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Abstract

Background: Template selection and target-template alignment are critical steps for template-
based modeling (TBM) methods. To identify the template for the twilight zone of |5~25% sequence
similarity between targets and templates is still difficulty for template-based protein structure
prediction. This study presents the (PS)2-v2 server, based on our original server with numerous
enhancements and modifications, to improve reliability and applicability.

Results: To detect homologous proteins with remote similarity, the (PS)2-v2 server utilizes the
S2A2 matrix, which is a 60 x 60 substitution matrix using the secondary structure propensities of
20 amino acids, and the position-specific sequence profile (PSSM) generated by PSI-BLAST. In
addition, our server uses multiple templates and multiple models to build and assess models. Our
method was evaluated on the Lindahl benchmark for fold recognition and ProSup benchmark for
sequence alignment. Evaluation results indicated that our method outperforms sequence-profile
approaches, and had comparable performance to that of structure-based methods on these
benchmarks. Finally, we tested our method using the 154 TBM targets of the CASP8 (Critical
Assessment of Techniques for Protein Structure Prediction) dataset. Experimental results show
that (PS)2-v2 is ranked 6t among 72 severs and is faster than the top-rank five serves, which utilize
ab initio methods.

Conclusion: Experimental results demonstrate that (PS)2-v2 with the S2A2 matrix is useful for
template selections and target-template alignments by blending the amino acid and structural
propensities. The multiple-template and multiple-model strategies are able to significantly improve
the accuracies for target-template alignments in the twilight zone. We believe that this server is
useful in structure prediction and modeling, especially in detecting homologous templates with
sequence similarity in the twilight zone.

Background tive protein structure database is searched to identify a
For template-based modeling (TBM) and fold recognition  template that is structurally similar to the protein target;
methods, a prediction model can be built based on the  2) an alignment between the target and the template is
coordinates of the appropriate template(s) [1]. These  generated that should align equivalent residues together
approaches generally involve four steps: 1) a representa-  as in the case of a structural alignment; 3) a prediction
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structure of the target is built based on the alignment and
the selected template structure, and 4) model quality eval-
uation. The first two steps significantly affect the quality of
the final model prediction in TBM methods.

The secondary structure of a protein is often more con-
served than the amino acid sequence, and the prediction
accuracy of the secondary structure has been achieved
~80% on average. Recently, a number of methods, inte-
grating secondary structures (i.e., a-helix, B-strand and
coil) with primary amino acid sequences, have success-
fully detected the homologs with remote similarity for
automated comparative modeling [2-6] and fold recogni-
tion [7-12]. These methods often used two separated sub-
stitution matrices [9,10,13] to score secondary structures
and primary amino acids, respectively, for aligning a resi-
due pair. The separated matrices are unable to reflect the
real score because the amino acid type often prefers to a
specific secondary structure.

Here, we have developed a substitution matrix, called
S2A2, which considers the properties of the secondary
structures and amino acid types. The S2A2 is a 60 x 60
matrix that considers all possible pair combination of 20
amino acid types and three secondary structure elements.
This matrix was evaluated on the Lindahl benchmark [14]
for fold recognition and the ProSup benchmark [15] for
alignment accuracies. According to these evaluation
results, the S2A2 matrix has higher accuracy than position
specific scoring matrix (PSSM) generated by PSI-BLAST
and prof_sim for fold recognition and sequence align-
ments. By integrating the S2A2 matrix and PSSM, each
having a unique scoring mechanism, the (PS)2-v2 server
blends the sequence profile and secondary structure infor-
mation so that they work cooperatively.

Numerous enhancements and modifications were
applied to original (PS)? servers (namely (PS)2-original)

http://www.biomedcentral.com/1471-2105/10/366

[16] and (PS)2-CASP8 [17] which participates the CASP8
experiment, thereby improving the reliability and applica-
bility of the method. There are four main differences in
methodology between the present server ((PS)2-v2) and
our previous works (Table 1). First, (PS)2-v2 integrates
S2A2 matrix and PSSM for the template selection and the
target-template alignment to replace a consensus strategy
applied in the (PS)2-original server. Second, we modified
the SSEARCH [18] search method to replace the PSI-
BLAST search method and Smith-Waterman algorithm
applied in the (PS)2-original server and (PS)2-CASPS,
respectively. Third, (PS)2-v2 utilized a new multiple tem-
plate method for modeling different domains of the target
sequence. Finally, (PS)2-v2 added a multiple model strat-
egy and utilized ProQ [19] to assess and select the final
model. We have assessed the prediction accuracy of the
(PS)2-v2 server based on the 154 TBM targets of the
CASP8 dataset. The experimental results show that the
S2A2 matrix, multiple-template and multiple-model strat-
egies are able to significantly improve the accuracies for
protein structure prediction and modeling when the
sequence similarity between the template and the target is
in the twilight zone.

