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Abstract

Background: Tyrosine sulfation is one of the most important posttranslational modifications. Due
to its relevance to various disease developments, tyrosine sulfation has become the target for drug
design. In order to facilitate efficient drug design, accurate prediction of sulfotyrosine sites is
desirable. A predictor published seven years ago has been very successful with claimed prediction
accuracy of 98%. However, it has a particularly low sensitivity when predicting sulfotyrosine sites
in some newly sequenced proteins.

Results: A new approach has been developed for predicting sulfotyrosine sites using the random
forest algorithm after a careful evaluation of seven machine learning algorithms. Peptides are
formed by consecutive residues symmetrically flanking tyrosine sites. They are then encoded using
an amino acid hydrophobicity scale. This new approach has increased the sensitivity by 22%, the
specificity by 3%, and the total prediction accuracy by 10% compared with the previous predictor
using the same blind data. Meanwhile, both negative and positive predictive powers have been
increased by 9%. In addition, the random forest model has an excellent feature for ranking the
residues flanking tyrosine sites, hence providing more information for further investigating the
tyrosine sulfation mechanism. A web tool has been implemented at http://ecsb.ex.ac.uk/

sulfotyrosine for public use.

Conclusion: The random forest algorithm is able to deliver a better model compared with the
Hidden Markov Model, the support vector machine, artificial neural networks, and others for
predicting sulfotyrosine sites. The success shows that the random forest algorithm together with
an amino acid hydrophobicity scale encoding can be a good candidate for peptide classification.

Background

Tyrosine sulfation is a posttranslational modification
(PTM), which introduces a sulfate group to a tyrosine res-
idue in a protein [1-3]. During the modification process,
sulfation is catalysed by tyrosylprotein sulfotransferase
[4]. A targeted tyrosine for sulfation is normally required
to be exposed on a protein surface [5]. Previous studies
have indicated that Sulfation is an important anticipator
for extracellular protein-protein interactions [6,7]. Studies

have shown that sulfation is related to various diseases
when a malfunction of a cellular activity occurs. For
instance, sulfotyrosine can alter the affinity in some chem-
okine receptors leading to a downstream signalling cas-
cade which affects the cells involved in acute and chronic
events of cellular immunity [8]. Disease-related altera-
tions at the non-reducing termini of chondroitin and der-
matan sulfate have been found useful for monitoring
proteoglycan metabolism [9]. In biochemistry, sulfation
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has been recognised as an important contributor to detox-
ication for endogenous compounds [10]. Sulfation activ-
ity has been investigated in various cancer studies such as
breast cancer [11-13], lung cancer [14], prostate cancer
[15,16], and pancreatic cancer [17-19]. Because of the rel-
evance to various disease, tyrosine sulfation has been the
target for drug design for over a decade [20-25].

In silico prediction of posttranslational modification sites
is a significant activity in bioinformatics. For instance, in
ExPASy http://www.expasy.ch/tools various PTM site pre-
dictors have been implemented. Specifically, a predictor
named as Sulfinator http://www.expasy.ch/tools/sulfina
tor for sulfotyrosine site prediction has been successfully
implemented using Hidden Markov Models (HMM) [26].
The predictor was able to obtain a sensitivity (the accuracy
of predicting true sulfotyrosine sites) of 98% and total
prediction accuracy of 98%. When the predictor is used on
newly sequenced proteins, it is found that the predictor
has a particularly low sensitivity although the specificity
(the accuracy of predicting unconfirmed sulfotyrosine
sites) is high. In this study, a new approach is therefore
developed aiming to improve the sensitivity while main-
taining the specificity. There is another predictor devel-
oped only for tyrosine sulfation sites in animal viruses
using Position-Specific-Scoring-Matrix (PSSM) [27]. This
approach is very similar to the so-called h-function pro-
posed by Poorman [28] 18 years ago. Because only posi-
tive peptides are used for scoring, such an approach
suffers low specificity when used for making prediction
on unseen data [29]. 69 Jackknife simulations were con-
ducted for only positive data. Although it claimed predic-
tion accuracy of 96.43%, the model was actually trained
with a carefully selected threshold. The claimed accuracy
was observed after tuning the threshold, which is there-
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Table I: The prediction result for the 15 blind test sequences
using the Sulfinator.

