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Abstract
Background: Analysis of the plethora of metabolites found in the NMR spectra of biological fluids
or tissues requires data complexity to be simplified. We present a graphical user interface (GUI)
for NMR-based metabonomic analysis. The "Metabonomic Package" has been developed for
metabonomics research as open-source software and uses the R statistical libraries.

Results: The package offers the following options:

Raw 1-dimensional spectra processing: phase, baseline correction and normalization.

Importing processed spectra.

Including/excluding spectral ranges, optional binning and bucketing, detection and alignment of
peaks.

Sorting of metabolites based on their ability to discriminate, metabolite selection, and outlier
identification.

Multivariate unsupervised analysis: principal components analysis (PCA).

Multivariate supervised analysis: partial least squares (PLS), linear discriminant analysis (LDA), k-
nearest neighbor classification.

Neural networks.

Visualization and overlapping of spectra.

Plot values of the chemical shift position for different samples.

Furthermore, the "Metabonomic" GUI includes a console to enable other kinds of analyses and to
take advantage of all R statistical tools.

Conclusion: We made complex multivariate analysis user-friendly for both experienced and
novice users, which could help to expand the use of NMR-based metabonomics.
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Background
Decoding the genome (genomics) is not sufficient to
explain the cause of many diseases. Therefore, the study of
differences in gene expression between subjects (tran-
scriptomics), the analysis of protein synthesis (proteom-
ics), and the study of metabolic regulation
(metabolomics) have been intensified in recent years [1].

Analysis of the plethora of metabolites found in the NMR
spectra of biological fluids or tissues requires data com-
plexity to be reduced [2,3]. The field of metabonomics is
evolving in parallel to the application of multivariate sta-
tistical methods with this purpose.

However, multivariate analysis is not easy for novice
users. Several commercial programs can help such users
apply multivariate methods, although none include the
full range of routines, from data pre- and post-processing
to the final statistical results. Recently, an open-source
platform (Automics) [4] based on Visual C++ has been
developed to carry out a full NMR-based metabonomic
analysis. Automics includes the most common 1D NMR
spectral processing functions and nine statistical methods:
feature selection (Fisher's criterion), data reduction (PCA,
LDA, uncorrelated LDA), unsupervised clustering (K-
Means) and supervised regression and classification meth-
ods (PLS/PLS-DA, KNN, Soft Independent Modellingof
Class Analogy [SIMCA], Support Vector Machines [SVM]).

We present a new software package based on the open-
source R framework [5] with a graphical user interface
(GUI) that helps the user understand and run such meth-
ods for the analysis of NMR-based metabonomic data.
Our package is called "Metabonomic" and it makes use of
different R libraries to build a statistics toolbox. Moreover,
the R framework open-source architecture allows newly
proposed algorithms or methods for spectral processing
and data analysis to be implemented and included much
more easily and freely accessed by the public. The "Metab-
onomic" GUI includes unsupervised multivariate analysis
techniques (eg, principal components analysis [PCA]),
supervised multivariate analysis (eg, partial least squares
[PLS] analysis, linear discriminant analysis (LDA), and k-

nearest neighbor classification). It can also be used to
define different types of neural networks. In our study, we
test some of these multivariate methods using internal
cross-validation and external validation.

This "Metabonomic" package also enables pre-processing
of raw NMR spectra. Pre-processing transforms the data in
such a way that subsequent analysis and modelling are
easier, more robust, and more accurate. In the analysis of
NMR spectra, pre-processing methods usually attempt to
reduce variance and any other possible source of bias such
as phase correction, peak shifting or misalignment, and
baseline correction. Although the "Metabonomic" pack-
age has been developed for the analysis of NMR spectra,
this software can also be used for the pre-processing of
mass spectrometry-based profiles or other 1-dimensional
spectra. The analysis of 2-dimensional NMR spectra will
be available in the next software update.

