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Abstract
Background: The assembly of reliable and complete protein-protein interaction (PPI) maps
remains one of the significant challenges in systems biology. Computational methods which
integrate and prioritize interaction data can greatly aid in approaching this goal.

Results: We developed a Bayesian inference framework which uses phylogenetic relationships to
guide the integration of PPI evidence across multiple datasets and species, providing more accurate
predictions. We apply our framework to reconcile seven eukaryotic interactomes: H. sapiens, M.
musculus, R. norvegicus, D. melanogaster, C. elegans, S. cerevisiae and A. thaliana. Comprehensive GO-
based quality assessment indicates a 5% to 44% score increase in predicted interactomes compared
to the input data. Further support is provided by gold-standard MIPS, CYC2008 and HPRD
datasets. We demonstrate the ability to recover known PPIs in well-characterized yeast and human
complexes (26S proteasome, endosome and exosome) and suggest possible new partners
interacting with the putative SWI/SNF chromatin remodeling complex in A. thaliana.

Conclusion: Our phylogeny-guided approach compares favorably to two standard methods for
mapping PPIs across species. Detailed analysis of predictions in selected functional modules
uncovers specific PPI profiles among homologous proteins, establishing interaction-based
partitioning of protein families. Provided evidence also suggests that interactions within core
complex subunits are in general more conserved and easier to transfer accurately to other
organisms, than interactions between these subunits.

Background
Protein-protein interactions are essential to most cellular
processes. Thus large-scale PPI networks can greatly con-
tribute to our understanding of the cellular machinery at
systems level. Experimental techniques such as yeast two-
hybrid assays [1-4] and TAP-MS [5,6] have generated large
amounts of binary PPIs and protein complex data, provid-
ing the first snapshots of eukaryotic interactomes. Unfor-
tunately, the available experimental techniques are far
from perfect, both in terms of their accuracy, as well as
coverage. For instance, the yeast interactome has recently

been estimated to contain from around 37,000 up to even
75,500 protein interactions between approximately 6,000
proteins [7]. Although already over 80,000 yeast PPIs have
been reported, given the estimated false positive rates of
the experiments, the yeast interactome is suggested to be
roughly 50% complete [7]. Using a more conservative def-
inition and omitting indirect co-complex associations, the
authors of [8] estimate the number of yeast interactions to
be ~18,000 and conclude that three idependent Y2H
assays cover only around 20% of this amount. In case of
human, the entire interacome is estimated to be covered
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in roughly 10% [7,9]. Furthermore, many doubts and crit-
icism have been expressed in the literature regarding the
low overlap between independent screens - originally
attributed to a high false-positive rate of these experi-
ments [10-12]. More recent studies (e.g. [8]) suggest that
the low overlap can largely be explained by low sampling
sensitivity and differences in assay types. Considering all
mentioned limitations, none of the existing experimental
systems can provide a complete and error-proof interac-
tion map of a complex organism within reasonable time
and respecting budget limitations. As recently estimated,
around 20 independent proteome-scale screens would be
required to reliably identify each mappable interaction in
a moderately-sized interactome of Drosophila melanogaster
[13].

Simultaneously with the development of experimental
techniques, computational methods for predicting PPIs
have emerged [14-16]. These approaches complement
experimental methods and can be used to validate noisy
data, as well as to select new targets for screening experi-
ments [15]. Available computational techniques exploit
various sources of evidence. Among them are ones based
on genomic data [17,18], protein sequences [19,20], phy-
logenetic profiles [21], and classification-based
approaches [22-24]. Other methods explore the premise
that interacting proteins often co-evolve and thus similar-
ity of phylogenetic trees can be used to infer interactions
[25-27]. Approaches using maximum likelihood estima-
tion (MLE) for inferring the probability of domain-
domain interactions have been presented. The first of such
analysis was performed in [28], where the authors used
yeast PPI data to estimate the probability of domain-
domain interactions, and subsequently predict the inter-
actions between proteins. Finally, multiple data sources
have been integrated in a Bayesian framework in [29]. The
last concept was further extended and applied to a wide
range of heterogeneous data types from multiple species
to construct comprehensive databases of functional asso-
ciations [30,31].

In this study we are specifically interested in techniques
which integrate and transfer PPI evidence across species.
In its simplest form, this idea is implemented in the inter-
olog (the term interlog is also used) mapping approach
[32], which predicts an interaction between a pair of pro-
teins (a, b) if in another species there exists a known inter-
action between a pair (a', b'), where a' and b' are orthologs
of a and b, respectively. The transfer of PPI evidence across
species can also be achieved at the level of conserved
domains. In [33] the authors devised a maximum likeli-
hood method, similar to [28], but using data from multi-
ple organisms. In summary, the method estimates the
probability of interactions between each pair of consid-
ered domains, based on the PPI evidence from multiple

species. Inferred domain-domain interactions constitute
integrated evidence, which is in turn used to predict pro-
tein-protein interactions. A similar method, but using het-
erogeneous data sources (including protein fusion and
Gene Ontology annotations), was used in [34]. In general,
combining interaction evidence from different species
makes PPI predictions more robust to experimental noise.
False positive observations are unlikely to be reproduced
across multiple species [35]. Furthermore, evolutionarily
conserved interactions are expectedly biologically signifi-
cant. Evolutionary pressures are more likely to constrain
functional units such as protein complexes rather than
single interactions [36]. Hence, if an interaction has exper-
imental support in datasets from diverse species, it is
likely to be part of a significant functional module. Highly
probable interactions identified in a subset of species can
be transferred to other species [37], as was done in [38] to
predict missing interactions within conserved protein
modules.

We present an approach which uses protein family phyl-
ogenies to accurately map PPI evidence between homolo-
gous proteins. Contrary to previous studies [25-27], the
phylogenies are not used to assess protein co-evolution,
but to account for evolutionary relationships when inte-
grating data from different organisms. Our current work
builds on previously proposed CAPPI framework for com-
paring PPI networks across species [39]. CAPPI is based
on a duplication and divergence model which mimics the
processes by which most protein interactions are formed
i.e. by copying from ancestral interactions during protein
duplication and subsequently being sustained or lost over
time. Using this model we can naturally incorporate inter-
dependencies between PPIs and study the available data
in evolutionary context. The only previous works based
on these principles are [39] and [40] both of which con-
centrated on inferring ancestral states of the protein inter-
action network (the analysis in [40] was limited to a single
protein family). Our current work presents the first appli-
cation of the duplication and divergence model towards
genome-scale inference of PPIs in extant species.