Accession Actual sites Predicted sites
Q9PU4I 112 112

P61073 21 21

Q9NZ53 97 118 97

A2ZBG5 110 112

A2YFB4 80 82 80

Q7 M3V5 114 114 102 131
P84900 62

QOVTT9 62

POCIV8 16 16

POCIV7 16 16

QB800FI 62

Pé8I16 5 5

P68124 4 4

P68121 3 3

P68119 6 6

fore likely over-estimated. Meanwhile, there is no public
available tool for the comparison.

In a review paper, some most common features describing
the patterns of the residues flanking a tyrosine sulfation
site were given [30]. The patterns are found from the resi-
dues which flank the experimentally verified tyrosine sul-
fation sites using a regular expression pattern match
approach. This is commonly used in various posttransla-
tional modification pattern analysis projects. The web
tool called WebLogos (or sequence logos) is such an
application [31]. The reviewer discussed some motif pat-
terns summarised from an earlier study, for instance, Glu
and Asp commonly occur between -2 and 2 of a tyrosine
sulfation site. However, the regular expression approach
suffers two theoretical limitations. First, such an approach

Table 2: The prediction performances of all machine learning models.

10 20 30

Spe Sen Tot AUR Spe Sen Tot AUR Spe Sen Tot AUR
LDA 70 78 73 0.80 76 89 80 0.87 82 83 82 0.88
QDA 85 50 73 0.82 88 44 73 0.80 91 72 84 0.84
CART 91 72 84 n.a. 76 83 78 n.a. 88 83 86 n.a.
INN 9l 72 84 na. 88 72 82 na. 85 72 80 na.
3NN 85 78 82 na. 94 72 86 na. 94 72 86 na.
5NN 94 72 86 n.a. 97 72 88 n.a. 97 72 88 n.a.
7NN 88 67 78 na. 88 78 84 na. 94 78 88 na.
9NN 94 50 78 na. 88 78 86 na. 94 78 88 na.
RF 97 83 92 0.93 97 83 92 0.95 97 83 92 0.94
ANNS5 94 28 71 0.8l 88 67 80 0.86 88 78 84 0.92
ANNI0 100 33 76 0.82 94 78 88 0.94 91 72 84 0.92
ANNI5 9l 56 78 0.86 97 67 86 0.89 94 78 88 0.93
ANN20 9l 56 78 0.88 94 72 86 0.96 94 78 88 0.93
SVM 87 78 83 0.89 100 72 90 0.94 94 78 88 0.92
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RF ROC curves for the 10-mer, 20-mer and 30-mer
data sets. The horizontal axes are the false alarm rates (I -
specificity) and vertical axes are the sensitivity. For specific
threshold for discriminating between positive (true sulfotyro-
sine sites) and negative (unconfirmed sulfotyrosine sites) data
points, there will be a pair of these two values, i.e., | - specif-
icity and sensitivity. A pair of values is then represented by a
point in this two-dimensional space. Each curve is made by
connecting all these points. A model is said to be robust
whether its ROC curve is close to the top left corner. The
area under a ROC curve is a quantitative indicator of this
robustness.

assumes that motif positions are mutually independent
with a uniform background distribution which may not
be true in most applications [32]. Second, the motifs gen-
erated this way are sensitive to experimental errors [33].
Machine learning models, on the other had, are more
error-tolerate and have been recognised being capable of
generalising well on unseen data.

In the common practice of peptide classification, the
input for site prediction is normally a symmetrical peptide
of consecutive amino acid resides that flank the poten-
tially modified tyrosine. In this study three peptide sizes
have been evaluated and the amino acids have been
encoded using a hydrophobicity scale [34]. The encoded
numerical data of peptides are then treated as inputs for
building prediction models using various machine learn-
ing algorithms.