Implementation
Program Description
The "Metabonomic" GUI was designed using the R-Tcl/Tk
interface [6,7], which enables us to use the TK toolkit and
replace Tcl code with R function calls to facilitate interac-
tion with the R functions and a comprehensive metabo-
nomic analysis. The software offers several graphic
outputs, through plots created using a combination of dif-
ferent Tcl/Tk interfaces. The program is based on R version
2.8.0 [5] under the Windows operating system.

The "Metabonomic" GUI, requires packages [Table 1] to
be downloaded and installed in the R console. The PROc-
ess package can be found at the Bioconductor Project Site
[8]. Once the required packages are ready, the "Metabo-
nomic" package is loaded using the Package installer or
writing ">require (Metabonomic)" if the package is
already in the computer.

The program is started by writing "> Metabonomic()" in
the R console to open the main user interface. The GUI
has an input console, which can be used to launch any R
application, and two different output consoles, where
warnings and output messages are displayed. It also has a

Table 1: Packages required to execute the Metabonomic GUI

R packages

Graphical Integration tcltk, tcltk2, tkrplot, scatterplot3d

Pre-processing PROcess, caMassClass, FTICRMS, clusterSim, waved

Multivariate hddplot, MASS, gpls, pls, class, robustbase, relimp, Icens

Neural Networks nnet, AMORE, neural
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button line, with the following buttons: (a) undo, (b)
redo, (c) current data display, (d) launch the commands
written in the input console, (e) erase the input console,
(f) stop any running process, and (g) shut down the GUI
and return to the R console.

Finally, the GUI has a main menu with different tabs: File,
Script, Edit, Pre-processing, Metabonomic Analysis, and
Spectrum. The Script tab provides access to the following
functions: (a) "Load a Script," which opens a script into
the input console, (b) "Save Script," which saves the com-
mands written in the input console as an R script file, and
(c) "Launch the Script," which runs the commands writ-
ten in the input console. Other functions are described in
detail in the following sections.

Data Importing
The NMR processed spectra for metabonomic analysis are
loaded as a text file by selecting the "file/Load Data file"
tab. The text file, with no header, shows the chemical shift
(in ppm) in the first column, and the intensities of the dif-
ferent spectra are in the following columns. After import-
ing the spectra text file, the GUI asks for an "info" file. This
file contains all the sample information, which has been
previously written by the user as a text file, where the first
column holds the names of the samples and the different
characteristics are in the following columns separated by
tabs [Table 2]. A header with the caption of each column
is also required.

Alternatively, the data can be loaded directly from the
Bruker spectroscopy format by an independent package
that can be executed by selecting the "file/Import Bruker
file" tab. The user has to select the raw data (FID file in the
Bruker data directory). This application displays the spec-
trum reference and manages basic operations such as set-
ting the chemical shift of a certain compound
(trimethylsilylpropionic acid or dimethylsilapentane sul-
fonic acid) to 0 ppm and zero order and first order phase
corrections[9]. When the first set of data is loaded, the
GUI asks for a new array. When all the spectra are
imported, the GUI asks for the "info" file. Applications to
load other commercial data formats will be added soon.

The GUI also allows processed data to be exported as a text
file.

Category Selection
This application selects the information that will be used
in the supervised analysis. First, the GUI asks which char-
acteristic (different columns of the info file) will be used
to classify the samples. The user then chooses the different
types of samples that will be used in the multivariate anal-
ysis. To date, the program only allows the selection of four
different sample types. The "Category Selection" applica-

tion is launched by selecting the "file/Category Selection"
tab.

Data Pre-Processing
Data must be pre-processed carefully, since any inaccuracy
introduced at this stage can cause significant errors in the
multivariate analysis. Thus, the GUI offers several guided
corrections, as explained below. If any special correction
or data processing is necessary, it can be easily pro-
grammed in the input console.