We use our framework to integrate and infer new PPIs in
seven eukaryotes: Homo sapiens, Mus musculus, Rattus nor-
vegicus, Drosophila melanogaster, Caenorhabditis elegans, Sac-
charomyces cerevisiae and Arabidopsis thaliana. We perform
a comprehensive validation of our predictions using a
GO-based functional similarity measure and assessment
based on reference datasets of binary and co-complex
PPIs. The obtained results demonstrate CAPPI's ability to
identify a large percentage of known interactions in a
blind test and provide new hypothesis for experimental
verification when all known data is integrated. Our
method shows a significant advantage over the standard
interlog mapping approach and a maximum-likelihood
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domain-oriented method. We also analyze specific exam-
ples of valid PPI predictions in well-characterized com-
plexes in yeast and human (proteasome, endosome and
exosome), and show that core subcomplexes can be accu-
rately recovered based solely on the data from the other
species (i.e. without any use of the experimental data from
the species of interest). Many of the between-module
interactions (possibly species-specific) are harder to trans-
fer from distant organisms. Finally, based on our predic-
tions, we present hypothesis on new proteins interacting
with the putative SWI/SNF chromatin remodeling com-
plex in A. thaliana. Our results are freely available at http:/
/bioputer.mimuw.edu.pl/cappi.

Results and Discussion
We develop a comprehensive framework for integrating
and transferring PPI evidence across species. Our
approach combines and extends the concepts of interlog
mapping and Bayesian data integration. As opposed to the
interlog approach, we employ PPI evidence from all
homologous proteins, instead of using only the best-
matching sequences in each case. This strategy is advanta-
geous given the sparseness of the source datasets from
which new interactions could be inferred. It is also moti-
vated by the fact that the role of an individual protein in
one species may be distributed over several homologous
proteins in another species. Further, we use a Bayesian
modeling framework to integrate PPI evidence from
diverse experimental sources, taking into account their
reliabilities and coverage. The evidence is accounted for in
the context of the families' phylogenetic trees and under
an assumed model of network evolution, which assigns
probability scores to events of interaction loss or gain fol-
lowing a duplication or a speciation event (duplication
and divergence model). Intuitively, the closer a given pair
of proteins is to another pair, the more impact the evi-
dence for one pair has on predicting the interaction of the
other pair. The amount and reliability of the evidence, as
well as the evolutionary proximity of the observed interac-
tions to the pair of proteins in question, determines the
posterior probability of interaction computed by our
framework. We apply CAPPI to infer protein-protein
interactions in seven eukaryotic species: human (H. sapi-
ens), mouse (M. musculus), rat (R. norvegicus), fly (D. mel-
anogaster), worm (C. elegans), yeast (S. cerevisiae), and
thale cress (A. thaliana). The initial steps of our analysis
preprocess the data and gather experimental evidence for
interaction between members of distinct protein families.
To this end, we identify groups of homologous proteins
by clustering all non-redundant protein sequences down-
loaded from the Integr8 database [41] and pull relevant
PPI data from IntAct [42], MINT [43] and DIP [44] data-
bases (see Additional file 1 for details). The family-ori-
ented view of the overlap of available PPI evidence for
four best-represented interactomes is shown in Figure 1.

We consider two modes of application of our framework.
First, the integration mode which gathers all available
input data to provide a reconciled interactome view for
each species. Second, the prediction mode which predicts
the interactions for each species only based on the evi-
dence from the other species (blind test). To demonstrate
the different aspects of our method and enable a straight-
forward comparison to the previous approaches we use
different combinations of the input datasets and different

Figure 1
A family-oriented overview of the input PPIs. A 4-way
Venn diagram illustrating the overlap of PPI evidence between
four of the considered seven species: human, yeast, fly and
worm. Each cell in the diagram is labeled with the number of
pairs of protein families for which members interact in the
corresponding species. For example, there are 742 pairs of
protein families such that in both yeast and human there
exists at least one interaction between members of the two
families and no such interactions exist for fly and worm. Only
about 0.5% (42514 of 8280415) of possible family pairs we
consider have any evidence for interaction in any of the four
species. Of these only 0.1% (45 of 42514) have evidence in all
four species, which seems small, given that all considered
families are evolutionarily conserved. However, the size of
the overlap presumably corresponds to the fraction of the
interactomes sampled experimentally, rather than to the
actual level of conservation. For example, while there is a sig-
nificant size difference between the overlap of the relatively
best sampled yeast and human interactomes
(742+175+45+42 = 1004 family pairs) and the overlap
between yeast and worm interactomes (23+45+42+78 = 188
family pairs), the fraction of family pairs with PPI evidence
from human and worm overlapping with such pairs in yeast is
of the same magnitude (8% and 9%, respectively). It is highly
probable that many of the homologous interactions in yeast
and human have, yet unidentified, counterparts in worm and
similarly in the other species. CAPPI uses phylogenetic infor-
mation and probabilistic modeling to identify the most proba-
ble interactions in each species given the joint evidence from
all input datasets and considering their reliability.
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reliability values, yielding the following sets of inferred
interactions (for details see Additional file 1):

CAPPI-Integ: interactions for all seven species inferred
using all available experimental datasets.

CAPPI-Integ-3sp: yeast, fly and worm interactions
inferred based on experimental datasets from Ito et al. [2],
Uetz et al. [1], Giot et al. [45] and Li et al. [46], with relia-
bility parameters set according to [33].

CAPPI-Pred: interactions inferred for each species using
experimental datasets only from the other six species.

We compare the results of CAPPI with the following
methods:

Domain-ML: a maximum likelihood domain-oriented
method [33]. Yeast interaction predictions, based on
experimental datasets of Ito, Uetz, Giot and Li, were pro-
vided by the authors.

Interlog: an interlog-based method implemented in [47].
The program was downloaded from the InteroPORC web-
site http://biodev.extra.cea.fr/interoporc/Default.aspx
and ran for each species using experimental datasets only
from the other six species (same datasets as in CAPPI-
Pred).

In the following sections, we investigate the performance
of our method on large-scale data, as well as in small-scale
experiments focused on specific functional modules.

Integration of interactions in seven eukaryotes
CAPPI-Integ provides an integrated and reconciled view of
seven eukaryotic interactomes. Our ultimate goal is to
provide a higher quality interactome for each input spe-
cies. To assess the potential improvement, we perform
two separate evaluations using a GO-based functional
similarity measure and gold standard reference datasets.