The reason of using a hydrophobicity scale is due to its tra-
ditional role in analysing the impact of amino acid hydro-
phobicity on protein structure and potential sites for
protein-protein interactions [35]. Hydrophobic amino

http://www.biomedcentral.com/1471-2105/10/361

acids are generally located in the protein interior whereas
hydrophilic amino acids are generally located on the pro-
tein surface as targets for binding with other molecules. A
protein whose surface is composed of mainly negatively
charged amino acids such as glutamate and aspartate will
bind to a protein with mainly positively-charged mole-
cules such as lysine and arginine [36-40]. This means that
the hydrophobicity scale can be one candidate for encod-
ing amino acids for constructing a predictive model. This
study has used the Cornette scale [34].

Results

There are 18 experimentally verified sulfotyrosine sites
and 33 unconfirmed sulfotyrosine sites in 15 blind test
sequences. Two inferred sulfotyrosine sites were not used
for the evaluation. Table 1 shows the prediction result for
these sequences using the Sulfinator. In the table, "Actual"
means the experimentally verified sulfotyrosine sites
while "Predicted" means the predicted sulfotyrosine sites.
"Accession" is the accession number from NCBI database.
Numbers in bold face are the sulfotyrosine sites missed
from the Sulfinator. Numbers in italic are the false sulfo-
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Figure 2

SVM ROC curves for the 10-mer, 20-mer and 30-mer
data sets. The horizontal axes are the false alarm rates (I -
specificity) and vertical axes are the sensitivity. For specific
threshold for discriminating between positive (true sulfotyro-
sine sites) and negative (unconfirmed sulfotyrosine sites) data
points, there will be a pair of these two values, i.e., | - specif-
icity and sensitivity. A pair of values is then represented by a
point in this two-dimensional space. Each curve is made by
connecting all these points. A model is said to be robust
whether its ROC curve is close to the top left corner. The
area under a ROC curve is a quantitative indicator of this
robustness.
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Figure 3

The correlation of the predictions between 10-mer
model predictions (horizontal axis) and the 20-mer
model predictions (vertical axis) for the blind data
set.
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Figure 4

The correlation of the predictions between 10-mer
model predictions (horizontal axis) and the 30-mer
model predictions (vertical axis) for the blind data
set.

tyrosine sites. The total prediction accuracy is 82% with a
specificity of 94% and a sensitivity of 61%. The sensitivity
is 33% lower than the specificity.

Table 2 shows the prediction performances of all machine
learning models constructed in this study. In the Table,
the figures in bold face represent the models that outper-
form the Sulfinator. 10, 20, and 30 represent the peptide
sizes. "n.a." represents "not available" because the kNN
models have no AUR. The models built using the LDA,
QDA, CART, 1NN and ANNS5 approaches are not compat-
ible with the Sulfinator. Other approaches generate at
least one model as accurate as the Sulfinator depending
on peptide sizes. All three RF models outperform the
Sulfinator, so do all three 5NN models. Four models have
achieved >90% total prediction accuracy with improved
specificity and sensitivity. The RF models increase the sen-
sitivity by 22%, the specificity by 3%, and the total predic-
tion accuracy by 10% compared with the Sulfinator. The
20-mer SVM model increases the specificity by 6%, the
sensitivity by 11%, and the total prediction accuracy by
8%.

The Chi-square test which has been used in bioinformat-
ics [41] is used to evaluate the significance of the improve-
ment of the sensitivity. The test value is 7.93 (p < 0.01).
This represents that the new predictor is able to increase
the sensitivity significantly compared with the previous
one.

Figures 1 and 2 show the ROC curves of the RF and SVM
models, respectively. It can be seen that three RF models
are consistent while the SVM model built on the 20-mer
peptide outperforms the other two SVM models, i.e. the
curve is more close to the top-left corner.