Region Exclusions
The first step of data pre-processing usually involves the
exclusion of spectral regions [10], which either contain
non-reproducible information or do not contain informa-
tion about metabolites. On the one hand, the spectral
width to acquire NMR data is usually wider than necessary
to digitize all chemical shifts associated with endogenous
metabolites. Thus, downfield and upfield spectral areas
without any endogenous metabolites are initially
excluded. On the other hand, spectral regions highly
depending on the experimental parameters, such as the
water and the reference regions are also deleted. As these
regions are sensitive to spectral artifacts, such as inade-
quate phasing, exclusion is beneficial. Therefore, the spec-

Table 2: Example of an info file

Name Category Exposure

RF03 Tobacco Chronic
RF08 Tobacco Chronic
RF10 Tobacco Chronic
RF13 Tobacco Chronic
RF16 Tobacco Chronic
RF17 Tobacco Chronic
RF20 Tobacco Chronic
RF27 Tobacco Chronic
RF30 Tobacco Chronic
RF31 Tobacco Chronic
RF32 Tobacco Chronic
RF33 Tobacco Chronic
RF47 Tobacco Chronic
RF48 Tobacco Chronic
RF49 Tobacco Chronic
RF01 Control Control
RF02 Control Control
RF04 Control Control
RF07 Control Control
RF12 Control Control
RF21 Control Control
RF28 Control Control
RF43 Control Control
RF44 Control Control
RF45 Control Control
RF52 Control Control
RF53 Control Control
RF54 Control Control
Page 3 of 10
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:363 http://www.biomedcentral.com/1471-2105/10/363
trum outside the 0.2-10-ppm window is usually excluded.
By selecting the "file/Manual Cut" tab, a graphical appli-
cation to select the area of interest in the spectrum and to
delete the water resonance region is launched.

Baseline Correction
Baseline correction is an essential step to obtain high
quality NMR spectra in some cases [11,12]. Rolling base-
lines can make it difficult to identify peaks and can intro-
duce significant errors into any quantitative
measurements. In order to avoid errors, the GUI incorpo-
rates an application to reduce this influence in batch
mode. Baseline correction is performed using the
"bslnoff" function, which is based on the LOESS method
[13] from the PROcess library [8]. This graphical applica-
tion (Pre-processing/Baseline) allows the bandwidth to
be controlled so that it can be passed to the LOESS func-
tion until the adjustment is correct. Graphs with the raw
spectrum, estimated baseline, and baseline-subtracted
spectrum are plotted in the R console.

Another application, based on the FTICRMS package [14],
is available for individual baseline correction. It computes
an estimated baseline curve for a spectrum using the
method of Rocke and Xi [15]. The most important param-
eter for obtaining a perfect baseline is the smoothing
parameter, which is controlled by a slider widget. The
algorithm uses extra parameters that have been optimized
for NMR data sets, such as negativity penalty, maximum
number of iterations, or a parameter for robust center and
scale estimation. In any case, these parameters can be
modified through the "Extra Parameters" tab. All changes
are instantly displayed in the graphical device [Figure 1],
thus allowing an interactive baseline adjustment.

Binning
The most common method of reducing the influence of
shifting peaks is the so-called binning or bucketing
method, which reduces spectrum resolution [16]. Thus,
the spectra are integrated within small spectral regions,
called "bins" or "buckets". Subsequent data analysis pro-
cedures applied to the binned spectra are not influenced
by peak shifts, as long as these shifts remain within the
borders of the corresponding bins. After launching the
binning graphical applications (Pre-processing/Binning),
the user can select the bin size. This process is executed by
the "binning" function from the PROcess library [8].