Methods

Figures 1 and 2 show the framework of the (PS)2-v2 server
for protein structure prediction. (PS)2-v2 uses the S2A2
matrix and the PSSM for the template selection and the
target-template alignment. (PS)2-v2 first applied the query
sequence to generate a PSSM by running three iterations
of PSI-BLAST against a non-redundant sequence
UniRef90 [20] with an E-value cutoff of 0.001. The PSSM
was then used as the input for the PSIPRED [21] tool to
predict the secondary structure of this query. We then
modified the SSEARCH [18] search method, using the
S2A2 matrix and the PSSM as the scoring matrices, to
identify the template(s) from the protein structure library,
and to generate the target-template alignment(s). The

Table I: The essential differences of (PS)Z-original, (PS)2-CASP8 and (PS)2-v2

Steps (PS)2-original [16]

(PS)2-CASPS8 [17] (PS)2-v2

Consensus of PSI-BLAST and
IMPALA

|. Template search

S2A2+PSSM with a self-developed

S2A2+PSSM with a modified
aligned tool using dynamic SSEARCH program [18]

programming

Consensus of PSI-BLAST, IMPALA
and T-coffee

2. Target-template alignment

S2A2+PSSM with a self-developed

S2A2+PSSM with a modified
aligned tool using dynamic SSEARCH program [18]

programming

3. Template Single template

Single template Multiple templates

4. Model building MODELLER with single model

MODELLER with single model MODELLER with multiple models

5. Model evaluation PROCHECK [42]

PROCHECK ProQ [19]

Page 2 of 13

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:366

Query sequence

http://www.biomedcentral.com/1471-2105/10/366

m — [ Template search using S2A2 and PSSM }7

Top-ranked 5 templates

l

Six alternative alignments generated
for each template

l

l

Model quality assessment with ProQ

J
1
1

!

[ Model building using MODELLER
[ Final model selection with LGscore

Figure |

YES

E value <01
NO Resubmit
unaligned
residues

>40
unaligned
residues

The framework of the (PS)2-v2 server for protein structure prediction.

library consists of 20,982 non-redundant structures
(April, 2008) selected from protein data bank (PDB) [22].
The secondary structures of each structure in the library
were assigned using DSSP [23]. Based on various target-
template alignments of top-ranking 5 selected templates,
(PS)2-v2 generates 30 protein structures using MODEL-
LER [24]. Finally, the program ProQ was used to evaluate
these models and to select the final model for the target.
The S2A2 matrix, the aligned method, the modeling proc-
ess and the final model selection are described in the fol-
lowing subsections. The components of the (PS)2-v2
server were built using C, Perl and PHP (Additional file 1).

S2A2 matrix

A substitution matrix is the key component of protein
sequence alignment methods. We developed the S2A2
substitution matrix (Figure 3 and Figure S1 in Additional
file 2) applying a general mathematical structure [25]. To
calculate the S2A2, 674 structural pairs (1,348 proteins)
[26], which are structurally similar and with low sequence
identity, were selected from SCOP 1.65 [27] based on two
criteria: 1) the root-mean-square deviation (rmsd) of a
protein pair was be less than 3.5 A, with more than 70%
of aligned residues included in the rmsd calculation, and
2) the sequence identity of a pair is less than 40%. The
selected protein pairs had an average sequence identity of
26%, an average rmsd of 2.3 A and average aligned resi-
dues of 90% (207,492 aligned residues out of 230,915

residues). The program DSSP was used to assign the sec-
ondary structure for each residue of these 674 structural
pairs. The eight types of the secondary structure used in
DSSP were reduced to three commonly accepted types (H
(helix), E (strand) and C (coil)) according to the follow-
ing scheme: (H, G, 1) > H; (E, B) > E; (T, S, blank) - C.
The 20 amino acid types and 3 secondary structure types
were converted into 60 residue-structure (RS) types.