Discussion

In order to investigate the consistency among the RF mod-
els, correlation analysis is conducted. Figure 3 shows the
correlation analysis of the predictions generated from the
10-mer RF model and 20-mer RF model. The correlation
is 0.97. Figure 4 shows the correlation analysis of the pre-
dictions generated from the 10-mer RF model and 30-mer
RF model. The correlation is 0.95. Figure 5 shows the cor-
relation analysis of the predictions generated from the 20-
mer RF model and 30-mer RF model. The correlation is
0.98. The high correlation indicates that three RF models
are very consistent in prediction demonstrating a high
robustness of the algorithm.

Figure 6 shows the ranking results from three RF models
(mean decrease Gini gain [42,43]). It can be seen that res-
idue N1 has been consistently highly ranked. Other resi-
dues with higher rank values are C5, C10, and C14. Based
on the conditional density functions of N1and C1 shown
in Figure 7, it can be seen that residue N1does contribute
more to the classification of the two classes of peptides
compared with C1. Because tyrosine sulfation plays a role
in protein-protein interaction, several laboratorial works
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Figure 5

The correlation of the predictions between 20-mer
model predictions (horizontal axis) and the 30-mer
model predictions (vertical axis) for the blind data
set.

have found that N-terminal residues contribute to sulfoty-
rosines, i.e., the N-terminal domain of sulfotyrosines
involve direct protein-protein interaction through a P-
selection [44-48].

The major differences between the Sulfinator and the pre-
dictors constructed in this paper are the use of different
algorithms as well as the different presentation
approaches of amino acids to a machine learning model.
HMM does not need an encoding process while the pre-
dictors constructed in this study use a hydrophobicity
scale to encode the amino acids. It is known that the ran-
dom forest algorithm and the support vector machine
algorithm have been well-known in improving the gener-
alisation capability of a model. The significant improve-
ment in the prediction accuracy in blind data these
models can result from the use of RF and SVM algorithms
and the use of hydrophobicity scale.

Finally, a single RF predictor is built using whole training
data coded using 20-mer peptides (excluding any blind
sequences). The RF predictor, a C program which is used
to extract 20-mer peptides from a query sequence and
encoding peptides using the Cornette scale, the whole
training sequences and the blind sequences are available

in the web site http://ecsb.ex.ac.uk/sulfotyrosine for free

use, where a web tool is also available.

http://www.biomedcentral.com/1471-2105/10/361

The RF predictor is then used to make prediction on the
15 blind sequences. Its performance is the same as that
obtained from cross-validation models. For instance, pro-
tein Q9PU41 is a Cholecystokinin with 130 residues. It is
related to the release of pancreatic enzymes in the gut
[49]. A high degree of identity was found between the
sequence from chicken and chinchilla which inferred a
homologous function [50]. The sulfotyrosine is the first
residue of the peptide Cholecystokinin-7 (112-118). The
residue has been accurately predicted by both cross-vali-
dation RF predictions and the single RF predictor, as well
as using Sulfinator. Protein A2ZBGS5 is a Phytosulfokines
2. Two sulfotyrosine sites have been found in the peptide
Phytosulfokine-beta (110-113). This protein is associated
with plant cell differentiation, organogenesis, somatic
embryogenesis and cell proliferation. The sulfated tyro-
sine is for binding to a putative membrane receptor [51].
In this case both sites have been accurately predicted using
the RF model. However, Sulfinator failed to predict both.
The RF predictor failed to predict three sulfotyrosine sites
in extracellular proteins (Y21 in P61073 as well as Y97
and Y118 in Q9NZ53) while Sulfinator failed to predict
one of these three sites (Y118 in QINZ53). Details of the
analysis of all the predictions can be seen in Table 3. In the
Table, "Site" represents the experimentally verified sulfo-
tyrosine sites as well as those tyrosine residues which are
not experimentally verified sulfotyrosine sites. If the value
in the "TURE" column is 1, it represents that the site is an
experimentally verified one. Sulfinator represents the pre-
dictions of the Sulfinator tool, where "Y" represents pre-
dicted sulfotyrosine sites including false positives. The
sites 102 and 131 of Q7 M3V5 are missed experimentally
verified sulfotyrosine sites. Blanks represent predicted
non- sulfotyrosine sites. "RF1" represents the prediction
(posterior probabilities) of cross-validation predictions
while "RF2" represents the predictions (posterior proba-
bilities) made by a single RF predictor. "Peptide" repre-
sents the segments in which the sulfotyrosine sites sit.
"Region" represents the protein in which the sulfotyrosine
sites are.