Peak detection and alignment
Peak alignment is an alternative to binning the spectrum
to account for peak shifts [10,17,18]. A peak detection
graphical application (Pre-processing/Peak Detection)
has been developed to control the "msc.peaks.find" func-
tion from the caMassClass library [19]. The graphical
application adjusts the signal-to-noise ratio and the
threshold criterion in the peak's detection process and

returns a data frame with the positions and intensities of
the detected peaks. These are aligned by a peak alignment
graphical application (Pre-processing/Peak Alignment).
This application guides the user in the use of the
"msc.peaks.align" function from the caMassClass library
[19].

Normalization
A crucial step in pre-processing of spectrum data in metab-
onomic studies is the so-called normalization step [10].
This step tries to account for possible variations in sample
concentrations. Normalization may also be necessary for
technical reasons. If spectra are recorded using a different
number of scans or different devices, the absolute values
of the spectra vary, and rendering a joint analysis of spec-
tra without prior normalization is impossible. The nor-
malization graphical application (Preprocessing/
Normalization) makes it possible to choose between sev-
eral types of normalization steps using functions from the
clusterSim library [20].

Principal Components Analysis
Principal components analysis (PCA) is one of the most
common exploratory steps in multivariate analysis [21-
23], and its most important use is to represent multivari-

Baseline (FTICRMS) displayFigure 1
Baseline (FTICRMS) display. Baseline correction of a 
proton-NMR spectrum using the Baseline (FTICRMS) display.
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ate data in a low-dimensional space. The first principal
component is the maximum variation direction in the
cluster of points. The second principal component is the
second largest variation, and so on.

The GUI incorporates a PCA graphical application
(Metabonomic Analysis/PCA) to guide users in PCA by
allowing the selection of the algorithm parameters. In
addition, interactive graphics have been developed to
change items such as the component and graphical
parameters in the score [Figure 2] and loading plots. The
principal components algorithm used is based on the
"prcomp" function from the stats library [24].

In addition, a graphical display for outlier identification
has been developed using the "prcomp" function and the
"robustbase" package [25] (pre-processing/outliers). It
shows Mahalanobis distances based on robust and classic
estimates of the location and the covariance matrix in dif-
ferent plots.

Linear Discriminant Analysis
Linear discriminant analysis (LDA) is another common
technique for the analysis of metabonomic data [21,26].

It is used to obtain linear discriminant functions, a linear
combination of the original classes chosen to maximize
the differences between them. For samples with only two
classes, the discriminating function is a line, for three
classes it is a plane, and for more than three classes a
hyperplane. In the LDA graphical application (Metabo-
nomic Analysis/LDA), the linear discriminant function is
calculated by the "lda" function from the "MASS" package
[27,28].

The program guides the user through the tasks in the
proper order. First, an LDA model is built with part of the
samples; the remainder are used to perform a validation
test. The user can choose the samples directly to make the
model, or randomly select the number of samples from
each class. Second, the user can select the algorithm to cal-
culate the LDA from among the following: "moment" for
standard estimators of the mean and variance, "mle" for a
maximum likelihood estimation, or "t" for robust esti-
mates based on a t distribution. Finally, the LDA graphical
application returns the results of the validation test and
different interactive graphs of the LDA model [Figure 3]. If
the number of different classes is three or less, the interac-
tive graph is a plane where the samples used to build the

Metabonomic GUI used for PCAFigure 2
Metabonomic GUI used for PCA. First and second principal component score plot of two class samples (control and 
tobacco).
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model and the validation samples are plotted. If the
number of different classes is greater than three, the sam-
ples used to build the model and the validation samples
are plotted in interactive cubes. In these interactive plots,
the user can select the angle of rotation, the components
shown, and other graphical parameters.

Partial Least Squares Discriminant Analysis
Another common multivariate method [21,29,30] in
metabonomic analysis is partial least squares discrimi-
nant analysis (PLS-DA), a supervised linear regression
method whereby the multivariate variables corresponding
to the observations (spectral descriptors) are associated
with the class membership for each sample [31]. PLS-DA
provides an easily understandable graphical approach to
identifying the spectral regions of difference between the
classes, and allows a statistical evaluation of whether the
differences between classes are significant.