The S2A2 matrix (60 x 60) reveals substitution prefer-
ences between homologs with low sequence identity, and
was developed in a similar way to BLOSUMG62 [25] based
on these 674 structural pairs. The entry (S;), which is the

substitution score for aligning a RS letter i, j pair (1 <i, j <
60), of the S2A2 matrix is defined as S; = Alog,(q;/e;),

where is a scale factor, and g;and e; are the observed and

expected probabilities, respectively, of the occurrence of
each i, j pair. The observed probability is given by

fil ano: ) 27:: | fmie - where f;is the total number of align-
ing i, j pairs in these 207,492 RS letters. The factor e;; = pp;
if i = j; otherwise, e; = 2pp; (if i # j), where p; is the back-
ground probability of occurrence of the letter i, and equals
qii + ZZZiqik /2. The substitution score is greater than

zero (S;;> 0) if the observed probability is greater than the
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Figure 2

Overview of the (PS)2-v2 server. The protein sequence of telomere replication protein Est3 (UniProt Q03096) in Saccha-
romyces cerevisiae was used as the query. (A) Input format of the (PS)2-v2 server. (B) Search results of a query protein, compris-
ing target name, sequence, predicted secondary structure, the graph of the aligned regions and the hits list of the templates of
the query. (C) The selected template, target-template alignment and prediction structure of Est3. (D) The visualization of the

predicted structure for Est3. (E) The model quality assessment.

expected probability. By contrast, S;;< 0 if q; <e;. The is matrices based on alignment accuracies on the SALIGN

optimized by the SALIGN set [28], and is set to 1.6 accord- set. The score is given as
ing to the performance and efficiency.

Sy 0 + W (i, wS2A252A42(i, j)
Scoring and alignment methods S242 L
We modified the SSEARCH program [18], which used a (1= w ) PSSM gy (1)

rigorous Smith-Waterman algorithm [29], to search for S;;=max{S; ,;+ wPwSHAL (G, j)gSHAL 4 (1 — S2A2)gbsm
similarity between a query sequence and template aap. SA2(: o S2A2 S2A2+ _ pssm
sequences in a library. We optimized the score between Sijj +wHw i f)g +(1-w™)g
the query and template(s) using both S2A2 and PSSM 0
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The S2A2 substitution matrix. The scores are high if the residue-structure (RS) letters with similar residue types and the
same secondary structure are aligned (red blocks). When two identical RS letters (e.g. diagonal entries) are aligned, the substi-
tution scores are very high. In contrast, the scores are low when helix letters are aligned with strand letters (blue blocks).

where i and j are RS letters on the query and the template,
respectively; wstu(i, j) is a structure-dependent scoring
weight, and is set to 1.3, 1.7 and 0.8 for a-helix, B-strand
and coil, respectively; wS242 (here, w$242 is set to 0.64) is
the weight of the $2A2 matrix; S2A2(i, j) and PSSM .., (i,
j) are the scores of S2A2 and PSSM matrices, respectively,
when the RS letter i is aligned to the RS letter j. In addition,
we considered structure-dependent gap penalty. Here, wse
is a structure-dependent gapping weight, set to 2.0 (a-
helix), 2.0 (B-strand) and 0.15 (coil), respectively; g5242 is
the gap opening penalty (set to 7.2) and the gap extension
(set to 1.2) for the S2A2 matrix. These weights were opti-
mized based on the SALIGN set. grsm refers to the PSSM,
where the gap opening penalty is 11 and gap extension is
1 according to the default parameters of PSI-BLAST.

Statistics and template selection

SSEARCH provides the statistical significance for library
searches. The local sequence similarity score (S) follows
the extreme value distribution, so that P(S > x) = 1 - exp(-

Kmn exp(- x)) where m, n are the lengths of the query and
library sequence. The score shows that the average score
for an unrelated library sequence increases with the loga-
rithm of the length of the library sequence. SSEARCH uses
simple linear regression against the log of the library
sequence length to calculate a normalized "z-score" with
mean 50, regardless of library sequence length, and vari-
ance 10. These z-scores can then be used with the extreme
value distribution and the Poisson distribution to calcu-
late the number of library sequences to obtain a score (i.e.
E-value) greater than or equal to the score obtained in the
search. The top-ranking 5 templates with the lowest E-val-
ues were considered as the templates if the E-values < 0.1.
For each structure in the top-ranking 5 templates, The
(PS)2-v2 server generated six alternative target-template
alignments by using different S2A2-matrix (wS5242)
weights, including 0, 0.2, 0.4, 0.64, 0.8 and 1.0. Finally,
we yielded 30 target-template alignments for a target pro-
tein.
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Model building and evaluation

Protein structure models were built using the homology
modeling tool, MODELLER [24] according to the selected
template(s) and target-template alignment(s) and then
the ability to discriminate a correct protein model from
incorrect models is critical when a server used multiple
model methods. Here, we utilized the program ProQ [19]
to assess the quality of protein models based on the
LGscore [30] and a model was considered correct if the
LGscore was greater than 1.5 [19]. The (PS)2-v2 server first
selected the protein model, generated by the first rank
template with wS2A2 = 0.64 as the seed model. The LGscore
of the seed model was then compared with those of the
other models based on the top-rank 5 templates with dif-
ferent w5242 weights. A model was chosen as the final one
if it had the highest LGscore and its LGscore (> 0.7) was
significantly better than that of the seed model. Other-
wise, the server selected the seed model as the final model.