GO-based scoring
Gene Ontology (GO) annotations are often used as indi-
rect evidence for interaction. Intuitively, the more similar
are the annotations of two proteins, the more confident
we are in predicting an interaction between them. We first
consider the biological process (BP) annotations and
score our predictions, as well as the interactions from the
input datasets, using the functional similarity measure
from [48]. Mean BP scores for the input datasets and for
the equal in size prediction datasets are summarized in
Table 1. The scores of self interactions (present both in the
input and in the inferred datasets) are excluded as they
could introduce bias to the results (the GO annotations
are identical in this case). Also, to avoid possible bias

caused by the specific choice of proteins, input datasets
are limited to interactions between members of conserved
protein families used by CAPPI (see Additional file 1). For
each CAPPI version in Table 1 we indicate the mean BP
scores for the input dataset and the inferred output dataset
of equal size. For example, in case of CAPPI-Integ the
input yeast dataset contains 28590 interactions, for which
the average BP score is 0.377. The corresponding CAPPI-
Integ score of 0.412 was computed by taking the mean BP
score of the 28590 best predictions in yeast (i.e. interac-
tions with the highest probability). For each of the species
CAPPI predictions receive significantly higher mean BP
scores than the datasets used for training. The most signif-
icant improvement over the input datasets is achieved in
case of the y, worm and rat predictions. The mean BP score
for the entire fly input dataset is 0.295, while the CAPPI-
Integ dataset of the same size achieves a mean score of
0.425 (44% higher). In case of worm and rat prediction
we observe a 29% and 30% increase in the BP score,
respectively. Our results show that CAPPI is able to pro-
duce reconciled interactomes which significantly outper-
form the input interactomes (see also Wilcoxon test p-
values in Table 1). A detailed view of the distributions of
BP scores for experimental and predicted datasets of pro-
tein interactions in D. melanogaster is presented in Figure
2A. The predicted datasets (both CAPPI-Integ and CAPPI-
Integ-3sp) contain a lot more high-scoring interactions
than are present in the input datasets. Interestingly, while
the Input-3sp for fly is almost as good as the Input-7sp,
CAPPI-Integ-3sp is significantly outperformed by CAPPI-
Integ. This is largely due to the integration of additional
high quality datasets from other species, from which
CAPPI-Integ can transfer new evidence when inferring the
fly interactome.

The improvement in mean BP score described above is
achieved for relatively large predicted datasets (as large as
the initial inputs). As we show in Figure 2B, BP scores are
actually higher for our top predictions. Figure 2B plots
mean similarity scores according to all three ontologies:
biological process (BP), molecular function (MF) and cel-
lular component (CC), as functions of the number of pre-
dicted interactions. The mean scores for both CAPPI
versions are negatively correlated with the size of the out-
put dataset. This enables the user to trade size for quality,
obtaining a smaller dataset, but of greater reliability.

Testing against gold standard datasets
We further survey the performance of our method using a
set of gold standard binary PPIs pulled from [49] and [8],
as well as co-complex data from the MIPS [50] and
CYC2008 [51] complex catalogues (see Additional file 1
for details). Once again, we score CAPPI predictions and
compare them to the scores of the input datasets. The
results are presented in Figure 2C. The figure plots the
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ratio of true positive and false positive interactions
present among a subset of a given size. The true positive
interactions are either confirmed by binary PPIs or known
to participate in a characterized complex. Unfortunately
negative gold standard sets of non-interacting protein
pairs are not available. We take a standard heuristic
approach and consider pairs of proteins with different
subcellular localization as putative negative examples. We
note that in certain situations, e.g. signalling pathways, it
is possible that interacting proteins are in fact in different
cellular compartments. Note also that in general true
interactions constitute only a very small fraction of all
possible protein pairs - at most 0.5% in yeast based on
recent estimates from [7]. This is reflected in our reference
datasets. The positive reference used in this case contains
22480 PPIs and co-complex pairs while the negative set
contains 4857065 differencially localized pairs (see also
Additional file 1). It is unlikely to identify a true interac-
tion by pure chance alone. Results presented in Figure 2C
confirm the previous observation that reliable interac-
tions are generally ranked high by our method. It is com-
forting that both CAPPI datasets contain more confirmed
interactions than differentially localized pairs among the
top ranked predictions (TP/FP >> 1). Note that a reference
interaction can only be identified if a relevant evidence
interaction is present in the input experimental evidence
for one of the species. Given that the gold standard data-
sets generally do not have a large overlap with the input
high-thoughput datasets, many of the reference interac-
tions will not be inferred by any integration procedure.
Importantly as shown in Figure 2C CAPPI-Integ-3sp has a
much higher TP/FP ratio than the input yeast datasets (Ito

and Uetz) used for its training. CAPPI-Integ integrates
four more high-throughput yeast datasets and consist-
ently scores higher than three out of four of these inputs -
Gavin (2002) dataset has a higher score, but for a smaller
number of interactions.

Prediction of interactions in a blind test
We continue the performance evaluation by testing
CAPPI's ability to predict interactions in a blind test. To
this end, we compute the CAPPI-Pred dataset by itera-
tively leaving out PPI data of one of the seven species and
predicting its interactions based only on the data from the
other six species. We discuss the assessment of yeast and
human predicted interactomes based on the two scoring
frameworks.

Figure (3A and 3B) shows multiple histograms summariz-
ing the BP score distribution among yeast and human pre-
dictions, respectively. The sizes of the predicted dataset
(1576 for yeast and 17105 for human) have been selected
to allow comparison with the interlog mapping predic-
tions (see next section for details). Interestingly, we
observe that while the performance of CAPPI-Pred is
lower than CAPPI-Integ in case of yeast predictions, the
opposite is true for the predicted human interactome. This
suggests that while the yeast input interactions are neces-
sary for good prediction results, human input datasets, on
average, bring a less notable contribution.

In Figure 3C we plot the ratio of true positives and false
positives as a function of the number of yeast PPIs
returned by CAPPI-Pred. We evaluate the predictions sep-

Table 1: BP score improvement over the input datasets.