Two different PLS-DAs have been included in the "Metab-
onomic" GUI. The first PLS graphical application (Metab-
onomic Analysis/Partial Least Squares/PLS) was
developed with a PLS algorithm based on the extension of
the generalized partial least squares model proposed by

Ding and Gentleman [32]. This algorithm is implemented
using the "gpls" function from the "gpls" package [33],
and it allows separation between no more than two
classes of samples. The graphical application controls the
manual or random selection of the samples to build the
model, the selection of all the algorithm parameters such
as the tolerance to the convergence, the number of itera-
tions allowed, and the number of PLS components used.
At the end, the results of the validation test are returned.

The second application (Metabonomic Analysis/Partial
Least Squares/PLS with graphics) is performed using the
"plsr" function from the "pls" package [34,35]. This PLS-
DA is more complex, and the application guides the user
through all the steps in the proper order. First, the user
chooses between manual and random selection of the
samples. Second, the user selects the PLS algorithm and
the validation method. The four PLSR algorithms availa-
ble are the kernel algorithm [36], the wide kernel algo-
rithm [37], the SIMPLS algorithm [38], and the classic
orthogonal scores algorithm [39].

Next, the application creates a PLS model with the maxi-
mum number of components and shows the explained

Metabonomic GUI used for LDAFigure 3
Metabonomic GUI used for LDA. LDA score plot of two class samples (control and tobacco) with the training model sam-
ples (black) and the testing model samples (blue). The cross-validation result is also returned.
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variance and the R2 graphics of the model. With this infor-
mation, the user can select the optimum number of PLS
components to build the model. In addition, the standard
error of prediction (SEP) and the root mean standard error
of prediction (RMSEP) are plotted in the R console.

Finally, the PLS graphical application returns the results of
the validation test and different interactive graphs of the
PLS model [Figure 4].

K-Nearest Neighbors Classification
The k-nearest neighbors (KNN) rule for classification [40]
is the simplest of all supervised classification approaches.
For the classification of an unknown object, its distance
(usually the Euclidian distance) to all other objects is
computed. The minimum distance is selected and the
object is assigned to the corresponding class. The KNN
graphical interface (Metabonomic Analysis/KNN) allows
the user to choose between random or manual selection
of the samples to build the model, number of neighbors,
minimum vote for definite decision, and the use or not of
all the neighbors. If the all the neighbors are used, all dis-
tances equal to the kth largest are included. If not, a ran-

dom selection of distances equal to the kth is chosen to
use exactly k neighbors. To finish, the interface returns the
results of the validation test and the cross-validation test.
The KNN graphical application uses the "knn" function
from the class package [28].

Neural Networks
Application of artificial neural networks (ANNs) for data
processing is characterized by analogy with a biological
neuron. An ANN consists of a layered network of nodes,
each of which performs a simple operation on several
inputs to produce a single output.

Two different applications to define ANNs have been
included in the "Metabonomic" GUI. The first application
(Metabonomic Analysis/Neural Network/Neural Network
[Single hidden layer]) makes use of the "nnet" function
from the "nnet" R package [28]. This graphical application
allows the user to build a single-hidden-layer neural net-
work, by selecting the number of units in the hidden layer,
the initial random weight, and the weight decay. In addi-
tion, the user can choose between random or manual
selection of the training samples.

Metabonomic GUI used for PLS-DAFigure 4
Metabonomic GUI used for PLS-DA. Interactive graph (right) with the first three PLS components score plot of two 
classes of samples (healthy and tobacco). The black samples are the samples used to build the model and the blue samples are 
the validation samples. In addition, the validation result and the explained variance are shown.
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The second application (Metabonomic Analysis/Neural
Network/Neural Network [multiple hidden layers]) cre-
ates a feedforward artificial neural network according to
the structure established by the "AMORE" package [41].
With this application, the user can select the number of
layers and the number of neurons in each layer, while
controlling several parameters. These include the learning
rate at which every neuron is trained, the momentum for
every neuron, the error criterion (least mean squares or
least mean logarithm squares), the activation function of
the hidden and the output layer (Purelin, Tansig, Sig-
moid, or Hardlim), and the training method (Adaptive
gradient descent or BATCH gradient descent, with or with-
out momentum). With these parameters selected, the
algorithm trains the network with the manually or ran-
domly selected samples before testing it with the rest of
the samples.

