single-
ton clusters because spurious ORFs have more random
features. If the ORFs with Pfam, Tigrfam, or COG matches
are considered true ORFs, then 93% of these true GOS
ORFs are found in clusters of size ≥ 10, which is only 1.3%
total GOS clusters; here cluster size is the number of non-
redundant sequences in a cluster. Further, 28% of the true
BIOME ORFs are in 1.0% of top clusters of size ≥ 5. Many
large clusters without any homology to known proteins
are found, which may shed light on novel families of envi-
ronment specific functions.

Validation of clustering quality
ORFs called from metagenomic reads are short and frag-
mented. In addition, errors such as frame shifting and
wrong gene boundary may occur due to sequencing
errors. Therefore a conservative threshold is used in pro-
ducing ORF clusters to ensure that a cluster contains
sequences of the same or similar function. The quality of
clustering was evaluated with Pfam, the manually curated
classification of protein families. The domain sequences
in Pfam models (release 22.0) were extracted from the
alignments and were clustered at 30% identity using the
clustering protocol in RAMMCAP.

Not all the Pfam sequences were used. Very short Pfam
families <30 amino acids were excluded because most of
these families were built by sequence patterns rather than
similarities. Some Pfam families are overlapping, for
those families, short ones were excluded. Since Pfam fam-
ilies were built with very sensitive HMM models, the
sequences within same families can be very diverse, even
at sequence identities very much below 30%. Therefore it
is anticipated that divergent sequences from a large Pfam
family may be placed in separate clusters. The goals of
clustering are: (1) to generate homogeneous clusters
whose sequences are from the same Pfam families, (2) to
cover most sequences in a small number of large clusters.
The distributions of clusters of Pfam domain sequences
are shown in Figure 4. A cluster is considered good if
>95% of its members are from the same Pfam family. It is
observed that most sequences (>97%) are in good clusters
(Figure 4a), which are ~30 times more than bad clusters
(Figure 4b). Although there are singleton clusters, but
non-singleton clusters still cover 94% of sequences, and
clusters of size ≥ 5 cover 85% of sequences.

Distribution of clusters of Pfam sequencesFigure 4
Distribution of clusters of Pfam sequences. The x-axis is cluster size. The y-axis in (a) is the number of sequences, and 
the y-axis in (b) is the number of clusters.
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Testing on clustering-based comparison of metagenomes
Statistical comparisons of GOS and BIOME metagenomes
based on the occurrence profile coefficient calculations
using results of clusters are shown in Figure 5. The GOS
samples show great overlaps, but all unique samples are
classified as outliers, such as GS033 (hypersaline), GS020
(fresh water), and GS025 (reef, different filter size), from

other marine samples. The sample-specific clusters may
shed light on functional aspects related to the environ-
ment for further studies. The BIOME samples intersect
much less, but notable overlaps are found between pair-
ing samples, such as Fish-M vs Fish-V, and Coral-M vs
Coral-V. The differences between GOS and BIOME sam-
ples reflect that the BIOME samples are more diverse.

Similarity matrices of metagenomesFigure 5
Similarity matrices of metagenomes. Squares along the diagonal represent the number of clusters where a sample 
occurs. Grayscale squares below the diagonal represent the occurrence profile coefficients rAB between two samples with a 
darker color indicating a greater similarity. Cells above the diagonal show the unique and overlapping clusters, explained in (c). 
Hierarchical clustering of samples based on the matrix is shown with vertical gridlines indicating the value of the coefficient 
where two nodes are merged. Matrices are made for GOS ORF clusters (a) and BIOME ORF clusters (b) with significant a fac-
tor f = 2 at 0.95 confidence level. The BIOME samples are grouped by biome type, such as Coral-M, which stands for coral 
microbiomes sample.
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Testing on protein family-based comparison of 
metagenomes
Annotations from Pfam, Tigrfam, and COG are used for
metagenome comparison in a similar way that is applied
in clusters. These analyses show over- and under-repre-
sented families between samples. The protein families of
these three databases are all organized into super families:
clans in Pfam, role categories in Tigrfam, and functional
classes in COG. Therefore, metagenome comparison can
be made under a specific super family of interest, which is
a unique feature of this study. Samples were compared
systematically under all super families and many signifi-
cant differences were found. Here we show a few interest-
ing examples (Figure 6). GOS samples share an extremely
similar occurrence profile across the 86 families of COG
class F (nucleotide transport and metabolism), which sug-
gests this class is highly conserved across the world's
ocean. The least conserved class, aside from functional
unknown classes and a few tiny classes, is T (Signal trans-
duction mechanisms). Similar observations were
obtained for Biome samples, but the intrinsic diversity of
BIOME sequences introduces more non-overlapping fam-
ilies.

Conclusion
The CPU time for clustering GOS ORFs, BIOME reads, and
BIOME ORFs were 9600, 125, and 513 hours, respec-
tively. GOS ORFs cost relatively more, but still two orders
of magnitude less than the original GOS study[2]. The
annotation for GOS ORFs and BIOME ORFs took 3800
and 1560 hours. Through clustering analysis, many novel
families can be identified and can be used in metagenome
comparison. The RAMMCAP software and pre-calculated
results are available at http://tools.camera.calit2.net/cam
era/rammcap/.
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