It is also important to see how confident we trust the pre-
dictions made by a model and whether this new approach
is making a significant contribution to prediction accuracy
compared with old models. For this we investigate the
properties of the negative and positive predictive powers
[52-55]. The negative predictive power measures how
likely a negative prediction is true. In other words, it meas-
ures the probability that a prediction of unconfirmed sul-
fotyrosine is a true unconfirmed sulfotyrosine. It is
calculated by the fraction of correctly identified uncon-
firmed sulfotyrosine sites over the total predicted uncon-
firmed sulfotyrosine sites. The positive predictive power
then measures the probability that a sultyrosine predic-
tion is a true sulfotyrosine. This is calculated by the frac-
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The ranking results of residues in three RF models. The horizontal axis represents residue positions in peptides. The
upper panel is for the 10-mer data, hence having residue positions ranging from N; to C;. The middle panel is for the 20-mer
data, hence 20 bars. The lower panel is for the 30-mer data, hence 30 bars. The vertical axis indicates the mean decrease Gini

measures.

tion of correctly identified true sulfotyrosine sites over the
total predicted sulfotyrosine sites. Given the confusion
matrix made by testing the blind sequences as in Table 4,
we can work out these two measurements. In the Table,
"Negative" represents unconfirmed sulfotyrosine and
"Positive" represents experimentally verified sulfotyro-
sine. The left panel is the result obtained when using Sulfi-

Density function at N1
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density
010 015 020 0.25
L 1 |

0.05
1

0.00
|

Cornette scale

Figure 7

nator while the right panel is the result generated by the
RF model based on the 20-mer data. When using Sulfina-
tor, the negative and the positive predictive powers are
82% and 85%, respectively. However they are 91% and
94%, respectively, when using the RF models. It can be
seen that the confidence of trusting an unconfirmed sulfo-
tyrosine site has increased by 9% using the RF models and

Density function at C1

0.25
|
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0.20
1

015
1

density
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|

T T T
-5 0 5

Cornette scale

The conditional density functions drawn at N, and C, residues, respectively. The horizontal axes represent the Cor-
nette scale values while the vertical axes represent the density values. The density functions are estimated using the kernel
approach using the R stats package with default parameter setting. The graph shows that the density functions drawn at N,
demonstrate a larger separation between two classes while this difference is getting smaller for the residue C,, which does not
have a high rank value from RF models. Note that negative means unconfirmed sulfotyrosine whilst positive means experimen-

tally verified sulfotyrosine.
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Table 3: The prediction details of 15 blind testing proteins.

http://www.biomedcentral.com/1471-2105/10/361

Protein Site TRUE Sulfinator RFI RF2 Peptide Region
Q9PUA4I 112 | Y 0.9884 0.988 Cholecystokinin-7
Q9PUA4I 2 0 0.1384 0.122