Muttiple-template method

(PS)2-v2 considered a target as a multiple domain protein
if any region with >40 residues has non-aligned residues
to the template(s) when using above "model building and
evaluation" steps. For a multiple domain protein, (PS)2-
v2 automatically decided domain boundaries based on
the borders of the large gaps between the target and the
template(s), and repeatedly executed above steps to
model the structures of the non-aligned residues (Figure
1). Finally, these multiple models were then used as struc-
ture templates to generate the full-length final model for
the query protein.

Utility

Input format

The (PS)2-v2 server is an easy-to-use web server (Figure 2).
Users input the query protein sequence in FASTA format.
The server provides three modes (Automatic, Manual and
'Use this template') for choosing template(s) (Figure 2A).
The default mode is 'Automatic'. In this mode, (PS)2-v2
automatically selects the modeling template(s). For the
'Manual' mode, our server enables users to assign specific
template(s) from a list of candidates (Figure 2B). The 'Use
this template' mode allows users to assign a specific pro-
tein structure as the template. Finally, (PS)2-v2 transmits
the predicted results to the users by email addresses.

Output format

The (PS)2-v2 server typically yields a predicted structure
within 7 minutes if the query sequence length is ~200. The
server shows a list of templates, selected template(s), tar-
get-template alignment(s), predicted structure(s) and
structure evaluations (Figures 2B and 2C). The predicted
structures are visualized in PNG format generated by the
MolScript [31] and Raster3D [32] packages. If the user
clicks a PNG picture, then the corresponding protein 3D
structure is also displayed on the AstexViewer [33] (Figure

http://www.biomedcentral.com/1471-2105/10/366

2D). A user can download the predicted structure coordi-
nates in the PDB format. The server also provides the tar-
get-template alignments and the structure quality factors
(Figure 2E).

Modeling of ever shorter telomeres 3

The ever shorter telomeres 3 (Est3, UniProt Q03096),
which is essential for telomere replication in wvivo, is a
small regulatory subunit of telomerase from Saccharomy-
ces cerevisiae. According to structure prediction combined
with in vivo characterization, it has been reported that Est3
consists of a predicted OB-fold (oligosaccharide/oligonu-
cleotide binding) with structurally similar to the OB-fold
of the human Tpp1 protein [34]. Because of the limited
degree of conservation between these two protein fami-
lies, these two proteins could not be recognized from sim-
ple sequence profile methods. Additionally, the original
(PS)?-v2 server could not recognize them.

For the target Est3, the (PS)2-v2 server selected the OB-
fold domain of the Tpp1 protein (PDB code 2i46) from
Homo sapiens as the template [35], with an E-value of
0.014. This template shared only 17.6% sequence identity
with the query sequence. Figure 2C shows the target-tem-
plate alignment. The server successfully recognized Tpp1
as the template since the secondary structure identity
between the template and Est3 was 66.7%. Our method
could align together three conserved residues (i.e. Trp21/
Trp98, Asp86/Asp148 and Leul55/Leu204, in Est3 versus
Tpp1; green blocks in Figure 2C), which are primarily
involved in protein folding and/or stability of the OB-
fold. Seven amino acid positions (yellow blocks in Figure
2C), which are structurally similar between the two pro-
tein families, were also aligned. These 10 aligned residues,
depicted in cyan, are clustered in the interior of the core of
the OB-fold (Figure 2D).

Results and Discussion

In the template-based protein structure prediction, the
template selection and the target-template alignment are
the two critical steps, since they will significantly affect the
quality of the final model prediction. The template selec-
tions and the sequence alignments of the proposed
method with the S2A2 matrix were evaluated by the Lin-
dahl benchmark [14] and ProSup benchmark [15],
respectively. In general, it is neither straightforward nor
completely fair to compare the results of different fold-
recognition and alignment methods given that each
employs different sequence databases for sequence pro-
files, structure databases for structure profiles and proper-
ties, release dates, and scoring functions. Therefore, the
comparisons between our methods and other published
methods serve as an approximate guide. Here, we evalu-
ated S2A2 matrix, PSI-BLAST and prof_sim using the same
sequence database, UniRef90 [20], with the same param-
eters to generate a PSSM for fold recognitions (Lindahl
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Table 2: Comparing S2A2 matrix with other methods for fold recognition on the Lindahl benchmark