Species CAPPI-Integ CAPPI-Integ-3sp

Data Size Input Score Output Score Wilcoxon p-
value

Data Size Input Score Output Score Wilcoxon p-
value

Yeast 28590 0.377 0.412 1.21e-31 1890 0.320 0.381 8.03e-06

Fly 12107 0.295 0.425 1.26e-113 4049 0.255 0.303 4.78e-05

Worm 2604 0.364 0.469 1.50e-21 856 0.374 0.485 2.02e-09

Arabidopsis 1349 0.596 0.623 0.02 NA

Rat 1271 0.296 0.384 9.07e-06 NA

Mouse 2456 0.417 0.463 1.53e-06 NA

Human 17672 0.353 0.395 1.38e-31 NA

The mean BP score of the input dataset and the inferred dataset of the same size are given for CAPPI-Integ and CAPPI-Integ-3sp. In all cases the 
inferred interaction set receives a significantly higher score than its input counterpart.
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Figure 2 (see legend on next page)
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arately using co-complex datasets (CAPPI-Pred Complex),
gold standard binary PPI datasets (CAPPI-Pred PPI), as
well as all available reference data (CAPPI-Pred All) - see
Additional file 1 for details. An analogous study is per-
formed for the predicted human interactome using the
HPRD (complex and binary PPI) catalogues as reference
(see Figure 3D). Note that similarly as for yeast, also for
human the positive reference set is significantly smaller
than the negative reference set. The joint human reference
set (All) contains 57,093 protein pairs, which is less than
0.2% of the number of differentially localized pairs - con-
sistent with the expected ratio of true interactions to all
protein pairs in human, as estimated in [52]. The results
show that CAPPI is able to infer high-scoring PPIs also in
the case when no interactions from the predicted interac-
tome are included in the training set. Most of the top pre-
dictions are confirmed by experimental data. We observe
that while more yeast predictions are confirmed by co-
complex pairs than by binary PPI data, the opposite is true
in case of the human predictions. This can be explained by
the differences in size of the respective reference datasets
for the two species (see Additional file 1). When all avail-
able reference data is considered (CAPPI-Pred-All), the
TP/FP ratios for the top 5,000 interactions in yeast and
human are comparable (~0.8).

Filtering co-complex predictions
Evolutionary pressures are more likely to constrain essen-
tial functional units than individual interactions [36].
Thus co-complex PPIs should be easier to map accurately
across species. This premise was previously explored in
[38], where the authors showed that screening PPI predic-
tions against conserved clusters improves prediction spe-
cificity. In an attempt to increase the percentage of co-
complex PPIs in our predictions, we filtered the CAPPI-
Pred output dataset, leaving only the predicted PPIs
placed within conserved dense network regions. To this

end, an ancestral interaction network was computed as in
[39], and clustered using the MCL algorithm [53] to iden-
tify dense clusters. Each cluster was projected onto the net-
work of the extant species (yeast or human) and CAPPI-
Pred predictions within the projected regions were identi-
fied as a result. As shown in Figure (3C and 3D), this pro-
cedure significantly boosts the TP/FP ratio for both yeast
and human data (see "Filtered Complex" plots). Interest-
ingly, while the fraction of co-complex PPIs was increased,
the fraction of confirmed binary PPIs was in general low-
ered by the filtering (except for the top ranked human pre-
dictions), suggesting that many binary PPIs placed outside
or between protein complexes are filtered out in this case.
This is in line with the observations made in [8] that
binary and co-complex datasets are of complementary
nature and often have small overlap.

Comparison with previous high-throughput multi-species 
approaches
Numerous existing computational approaches for predict-
ing protein associations in multiple species can be loosely
divided into three categories. The first group of methods
contains approaches for predicting interactions de novo
from protein sequence. These methods often utilize evo-
lutionary information such as phylogenetic profiles or
gene fusion events, but they do not explicitly transfer pre-
identified interactions from one species to another. The
second group of methods takes as input experimentally
identified PPIs, integrates them and transfers the evidence
to other species. The third group of studies is directed
towards integration of heterogeneous experimental evi-
dence such as PPI, mRNA co-expression, phylogenetic
profile similarity, co-localization, domain associations,
etc., and attempts to predict various types of functional
associations, not limited strictly to protein-protein inter-
actions. CAPPI was specifically designed as a model-based
approach for integrating and transferring protein-protein

Assessment of CAPPI-Integ predictionsFigure 2 (see previous page)
Assessment of CAPPI-Integ predictions. Assessment of CAPPI-Integ predictions. (A) Histogram of BP scores for the fly 
input datasets (combined) and corresponding inferred datasets of the same size (4049 PPIs in case of Input-3sp and CAPPI-
Integ-3sp and 12107 PPIs in case of Input-7sp and CAPPI-Integ). Both CAPPI-Integ and CAPPI-Integ-3sp provide higher-scoring 
interactomes compared to their input datasets demonstrating the method's ability to use the interactions from distant species 
to make high quality predictions in other species. (B) Assessment of predicted yeast interactions using the three GO scores. The 
similarity of GO annotations of each pair of interacting proteins is measured in each ontology: biological process (BP), molecu-
lar function (MF) and cellular component (CC). CAPPI and Domain-ML predictions are ranked by their probabilities and the 
average GO score for the top n predictions is shown. CAPPI-Integ-3sp outperforms the domain based approach trained on the 
same experimental data. CAPPI-Integ integrates all available data from the seven species and further improves the predictions 
for yeast. (C) The ratio of true positives (TP) and false positives (FP) as a function of the number of yeast interactions. An 
interaction is deemed true positive if it is found in the reference dataset comprising co-complex and binary PPIs, and false pos-
itive, if the two proteins are assigned different localizations in the MIPS sub-cellular localization catalog (see text). The TP/FP 
ratios for the CAPPI-Integ, CAPPI-Integ-3sp and Domain-ML predictions are compared with the scores of the input experi-
mental datasets. The gray dashed line marks the level at which the number of true positive predictions is equal to the number 
of false positive predictions.
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interactions across species and as such it falls into the sec-
ond category. Here we compare the performance of our
method and two well-established frameworks for map-
ping PPIs: the interlog approach and the domain-based
maximum likelihood method.

Comparison with the domain-based maximum likelihood 
approach
In [33] the domain-domain interaction prediction
method was generalized to multiple species and applied

to infer interactions in yeast, worm and fly (we refer to this
method as the Domain-ML approach). As a final output,
this approach predicts protein-protein interactions based
on inferred interactions between conserved domains. Liu
et al. trained their method using Ito, Uetz, Giot and Li
experimental datasets, so the their results can be directly
compared to CAPPI-Integ-3sp. Note that only the yeast
interaction predictions were provided by the authors. The
mean GO scores for Domain-ML and CAPPI are shown in
Figure 2B. CAPPI-Integ-3sp significantly outperforms

Assessment of CAPPI-Pred predictionsFigure 3
Assessment of CAPPI-Pred predictions. Assessment of CAPPI-Pred predictions. (A) and (B): Histograms of BP scores for 
the predicted yeast (A) and human (B) PPI datasets of the same size (1576 yeast PPIs and 17105 human PPIs) from the Interlog 
method, CAPPI-Pred and CAPPI-Integ. (C) and (D): The ratio of true positives and false positives as a function of the number 
of interactions in yeast (C) and human (D). An interaction is deemed true positive if it is found in the reference dataset of 
either co-complex interactions (Complex) or binary PPIs (PPI), or in any available reference set (ALL) and false positive, if the 
proteins are assigned different cellular localization (see text). Plots labeled as "Filtered Complex" and "Filtered PPI" show the 
results of selected CAPPI predictions which are part of dense clusters tested against either the co-complex reference (Com-
plex) or binary reference (PPI). The gray dashed line marks the level at which the number of true positive predictions is equal 
to the number of false positive predictions.
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Domain-ML in terms of all three GO scores. The perform-
ance evaluation using gold standard data (Figure 2C) also
indicates a higher accuracy of CAPPI compared to the
domain-based approach.