Q9PUA4I 79 0 0.0588 0.036

P61073 21 | Y 0.2528 0.158 Extracellular
P61073 7 0 0.176 0.092

P61073 12 0 0.128 0.264

P61073 45 0 0.0188 0.006

P61073 65 0 0.086 0.074

P61073 76 0 0.1776 0.164

P61073 103 0 0.0084 0.008

P61073 6 0 0.04 0.036

P61073 121 0 0.034 0.03

P61073 135 0 0.0284 0.022

P61073 157 0 0.0404 0.034

P61073 184 0 0.0408 0.026

P61073 190 0 0.0688 0.062

P61073 219 0 0.016 0.02

P61073 255 0 0.0152 0.02

P61073 256 0 0.0388 0.04

P61073 302 0 0.0176 0.02

Q9NZ53 97 | Y 0.0692 0.076 Extracellular
Q9NZ53 118 I 0.2072 0.236

Q9NZ53 391 0 0.0672 0.06

Q9NZ53 481 0 0.1168 0.112

Q9NZ53 498 0 0.1776 0.152

Q9NZ53 522 0 0.0384 0.052

A2ZBG5 110 | 0.618 0.606 Phytosulfokine-beta
A2ZBG5 112 | 0.7988 0.814

A2YFB4 80 | Y 0.5476 0.596 Phytosulfokine-beta
A2YFB4 82 | 0.7788 0.796

Q7 M3V5 114 | Y 0.2064 0.226 Callisulfakinin-1

Q7 M3V5 2 0 0.3116 0.358

Q7 M3V5 12 0 0.0608 0.064

Q7 M3V5 56 0 0.0528 0.044

Q7 M3V5 64 0 0.2184 0.232

Q7 M3V5 65 0 0.0348 0.038

Q7 M3V5 8l 0 0.3856 0.378

Q7 M3V5 102 0 Y 0.072 0.054

Q7 M3V5 131 0 Y 0.5604 0.592

P84900 62 | 0.608 0.582 Phyllokinin

QOVTT9 62 | 0.598 0.57 [Thré, Vall0]-phyllokinin
POCIV8 16 | Y 0.8816 0.92 Alpha-conotoxin AnlC
POCIV7 16 | Y 0.8988 0.93 Alpha-conotoxin AnlA
Q800F| 62 | 0.5984 0.57 [Thré]-phyllokinin
P68l 16 5 | Y 0.7984 0816 Fibrinopeptide B

P68l 16 2 0 0.3464 0.338

P68124 4 | Y 0.8984 0.902 Fibrinopeptide B
P68121 3 | Y 0.7584 0.742 Fibrinopeptide B
Pé8119 6 | Y 0.8648 0.864 Fibrinopeptide B

the confidence of trusting a sulfotyrosine site has
improved by 9% as well.

Conclusion

This paper has presented a new predictor for sulfotyrosine
sites in protein sequences. The sequences annotated after
2002 are used as the blind test data for comparing the

models constructed using various other machine learning
algorithms in this study and Sulfinator, a prediction tool
established in 2002. Through evaluation, it has been
found that the predictors constructed using the random
forest algorithm and the support vector machine algo-
rithm show significantly improved prediction accuracy
compared with Sulfinator. The random forest models
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demonstrate consistently better performance. Using the
RF models, the sensitivity is increased by 22%, the specif-
icity is increased by 3%, and the total prediction accuracy
is increased by 10% compared with the sulfinator. Both
negative and positive predictive powers have been
increased by 9% using the RF models. The 20-mer RF
model is the method of choice for implementing a predic-
tor because it has the highest AUR.

Methods

Data

363 proteins with experimentally verified sulfotyrosine
sites were collected from NCBI [56]. Two rules were used
for pre-processing the data. First, any sequence without an
experimentally verified sulfotyrosine was removed. Sec-
ond, the CD-HIT algorithm [57-59] was used to remove
sequences with > 90% similarity. Applying these two rules
gave 94 sequences for the study. Among them, 79 were
annotated before 2002 (inclusive) while the rest 15 were
annotated after 2002. 79 early annotated sequences were
used to train and select a predictor while 15 later anno-
tated sequences were used as blind test data set for the
comparison with the Sulfinator. The separation of data in
2002 was because the Sulfinator was developed in 2002.
All the sequences annotated after 2002 should therefore
be blind to the predictor.