Other Tools
In addition to the multivariate techniques, other useful
graphical tools have been developed in the "Metabo-
nomic" GUI to enable easy interpretation of complex data
tables.

For example, a graphical display (Metabonomic/Chemi-
cal Shift Region Display) has been added to show the dif-
ferences between the subgroups in a specific spectral
region. The application plots the values and means of all
samples in the specified chemical shift region [Figure 5].

Another graphical display (Spectrum/...) has been created
to visualize and overlap the spectra. With these applica-
tions, the user can focus the interesting areas with a zoom
tool, superimpose different spectra, increase or decrease
the spectra intensity, and change other graphical parame-
ters. Moreover, when the user clicks with the cross cursor
in the spectrum, a new window pops up showing the
chemical shift and the intensity of this selected resonance.
This display can be launched for the original or for the
current spectra [Figure 5].

Results
An NMR analysis of lung tissue was used to test our pack-
age. This dataset (unpublished data) consisted of 28 AKR/
J mice chronically exposed to tobacco smoke for 5 days/
week (n = 15) over a 6-month period and a sham group
(n = 12).

Extra toolsFigure 5
Extra tools. Metabonomic GUI tools to visualize and overlap the spectra (right) and to show the values of all samples in a 
given chemical position (left).
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High-resolution magic angle spinning spectra were gener-
ated from intact lung tissue using a BRUKER AMX500
spectrometer 11.7 T, 500.13 MHz (256 scans collected for
each sample, 16K data points).

First, the water peak and the spectrum area outside the
0.2-10-ppm window were removed. The baseline of each
spectrum was corrected using the Baseline (FTICRMS)
tool. In addition, the spectra were normalized by total
area and integrated within 0.04-ppm buckets.

The pre-processed spectra underwent different multivari-
ate analyses. The multivariate models were built with a
number of random training samples (8 samples of each
type). The remaining samples can be used to perform a
validation test, derived from the probability of belonging
to each group. The validation results are summarized in
Table 3.

Conclusion
Pre-processing of raw NMR spectra and different multivar-
iate analyses are standard procedures applied to interpret
the complex metabonomic profile. The "Metabonomic"
GUI presented in this paper offer an easy application of
the principal pre-processing methods and the most com-
monly used multivariate statistical methods in metabo-
nomic analysis. Various tools have been developed or
adapted to make statistical analysis easier for the inexperi-
enced user. The more experienced user always maintains
complete control of the statistical tools. Special correction
or data processing can be carried out using the input con-
sole.

The main advantage of the "Metabonomic" GUI is its
modular design, which makes it easy to upgrade. Further-
more, new analysis methods can be included in the
metabonomic field using the large R free software library.

Availability and requirements
• Project name: Metabonomic R package.

• Project home page: http://cran.r-project.org

• Operating system: MS Windows.

• Programming language: R. The package runs on MS
Windows using an installed version of R.

• Other requirements: The required PROcess package
is available in the Bioconductor website http://bio
conductor.org.

• Licence: GPL version 2 or newer.

List of abbreviations
ANN: artificial neural network; GUI: graphical user inter-
face; KNN: k-nearest neighbors; LDA: linear discriminant
analysis; PCA: principal components analysis; PLS: partial
least squares; PLS-DA: partial least squares discriminant
analysis; NMR: nuclear magnetic resonance; GUI: graphi-
cal user interface.
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