Comparison with the interlog-based approach
Next, we compare our results with a popular method of
interlog mapping. This approach, similarly to CAPPI,
relies on protein sequence similarity to transfer the inter-
action evidence across species. We choose for comparison
the interlog mapping implementation from [47] and use
the same input data for predicting our CAPPI-Pred dataset
(for details see Additional file 1). Figure (3A and 3B) pro-
vides the distributions of GO scores for the Interlog and
CAPPI datasets of the same size: 1576 (yeast) and 17105
(human), respectively. CAPPI predictions also contain a
larger fraction of highest-scoring interactions (those with
GO score > 0.8) and obtain a higher average score. The
mean score for the CAPPI-predicted yeast dataset is
noticeably higher than that of the Interlog method (0.57
vs. 0.39). CAPPI's advantage is also apparent in case of the
human predictions (mean score 0.42 vs. 0.33). To assess
the significance of the difference in score distributions we
performed the Wilcoxon test which returned p-values <
2.2 × 10-16 in all cases.

Figure (3C and 3D) shows the mean scores for the Interlog
output (in blue circles), which can be compared with the
CAPPI rankings. In all cases CAPPI achieves a higher frac-
tion of true positive interactions: 0.88 vs. 0.47 for the
yeast co-complex predictions, 0.72 vs. 0.40 for the yeast
binary PPI prediction, 0.16 vs. 0.14 for the human co-
complex predictions, and 0.38 vs. 0.28 for the human
binary PPI predictions. As we show in the next section,
CAPPI recovers many known interactions within essential
functional modules enabling the reconstruction of mod-
ule subunits. The InteroPORC method is too restrictive in
most of the studied cases (see Additional file 1: Table S1),
suggesting that a less stringent ortholog search is needed.
In fact this is recognised in [47] where more sensitive
methods are considered for predicting interactions in
cyanobacterium Synechocystis. An additional advantage of
our method lies in the provided ranking (induced by the
posterior probabilities), which enables the user to easily
identify the most reliable interactions. As an example, for
the purpose of selecting human PPI targets for verifica-
tion, one could make a heuristic decision to consider only
around 3,500 top predictions for which the TP/FP ratio is
greater than 1 (see Figure 3D).

Case studies: mapping interactions within conserved 
functional modules
We now zoom-in on specific examples of functional units
in the interactomes of human, yeast and thale cress, and
analyze co-complex interactions inferred by CAPPI-Pred.

In all described cases we demonstrate that the general top-
ological features and organization of these complexes, as
well as many known pairwise PPIs, can be recovered by
our method based solely on data from the other species.
We verify the inferred interactions against previously
reported experimental data and assess the significance of
our predictions. For an example of how the threshold
selection impacts the number of interactions and the
resulting p-value see Additional file 1: Figure S1. Note that
in the following discussion gene names are used to denote
corresponding proteins.

Human and yeast proteasome subnetworks
The ubiquitin-proteasome pathway is essential for elimi-
nating damaged proteins and for regulation of intra-cellu-
lar level of proteins involved in wide spectrum of cellular
functions [54]. It is conserved in eukaryotes, from yeast to
human. The 26S proteasome complex contains a 20S cat-
alytic core particle (CP), which is capped on each side by
a 19S regulatory particle (RP). The structure of the 20S
proteasome from yeast has been resolved [55]. It consists
of 28 protein subunits: two α-rings (α1,...,α7) and two β-
rings (β1,...,β7). The 19S proteasome can be further
decomposed into two subcomplexes: the base (Rpt1-
Rpt6, Rpn1, Rpn2, Rpn10 and Rpn13 - the last one prob-
ably not present in human) that binds directly to the 20S
proteasome, and the lid (Rpn3, Rpn5-Rpn9, Rpn11,
Rpn12 and Sem1), which is a peripheral subcomplex. In
addition there is a number of transiently associated fac-
tors like p27 and S5b (the latter is apparently not present
in yeast). We discuss our predictions of the 26S proteas-
ome interactions from yeast and from human separately.

Predicted interactions in the yeast 26S proteasome are
depicted in Figure 4. Overall, at the selected threshold we
identify 177 confirmed interactions and 66 unconfirmed
ones. The graph inferred by CAPPI is split into four parts
that correspond to the four subcomplexes of the proteas-
ome: α-ring, β-ring, lid and base. The α-ring and the β-ring
have a dense set of interactions. Both of them together
form a clique (i.e. every two proteins are predicted to
interact), with most of the interactions being supported
by experimental data. The lid and base are also very well
represented and connected by 16 interactions, all of
which are confirmed by previous experiments. We observe
also the central role of Rpn7, which is predicted to interact
with every subunit in the α- and and in the β-ring, as well
as with six proteins in the lid subcomplex and eight in the
base. Another hub protein identified is Rpn1, which has
twelve interaction partners among the alpha and beta pro-
teins (four of which are confirmed), seven partners in the
base and seven in the lid (all having experimental sup-
port). On the other hand, the transiently associated NAS2
(p27) is predicted to interact only with the AAA-ATPase
subunits (Rpt1-Rpt6) of the base subcomplex. In general,
Page 9 of 19
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interactions within the core subcomplexes of the yeast 26S
interactome are accurately recovered based solely on data
from other six species, demonstrating a high level of con-
servation of these PPIs. The vast majority of the 66 uncon-
firmed predictions are localized between the characterized
subcomplexes. In fact only 7 of the 44 predicted interac-
tions between the 20S catalytic core and and the 19S reg-
ulatory particles are backed by experimental evidence in
yeast. The absence of experimental data for these PPIs in
S. cerevisiae might be explained by insufficient coverage of
the yeast interactome or by possible rewiring events which
changed the topology of interactions between the con-
served core subunits across species. The discussion of
human proteasome PPI predictions is presented in Addi-
tional file 1.

Human and yeast endosome subnetworks
The ESCRT complexes comprise a major pathway for the
lysosomal degradation of transmembrane proteins (see
[56]). We investigate the predicted interactions for the
ESCRT complexes in human and yeast and compare the
obtained results with the interactions reported in the liter-

ature. The list of proteins involved in these complexes was
taken from [56].