Methods Family (%) Superfamily (%) Fold (%)
Top | Top 5 Top | Top 5 Top | Top 5

S2A2 2 77.1 85.1 43.8 63.1 26.5 50.8
S2A2+PSSM 2 82.2 88.8 56.7 75.6 27.1 54.5
PSI-BLAST 74.4 79.5 385 49.1 4.4 14.6
prof_sim 80.7 86.5 50.9 61.3 22.1 39.6
RAPTOR®P 84.8 87.1 47.0 60.0 31.3 54.2
PROSPECT llI< 84.1 88.2 52.6 64.8 27.7 50.3
SPARKSd 81.6 88.1 525 69.1 24.3 47.7
FOLDpro¢ 85.0 89.9 55.5 70.0 26.5 483
Sp3f 81.6 86.8 55.3 67.7 28.7 47.4
SP4f 80.9 86.3 57.8 68.9 30.8 53.6
aThis work.

b.c d. e fResults are summarized from previous works [43,44,9,45,13], respectively.

benchmark) and sequence alignment (ProSup bench-
mark). Furthermore, (PS)2-v2 was assessed and compared
with other 71 automatic servers on 154 TBM targets in
CASP8. Please note that (PS)2-v2 did not participate in the
CASP8 experiment.

Evaluation of S2A2 matrix

The S2A2 matrix (60 x 60) offers insights about substitu-
tion preferences of RS letters between homologous pro-
tein sequences (Figure 3 and Figure S1 in Additional file
2). The highest substitution score in this matrix is for the
alignment of a RS letter 'Wy' with a RS letter 'W', where
W is the residue Trp with the B-strand structure (Figure S1
in Additional file 2). This substitution score is 6.2. In
addition, the substitution scores are also high when two
identical structural letters (e.g., diagonal entries) are
aligned. For example, the alignment scores are 5.6 and 6.1
while 'W,"and 'C,' are aligned with 'W," and 'Cg', respec-
tively; where W,, is the residue Trp with the a-helix struc-

Table 3: Comparing S2A2 matrix with other methods for
sequence alighment accuracies on the ProSup benchmark

Method T The Te Go®
S2A22 8732 947 7198 53.4
S2A2 + PSSMa 9470 868 6998 58.7
SSALNP 9256 1115 7245 58.3
SPARKS¢ - - - 57.2
prof_sim 8009 4505 3142 43.6
PSI-BLAST 6733 4938 3452 36.4
FASTAd 5340 3003 7452 314
aThis work.

bResults from Qiu and Elber [10].

Results from Zhou and Zhou [9].

dResults from Domingues et al. [I5].

eT.and T, are total numbers of correctly aligned and missed residue
pairs, respectively; T;is the total number of incorrect aligned pairs; o,
is the average percentage of correctly aligned residues

ture and C, represents the residue Cys with the a-helix
structure. Most of the substitution scores are positive if
two RS letters in the same secondary structure are aligned.
On the other hand, the lowest substitution score is -7.8 in
this S2A2. All of the substitution scores are low when the
helix RS letters are aligned with the strand RS letters. The
above relationships are in good agreement with biological
functions of the relevant structures, showing that the
matrix S2A2 embodies conventional knowledge about
secondary structure conservation in proteins.

We compared the S2A2 matrix with BLOSUMG62. The
highest substitution scores are 6.2 (S2A2) and 11
(BLOSUMG62). In contrast, the lowest score for S2A2 (-
7.8) is much lower than that for BLOSUMG62 (-4). The
main reasons for this large difference are that a-helices
and B-strands constitute very different protein secondary
structures, and the RS letters pertaining to these two types
of structure are more conserved than amino acid
sequences. These results demonstrate that the RS letters
with the S2A2 matrix may be able to more accurately find
remote homologous sequences than simple amino acid
sequence analyses.