Peptide formation and coding

All the tyrosines were extracted from the 79 test
sequences. Following a common procedure in construct-
ing a PTM site predictor, a peptide was formed symmetri-
cally using both N-terminal and C-terminal consecutive
residues flanking a tyrosine. It was denoted by N -N, ;-
..N;- C;-...C,,, ;-C,,,. Here, 2 m was the number of flanking
residues in a peptide with N-, as an N-terminal residue
and C-y as a C-terminal residue of a tyrosine. Note that the
tyrosine in the middle was not used because it was identi-
cal in all peptides. Three peptide sizes were used, i.e. 2 m
=10, 20, and 30. A peptide generated from an experimen-
tally verified sulfotyrosine was labelled as positive while a
peptide generated from an unconfirmed sulfated tyrosine
(has not yet been declared as a sulfated tyrosine) was
labelled as negative. 132 positive and 626 negative non-
repeated peptides were found in 79 sequences. Here,
"non-repeated" indicated that any repeated peptide was
removed. Each peptide was encoded to a numeric vector
using the Cornette hydrophobicity scale.

http://www.biomedcentral.com/1471-2105/10/361

Model construction

The machine learning algorithms used in this study were
linear discriminant analysis (LDA) [43,60], quadratic dis-
criminant analysis (QDA) [43,60], k-nearest neighbour
(kNN) [43,60], classification and regression tree (CART)
[61], the random forest algorithm (RF) [62], the support
vector machine (SVM) [63] and artificial neural network
(ANN) [64]. Because RF is a newly developed machine
learning algorithm, a brief description of it is placed
below. All these algorithms were available in the R pro-
gramming environment (built by the R project, http://
www.r-project.org/). The hidden neurons of ANN were 5,
10, 15, and 20. The numbers of nearest neighbours were
1,3, 5,7, and 9. The distance used in kNN was the Eucli-
dean distance. The radial basis kernel function of the SVM
was used with the smoothing parameter as 0.2. The cost
parameter of the SVM was 100. The default parameters of
LDA, QDA, CART, and RF were used.

Model evaluation

Models were evaluated by the sensitivity (Sen, the predic-
tion accuracy of true sulfotyrosine sites), the specificity
(Spe, the prediction accuracy of unconfirmed sulfotyro-
sine sites), the total accuracy (Tot), and receiver operating
characteristics (ROC) analysis [65]. ROC was used to
measure whether a model was robust. The areas under
ROC curves (AURs) were used as a quantitative indicator
of model robustness. The five-fold cross-validation
approach [66] was used for model evaluation. ROC curves
were drawn using the ROCR R package [67] and the area
under ROC curves was calculated using the caTools R
package http://cran.r-project.org/web/packages/caTools
index.html.

The random forest algorithm

The random forest algorithm is a newly developed
machine learning algorithm [62]. The basic idea is to con-
struct many trees using random vectors sampled from a
data set. For the kth tree, a random vector is generated
independently from the random vectors generated for the
past k-1 trees. The remaining data are used for prediction.
The approach of sampling random vectors is similar to
bootstrap, i.e. the replacement sampling approach, which
has also been applied to analysing biological data [68].
For each node in a tree, a small fraction of variables is ran-
domly selected. The best split for the node is based on the
prediction error. Each tree is fully grown without pruning.

Table 4: Confusion matrices for Sulfinator and the RF models in this study.

Sulfinator RF model

Negative Positive Negative Positive
Negative 31 2 94% 32 | 97%
Positive 7 I 61% 3 15 83%
82% 85% 82% 91% 94% 92%
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RF is able to provide a number of excellent features, for
instance, the capability of handling a large number of var-
iables, ranking the variables, and detecting the interaction
among the variables. The algorithm has been recently
applied to various biological data mining projects, for
example, the prediction of the interactions between HIV-
1 and human proteins using gene expression data [69],
the analysis of differential gene expression [70], the diag-
nosis of ulcerative colitis based on gene expression data
[71], the detection of cancers [72], the prediction of child-
hood leukaemia using gene expression data [73], and the
prediction of protein-protein interactions [74]. All these
applications show that the random forest algorithm out-
performs some other algorithms.
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