Human ESCRT co-complex interactions as predicted by
our method are depicted in Figure 5. CAPPI-Pred was able
to recover all five complexes discussed in [56]. These com-
plexes are: ESCRT-3 (well represented as a dense con-
nected component with most edges reported in previous
experiments), ESCRT-1, ESCRT-0, the Vps4 complex, and
the ESCRT-2 complex. Interestingly, our results suggest
that proteins CHMP1B and CHMP5 should be assigned to
the ESCRT-3 complex. This association of CHMP1B and
CHMP5 (consistent with the so called 'CHMP nomencla-
ture') has been recently proposed in [57]. Moving on to
the right side of the graph, we notice that the VPS4 pro-
teins together with protein VTA1 form a triangle compris-
ing of three reported interactions. A similar observation
can be made for the ESCRT-0 complex (HGS, STAM1 and
STAM2), except that the interaction STAM-STAM2 is not
supported by previous experimental data. Also, the topol-
ogy of interactions presented in Figure 5 suggests an
important role of the TSG101 (mammalian VPS23) pro-
tein, which joins ESCRT-1 with three other complexes

Inferred PPIs within the yeast proteasome complexFigure 4
Inferred PPIs within the yeast proteasome complex. Interaction network of the yeast 26S proteasome complex as 
inferred by CAPPI-Pred. Nodes represent gene products and node colors represent protein families identified by sequence 
clustering. 177 of the predicted interactions which have been previously detected experimentally are denoted by green edges. 
66 other PPI predictions are denoted by gray edges. The p-value of the predicted network is 4.348 × 10-16. The networks are 
visualized using the Cytoscape software [73].
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(ESCRT-3, ESCRT-0 and Vps4). TSG101 also takes part in
five identified interactions within the ESCRT-1 complex,
all of which have backing experimental evidence in
human. Please refer to Additional file 1 for the discussion
of yeast ESCRT complex predictions.

Human mRNA decay complexes
Next we investigated CAPPI's interaction predictions
between proteins involved in human mRNA degradation
(see [58]). The subgraph of predicted interactions is pre-
sented in Figure 6. We have a very good coverage of the
human exosome complex represented by six RNase PH
domain subunits (EXOSC4 (Rrp41), EXOSC5 (Rrp46),
EXOSC6 (Mtr3), EXOSC7 (Rrp42), EXOSC8 (Oip2),
EXOSC9 (PMScl-75)), three S1 RNA-binding domain sub-
units (EXOSC1 (Csl4), EXOSC2 (Rrp4), EXOSC3
(Rrp40)), and an RNase D-like subunit EXOSC10 (PMScl-
100). This complex comes out as a complete subgraph (a
clique) with no interactions with the other two com-
plexes. The role of most of the subunits of the complex, in
terms of interacting partners, is quite comparable. One of
the exceptions is the EXOSC9 (PMScl-75) protein which is
the only RNase PH domain subunit predicted to interact

with DIS3 and two helicases (SKI2W and SKIV2L2). Other
exosome complex members interacting with DIS3 are S1
RNA-binding subunits EXOSC1 (Csl4) and EXOSC3
(Rrp40), as well as EXOSC10. EXOSC1 and EXOSC10 also
have predicted interactions with helicases SKI2W and
SKIV2L2. In general, data on interactions of the peripheral
subunits with the exosome complex are scarce, as reported
in [58], which makes our predictions a potentially valua-
ble target for experimental verification. The second com-
plex which comes out as a dense subgraph in our network
is the LSM complex. It consists of eight proteins (LSM1-8),
forming a clique of predicted interactions, many of which
are confirmed experimentally (see [58] Figure 3A). The
two proteins with the largest number of confirmed inter-
actions within the complex are LSM3 and LSM7. Both of
these proteins have confirmed PPIs with six out of seven
other LSM members (additional PPIs predicted by our
method are LSM3-LSM4 and LSM7-LSM1). The third
complex which can be retrieved from the network in Fig-
ure 6 consists of two AU-rich element ARE-binding pro-
teins (ELAVL1 (Hur) and HNRPD (Auf1)). All three
interactions predicted inside this complex are confirmed
by recent experimental data (see [59]). Among the unver-

Inferred PPIs within the human endosome complexFigure 5
Inferred PPIs within the human endosome complex. Interaction network of the human endosome complexes as 
inferred by CAPPI-Pred. Nodes represent gene products and node colors represent protein families identified by sequence 
clustering. 49 predicted interactions which have been previously detected experimentally are denoted by green edges. 49 other 
PPI predictions are denoted by gray edges. The p-value of the predicted network is 3.977 × 10-9.
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ified predictions is an interaction of this complex with the
LSM complex (via LSM2) and with another mRNA decay
factor XRN2.

A. thaliana SWI/SNF chromatin remodeling complex
In yeast and mammals, ATP-dependent chromatin
remodeling complexes belonging to the SWI/SNF family
play an essential role in the regulation of transcription. In
Arabidopsis chromatin remodeling complexes are known
to a much smaller extent. No plant SWI/SNF complex has
been established and characterized to date, but it is highly
probable that such complexes exist in plants (see [60]).
For this reason it seems desirable to employ a computa-
tional approach for predicting interactions in the plant
SWI/SNF putative complex and generate plausible work-
ing hypothesis. We present a zoom-in view of the SWI/
SNF putative complex in Figure 7. A larger zoom-out view
containing other homologs of the putative SWI/SNF com-
plex members is presented in Additional file 1: Figure S2.

The graph in Figure 7 contains the core SWI/SNF proteins
- the SWI3-type proteins: At2g47620 (SWI3A), At2g33610
(SWI3B), At1g21700 (SWI3C), At4g34430 (SWI3D),
together with the SNF5-type protein At3g17590 (BSH).

This core is presented at the bottom of the graph. In addi-
tion to the above proteins we considered four groups of
Arabidopsis proteins which are reported to play a putative
role in chromatin remodeling in this plant (see [60]).
These are: four ATPases which are reported in [60] as
potential members of the SWI/SNF complex (At2g46020
(BRM), At2g28290 (SYD), At3g06010 (Chr 12),
At5g19310 (Chr 23)); two SWP73-type proteins
(At3g01890 (SWP73A), and At5g14170 (SWP73B)); nine
actin-related proteins (At3g27000 (ARP2), At1g13180
(ARP3), At1g18450 (ARP4), At1g73910 (ARP4A),
At3g12380 (ARP5), At3g33520 (ARP6), At3g60830
(ARP7), At5g56180 (ARP8) and At5g43500 (ARP9)); and
three OSA-type proteins (At1g04880, At1g76110, and
At3g13350). We excluded from the graph proteins which
did not show any predicted interactions. Altogether we
identified 13 of 14 known interactions between the pro-
teins visualized in Figure 7 - the missing one is
At3g01890-At1g21700 (see [60]). We notice some inter-
esting peculiarities of the presented network. Three of four
of the SWI3-type proteins, are predicted to interact with
the four ATPases. Only one actin-type protein
(At1g18450) has a predicted interaction with the SWI/
SNF core and only two more (At3g60830 and At5g56180)