Template selection

For the template selection, our method with S2A2 matrix
was compared to other methods on Lindahl benchmark
[14], which consists of 976 proteins, for the fold recogni-
tion. This set included 555, 434 and 321 assignments for
the family, superfamily and fold levels, respectively. The
S2A2 matrix outperforms PSI-BLAST and is comparative
to other methods on this set (Table 2). Our method
(S2A2+PSSM), incorporating PSSM into S2A2, is the best
for detecting similarity on the superfamily and fold levels
for the top five ranks among the 10 comparative methods.
At the superfamily level, the S2A2+PSSM, PSI-BLAST and
prof_sim [36] identified 75.6%, 49.1% and 61.3% of
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Table 4: Comparison the (PS)2-v2 server with (PS)2-original and (PS)2-CASP8 servers on the 154 TBM targets in CASP8 based on

GDT_TS scores

Servers Sl2 30% (nP = 40)

20% SI<30% (n = 47) S1 < 20% (n = 67)

Average p-value Average p-value Average p-value
(PS)2-original 82.6 0.0984 67.7 0.0029 44.9 4.0E-7
(PS)2-CASP8 843 0.323 70.6 0.0766 51.0 6.6E-4
(PS)2-v2 843 - 71.1 - 54.0 -
aSequence identity (SI) between the target and the best template.
bn is the number of targets.
assignments, respectively. At the fold level, the  marized from the CASP8 website http://prediction

S2A2+PSSM (54.5%) outperformed PSI-BLAST (14.6%)
and prof_sim (39.6%) in identifying homologous pairs.

Target-template alignment

For the alignment between the target and the template,
our algorithm was evaluated based on the ProSup bench-
mark [15], which consists of 127 protein pairs with signif-
icant structural similarity but with sequence identity of no
more than 30%. The total numbers of correctly aligned
residue pairs (T.) of the S2A2, S2A2+PSSM, prof_sim and
SSALN [10] were 8732, 9470, 8009 and 9256 pairs,
respectively (Table 3). The percentage o, (average percent-
age of correctly aligned residues, divided by the length of
the structural alignment per protein pair) of the S2A2,
S2A2+PSSM, PSI-BLAST, prof_sim and SSALN were 53.4%,
58.7%, 36.4%, 43.6% and 58.3%, respectively. The S2A2
matrix is significantly better than those of sequence-based
approaches, including FASTA, PSI-BLAST and prof_sim.
The S2A2+PSSM achieved the highest alignment accuracy
with slightly better than SPARKS [9] and SSALN, and
much better than the other comparative methods.

CASP8 structure prediction

Our previous server ((PS)2-CASP8) and other 70 servers
participated in the CASP8 competition, involving 121 tar-
gets for tertiary structure prediction. These 121 targets are
officially classified into 154 TBM domains (Table S1 in
Additional file 3). The accuracies of these 71 servers were
evaluated based on the GDT_TS [37] scores directly sum-

center.org/casp8/.

(PS)2-v2, (PS)%-original and (PS)2-CASP8 servers were
evaluated on these 154 TBM targets (Figure 4, Table 4 and
Table S2 in Additional file 4). The sum of GDT_TS scores
were 10331.4 ((PS)2-v2), 9954.4 ((PS)2-CASP8) and
9447.5 ((PS)2-original), respectively. (PS)2-v2 yielded 99
and 34 higher GDT_TS scores than (PS)2-original and
(PS)2-CASPS, respectively, among 154 targets. When the
sequence identity between the target and template was
more than 30%, these three servers achieved similar
GDT_TS scores. However, if the sequence identity was less
than 20%, the (PS)2-v2 server was significantly better than
(PS)2-original server (p-value is 4.0E-7) and (PS)2-CASP8
(p-value is 6.6E-4) using the paired Student's t-test (Table
4). For each target in CASP8, Table S2 (in Additional file
4) shows the GDT_TS score improvement with contribut-
ing components (i.e. multiple templates, multiple mod-
els, and template search method) between the (PS)2-v2
and our previous servers.

These 154 TBM targets were also used to evaluate the auto-
matic servers participating in CASP8. For the templates
selection, the accuracy of identifying the best template of
the target protein was used to evaluate the performance of
these servers (Figure S2 in Additional file 5). The accura-
cies of the (PS)2-v2 server were 54.1% and 75.0% for iden-
tifying the Top 1 templates and Top 10 templates,
respectively. In addition, (PS)2-v2 was the rank 6th among
these 72 severs based on GDT_TS scores (Table 5). This

Table 5: Comparing (PS)2-v2 with 71 automatic servers on 154 targets in CASP8

Rank Servers Sum of GDT_TS score
| Zhang-Server 10870.7
2 RAPTOR 10584.5
3 pro-sp3-TASSER, Phyre_de_novo 10469.3 ~ 10452.9
5 BAKER-ROBETTA, (PS)2-v2, MULTICOM-CLUSTER 10358.9, 10331.4, 10325.8
8 METATASSER 10296.7
72 mahmood-torda-server 1355.2
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Figure 4

Comparison the (PS)2-v2 server with (A) (PS)2Z-origi-
nal and (B) (PS)2-CASP8 servers on the 154 TBM tar-
gets in CASP8. (PS)2-v2 yields 99 and 34 higher GDT_TS
scores than (PS)2-original and (PS)2-CASP8, respectively,
among these 154 targets. These three servers have the simi-
lar GDT_TS scores when the sequence identity (Sl) between
the target and template is more than 30% (blue +). (PS)2-v2
outperforms our previous servers when Sl is less than 20%
(green Xx).

server is often able to yield reliable predicted structures
(i.e. GDT_TS score = 60%) if the E-value is less than 10-2
(Figure S3 in Additional file 6).