Inferred PPIs within the human mRNA decay complexesFigure 6
Inferred PPIs within the human mRNA decay complexes. Interaction network of the human mRNA decay complexes 
as inferred by CAPPI-Pred. Nodes represent gene products and node colors represent protein families identified by sequence 
clustering. 53 of the predicted interactions which have been previously detected experimentally are denoted by green edges. 
76 other PPI predictions are denoted by gray edges. The p-value of the predicted network is 1.868 × 10-15.
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can be associated with the complex through member
ATPases. The ability to make distinctions within homolo-
gous groups is an important feature of our approach.
While methods mapping interactions to highly similar
orthologs usually make very specific predictions and
avoid false-positives, they are also likely to miss many true
interactions which can be inferred from slightly less simi-
lar proteins. As summarised in Additional file 1: Table S1,
the restrictive search applied in InteroPORC fails to map
the known interactions in the SWI/SNF complex in A.
thaliana. In fact according to the PORC ortholog clusters,
only two proteins (SWI3C and SWP73A) have orthologs
in any of the other six eukaryotic species considered here.
In this case, a less stringent method is clearly needed. On
the other hand, CAPPI bases its prediction on evidence
from all homologs and thus is in danger of loosing sensi-
tivity and assigning the same interactions to all family
members. The above examples demonstrate that we can
avoid these potential pitfalls by considering family mem-

bers in phylogenetic context when integrating and distrib-
uting the interaction evidence.

These observations are strengthened when we consider
the larger family-oriented view of the SWI/SNF-related
network in Additional file 1: Figure S2. This graph was
obtained from the one in Figure 7 by expanding the set of
proteins to all members of the considered protein families
(once again, proteins without any interactions were
removed). Interestingly, the four peripheral families rep-
resented in the graph can be divided into smaller sub-
families based on the interactions partners of their
members. Specifically, of the 14 ATPases presented in the
larger graph only the four above described are predicted to
interact directly with the core of the SWI/SNF complex.
Two of them (At2g46020 (BRM) and At2g28290 (SYD))
have confirmed interactions while for the other two
(At3g06010 (Chr 12), At5g19310 (Chr 23)) interaction
hypothesis based on sequence similarity were formulated

Inferred PPIs within the A. thaliana SWI/SNF chromatin remodeling complexFigure 7
Inferred PPIs within the A. thaliana SWI/SNF chromatin remodeling complex. Interaction network of the putative 
SWI/SNF complex in Arabidopsis as inferred by CAPPI-Pred. Nodes represent gene products and node colors represent pro-
tein families identified by sequence clustering. 13 of the predicted interactions which have been previously detected experi-
mentally are denoted by green edges. 83 other PPI predictions are denoted by gray edges. The p-value of the predicted 
network is 6.381 × 10-10.
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[60]. In fact the entire ATPase family, as detected by our
method, contains 48 Arabidopsis proteins (a vast majority
not having any predicted interactions to other proteins in
the SWI/SNF subnetwork), which makes the presented
predictions even more significant. These specific cases of
confirmed predictions let us suggest that some of the dis-
tinctive members of the other protein families predicted
to interact with the putative SWI/SNF complex
(At1g18450 and six OSA family members interacting with
At3g17590, five SWP73 family members interacting either
with At3g17590 or at least one of the SWI3-type proteins,
as well as five other actin family members interacting with
ATPases At2g46020 and At2g28290), may pose valuable
targets for future experimental validation.

Conclusion
We have presented a systematic phylogeny-based frame-
work for reconciling PPI datasets across species and infer-
ring missing interactions. Our method naturally
incorporates interaction evidence from different species
and experimental sources. It considers the reliability of
each source and the evolutionary relationships between
protein pairs. The approach was successfully applied to
compute integrated interactomes for seven eukaryotic spe-
cies, providing confidence scores for each possible edge in
each network. Detailed analysis of our predictions indi-
cates that we can accurately recover known interactions
within conserved protein complexes. Confirmed interac-
tions identified in a blind test provide a strong case for our
top-ranked predictions, many of which await experimen-
tal verification. We also find that while core subcomplexes
can be accurately recovered based solely on the data from
distant species, many of the between-module interactions
are harder to identify this way, suggesting possible rewir-
ing events. One natural direction for future research is to
extend our framework to include other kinds of data
which may serve as indirect evidence of interaction. The
integration of heterogeneous experimental sources with
account of the phylogenetic model may possibly improve
existing catalogues of functional associations.

Methods
Bayesian model of network evolution

We start by briefly recapitulating the network growth
model from [39] which, given the ancestral network G1,0

determines the probability of interaction between pro-
teins at every stage of evolution. The model has four

parameters: pd, δd, ps and δs. It assumes that starting from

the ancestral graph G1,0 a sequence of duplications and

speciations is performed where these events are deter-
mined by reconciled phylogenetic trees precomputed for
each protein family. We denote by Gi,j = (Vi,j, Ei,j) the graph

representing the protein network of si after the j-th dupli-

cation event occurring in this species. In case of a node
duplication event we replace the node by two copies. For
each copy we retain each of its edges with probability pd

and insert edges adjacent to the copy with probability δd

(independently for each copy and each edge). In case of a
speciation event we make two copies of the network. In
each network copy we retain each edge with probability ps

and insert each non-existent edge with probability δs

(independently for each network and each edge). Assum-
ing this model and the provided phylogeny of each pro-
tein family we construct a Bayesian network (BN) model
of protein interactions at all levels of evolution. In this BN

model the probability  of interaction

between a pair of nodes nx, ny ∈ Vi,j, depends on the exist-

ence or lack of an edge between the protein pair being the
direct evolutionary predecessor (either before speciation
or duplication) of the pair (nx, ny) (see Figure 8). A

detailed description of the model is available in [39].

Integrating diverse experimental data
The above-described model captures the basic notions of
protein network evolution. We previously assumed that
the PPI data is free of error and complete and we used the
model to make inferences about the ancestral interaction
networks. However, due to experimental errors and
incomplete sampling, the real interactions and non-inter-
acting protein pairs are not certain. This implies that the
experimental data should only be used as supporting evi-
dence of putative interactions. To model this accurately in
our framework we keep the random variables correspond-
ing to extant interactions unknown and add another level
of random variables corresponding to experimental evi-
dence (see Figure 8A). The evidence in each experimental
dataset is weighted by the dataset's reliability.