The top-rank five serves (Zhang-Server, RAPTOR, pro-sp3-
TASSER, Phyre_de_novo and BAKER-ROBETTA) are better
than (PS)?-v2 on 40 hard targets (i.e., LGA_S score < 70%)
(Table S3 in Additional file 7). These serves were much
slower than (PS)2-v2 because they often utilized ab initio
methods to build the unaligned loop regions and to gen-
erate the models, such as the Poing folding system for
Phyre_de_novo server, the chunk-TASSER [38] for pro-
sp3-TASSER server, and the Rosetta fragment-assembly
methodology [39] for BAKER-ROBETTA server. In the

http://www.biomedcentral.com/1471-2105/10/366

near future, our (PS)2-v2 server will incorporate ab initio
methods to model long-length loops and hard targets.

Multiple templates for multiple domains

We used the target T0504 as an example to describe (PS)2-
v2 for selecting multiple templates to model protein struc-
tures (Figure 5). The (PS)2-v2 server first selected the
53BP1 tandem tudor domains (PDB code 2g3r) as the
best template. The template 2g3rA aligned a part of
regions (138 residues, residues 10-147) to the target, and
the model yielded the GDT_TS scores of 74.2 and 32.2 for
the target T0504-D1 and T0504-D2. Since the number of
the unaligned residues is 61 (residue 148-208), the (PS)2-
v2 server used unaligned residues to search the new tem-
plate for modeling this segment. After search template
library, (PS)2-v2 selected the PHD finger protein 20-like 1
(PDB code 2eqm) as the template for modeling this
unmodeling residues (T0504-D3). The GDT_TS score of
this model is 80.7 for the target T0504-D3. The total
GDT_TS score improvement is 136.42 when (PS)2-v2 uti-
lizes a multiple-template strategy. Conversely, the GDT-TS
scores of the (PS)2-original server, using PDB code 2g3r as
the template, are 17.3 (T0504-D1), 48.9 (T0504-D2) and
56.1 (T0504-D3), respectively. For the (PS)2-CASP8
server, the GDT-TS scores using PDB code 2ns2 as the tem-
plate are 44.4 (T0504-D1), 25.6 (T0504-D2) and 41.0
(T0504-D3), respectively.

Multiple models and model selection

Figure 6 shows the improvement in GDT_TS scores of
(PS)2-v2 by applying a multiple-model strategy and using
the program ProQ for the final model selection. Among
these 154 CASPS8 targets, (PS)2-v2 improved GDT_TS
scores for 23 targets; conversely, only 4 targets are lightly
worse when (PS)2-v2 used a multiple-model strategy. For
the other 127 targets, (PS)2-v2 obtained the same GDT_TS
scores and the total GDT_TS improvement is 145.3.
According to the paired Student's t-test (p-value is 0.0045
shown in Table S4 Additional file 8), (PS)2-v2 applying
the multiple-model strategy significantly improved the
GDT_TS scores when the sequence identity between the
target and the template is less than 20%.

The target T0471 selected from CASP8 was taken as an
example to describe the structure modeling of the (PS)2-
v2 server using multiple-model strategy (Figure 7). When
the multiple-model strategy was not considered, (PS)2-v2
selected the 2-dehydro-3-deoxyphosphooctonate aldolase
(PDB code 2nwr) as the best template with an E-value of
0.055. GDT_TS score of this model is 32.67. If we consid-
ered the top-ranking 5 structures (PDB codes 2nwr, 1pea,
1nv8, 1ufr and 1v2d) as the modeling templates, (PS)2-v2
generated 6 alternative target-template alignments for
each template, and obtained 30 alignments for this target.
The software MODELLER was then applied to generate 30
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Comparison the (PS)2-v2 server with (PS)2-original and (PS)2-CASP8 servers on the target T0504 in CASP8.
The (PS)2-CASP8 server uses human spindlin] (PDB code 2ns2) as the template, conversely, (PS)2-v2 utilizes a multiple-tem-
plate strategy and selects both 53BP| tandem tudor domains (PDB code 2g3r) and PHD finger protein 20-like | (PDB code
2egm) as templates. (PS)2-v2 significantly outperforms (PS)2-CASP8 on the T0504-D| and T0504-D3 domains.
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(PS)2-v2 results for using single-model and multiple-
model strategies on 154 targets in CASP8 based on
GDT_TS scores. (PS)2-v2 improves and decreases the
GDT_TS scores for 23 and 4 targets, respectively, when the
multiple-model method is utilized. For the other 127 targets,
(PS)2-v2 obtains the same GDT_TS scores. The symbols "+",
"o" and "x" represent the performance when the sequence
identity (SI) > 30%, between 30% and 20%, and less than 20%,