Let  be the extant protein interaction

network of a present-day species si (we assume that mi is

the final duplication occurring in si). Let

 be the set of experimental datasets for

species si, where each  is the set of protein pairs con-

firmed to interact in the h-th experiment. Let Rel( ) be

the fraction of elements in  believed to be true posi-

tives. Let

 be the

set of non-interacting protein pairs in the graph . For
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Figure 8 
Inferring protein interactions via message passing. A toy example of the Bayesian tree model of evolution of interactions
between members of two protein families for three species: blue, yellow and red. For each species a certain number of experi-
mental datasets is given: two for blue and red and one for yellow. Part (A) shows two reconciled trees for the considered fam-
ilies together with putative protein interactions at each level of evolution. The proteins in the trees are represented by ellipses
(with color corresponding to their species). The speciation events are marked by horizontal lines and the duplication events are
marked by filled squares. The evolution of the ancestral interaction between the root proteins (purple) can be traced down the
trees to the extant interactions. Evidence for the extant interactions can be found in the experimental datasets. In (B) a random
variable is associated with each putative interaction. A solid arrow indicates a dependence between two random variables
which comes from the speciation event. Similarly, a dashed arrow indicates a dependence for the duplication event. Finally, dot-
ted arrows represent an interface between the true interactions in extant species and the observed experimental evidence.
The parameters ps, δs, pd and δd determine the probability of retaining or gaining an interaction during evolution, while the reli-
ability of each dataset (Rel( )) determines the probability of identifying a true interaction or a false positive one. Arrows
colored blue, yellow, red and green represent messages corresponding to interaction evidence coming from each of the spe-
cies. These messages are passed up the tree in the first phase of the MP algorithm. In the second phase, messages containing
aggregated evidence from one side of the tree are passed down to the other side (orange arrows).
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each experimental dataset  we denote by  a ran-

dom variable which takes value 1 if interaction (nx, ny) is

present in this dataset and 0 otherwise. For each pair of

proteins (nx, ny) and each dataset  we set the probabil-

ity of observing a true interaction to be equal the true pos-
itive rate of the experiment, and the probability of
observing a false positive interaction equal the false posi-
tive rate of the experiment, as follows:

where by |A| we denote the number of elements in the set
A. Now each experimentally observed interaction can be
naturally incorporated into the BN framework. Similarly
each pair not observed to interact in the considered exper-

iment ((nx, ny) ∉ ) can be incorporated into the model

with conditional probabilities corresponding to the false
negative rate and true negative rate of the experiment (see
Additional file 1 for details). The model can also be easily
generalized to incorporate distinct reliability values for
each single interaction.

Inferring extant protein interactions via message passing

The integrated BN model, comprising all PPI edges from
every level of evolution and from the experimental data-
sets, is used to infer protein interactions in the input spe-
cies. Each random variable corresponding either to a
possible interaction, or to a single experiment outcome,
depends on exactly one random variable which denotes
an edge (or non-edge) in the direct evolutionary predeces-
sor in the first case, and in the network of an extant species
in the second case. The considered BN model is a set of
Bayesian trees, where each tree represents the joint distri-
bution of the random variables corresponding to putative
interactions (which descended from a single edge in the
ancestral graph) and the associated experimental evidence
(an example of such tree is shown in Figure 8B). The tree
structure allows us to apply Pearl's message passing (MP)
algorithm [61] to compute the exact posterior probability
of interaction between proteins in extant species, in time
linear to the number of random variables (see Figure 8B
for an example and [61] or [62] for details). Specifically

we determine the posterior probability of interaction

P(  = 1|O) for each pair of nodes (nx, ny) in each

extant network , where O denotes all experimental

datasets for all species.

Assessing PPI predictions in large-scale studies
In general, the assessment of PPI predictions posses prob-
lems due to the limited number of "gold standard" inter-
actions and the lack of negative test cases. Motivated by
previous studies, we employ two scoring schemes to assess
the quality of predicted PPIs, as well as those from the
input datasets. The first one compares Gene Ontology
(GO) annotations [63] of adjacent gene products and
measures their functional similarity. Functional similarity
is used as an indirect measure of interaction: the more
similar the annotations of the two proteins are, the more
confident we are in deeming an interaction between
them. We apply a recent information content method
[48], implemented in the SemSim R package by Xiao Gou:
http://www.bioconductor.org/packages/2.0/bioc/html/
SemSim.html, which extends the measures previously
proposed by [64] and [65]. For each pair of proteins we
individually measure the similarity of annotations in each
of the three ontologies: biological process (BP), molecular
function (MF) and cellular component (CC). This results
in a BP score, MF score and CC score, respectively, each
ranging from 0 (no similarity) to 1 (maximum similarity).
When the context allows, we refer to each of these scores
as a GO score of a pair of proteins.

Our second kind of quality assessment is based on a com-
parison with a reference dataset. We estimate the ratio of
true positive interactions (predictions which are con-
firmed in a reference dataset) and putative false positive
interactions (unconfirmed predictions for which the two
proteins have disjoint cellular localizations). A similar
procedure was applied in [29]. We use separate reference
datasets for binary PPIs (direct physical interactions) and
for co-complex PPIs (pairs of proteins co-occurring within
the same complex). For details on the reference datasets
and the localization data see Additional file 1. Note that
the proper sensitivity and specificity measures are hard to
estimate because the reference sets of positive interactions
and negative protein pairs are not comprehensive. Due to
interdependencies between interactions, implied by our
model, cross-validation cannot be easily applied. Instead,
we perform a blind test in which we leave out the data of
one species and predict its interactions only based on the
data from the other species.

Assessing predictions in functional module case-studies
For small-scale functional module case studies we report
all interactions predicted among a determined set of pro-
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teins for a selected threshold value. To assess the statistical
significance of interaction predictions we compute a p-
value based on the hypergeometric distribution, where
confirmed interactions are regarded as successes and
unconfirmed interactions are regarded as failures (Fisher's
exact test). As the predictions are made by CAPPI-Pred
which is trained without the use of the input datasets for
the predicted species, we use the held out input data as a
reference. Note that it is possible that some of the refer-
ence interactions are in fact false-positives - an inherent
risk of using high-throughput data. In this particular test,
however, we are interested in assessing the possibility to
predict a significant portion of known PPIs (of which
many are from high-throughput studies) by a mapping
from other organisms. The reference set is further
extended in each case by PPIs curated from specific publi-
cations characterizing interactions within the studied
complexes. These are as follows: [66,67] for the 26S pro-
teasome PPIs, [56,57] for the endosome-related PPIs, [58]
for the exosome-related PPIs, and [68-72] for the SWI/
SNF-related PPIs. Note that for A. thaliana there are no
high-throughput datasets available, so all reference data
for this species come from small-scale studies.
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