respectively.

structures for these 30 target-template alignments. Figure
7 shows the best model with the highest LGscores, assess-
ing by the program ProQ, for each template. The model
generated by the template 1nv8A was selected as the final
model, because it had the best LGscore (2.838) among
these 30 models. The GDT_TS score of this final model is
61.65. The (PS)2-v2 server using multiple models is often
able to effectively improve accuracies when the E-value
between the target and the template is more than 0.01.
The average GDT_TS improvements are 8.53 and 2.23,
respectively, when the E-value > 0.01 and E-value < 1e-6.

T0409 in CASP8

The target T0409 selected from CASP8 was taken to
describe the structure modeling of the (PS)2-v2 server
(Figure 8). The target is the BIG_1156.2 domain of puta-
tive penicillin-binding protein MrcA from Nitrosomonas
europaea ATCC 19718. This server yielded the best
GDT_TS score (77.8) among all participating servers for
this target.

For the target T0409, the (PS)2-v2 server selected the C-ter-
minal domain of translation initiation factor 5A protein
(PDB code 1bkb) from Pyrobaculum aerophilum as the tem-
plate [40]. The C-terminal domain is found to be homol-
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(PS)2-v2 models the target T0471 in CASP 8 using multiple models. This server models T0471| by selecting top-rank-
ing five structures (PDB code 2nwrA, 1peaA, Inv8A, lufrA and 1v2dA) as templates using S2A2 matrix and PSSM scoring
matrices. For each template, (PS)2-v2 generates 5 structures and (D) the final model (Inv8) is identified by the program ProQ

based on LGscore.
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Figure 8

An example of the prediction results of the target T0409 from the (PS)2-v2 server. The alignment and predicted
structure of the BIG_I156.2 domain of putative penicillin-binding protein MrcA from Nitrosomonas europaea ATCC 19718
using the (PS)2-v2 server. (A) The alignment between the query and the selected template, translation initiation factor 5A pro-
tein (PDB code I1bkbA), from Pyrobaculum aerophilum. (B) The superposition, the native structure of T0409 (broad, PDB code
3d0f) and the predicted structure (thin). The green blocks are the regions that the predicted structure matches to the native
structure. The yellow and purple blocks indicate the shift errors between predicted structure and native structure, the Ca. dis-
tances between them are <5 A and >5 A, respectively.
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ogous to the cold-shock protein CspA of E. coli, which has
a well characterized RNA-binding fold. The best template
reported in the CASP8 website is the yeast exosome core,
Rrp44 (PDB code 2vnvD) [41], which contains four
domains (CSD1, CSD2, RNB and S1). The S1 domain has
the most similar structure to the target T0409-D1. The S1
domain also has a common OB fold characteristic of
RNA-binding protein, with five anti-parallel B strands.
Figure 8A shows the target-template alignment and the
template shares 17.0% sequence identity with the query
sequence. Our server could align the five anti-parallel
strands together. Figure 8B shows the superposition of the
predicted structure (thin) and the X-ray structure (broad)
of the target T0409.

Conclusion

This study presents an automatic server for protein struc-
ture predictions by applying numerous enhancements
and modifications to the original technique, thereby
improving the reliability and applicability. By integrating
the S2A2 and PSSM matrixes, the (PS)2-v2 server seam-
lessly blends the amino acid and structural propensities so
that they work cooperatively for the template selection
and target-template alignments. In addition, our (PS)2-v2
utilizes multiple templates and multiple models for build-
ing models and assessing models. Experimental results
demonstrate that the (PS)2-v2 server is efficient and effec-
tive for template selections and target-template align-
ments in template-based modeling. We believe that this
server is useful in protein structure prediction and mode-
ling, especially in detecting homologous templates with
sequence similarity in the twilight zone.
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