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Abstract
Background: Profile-based comparison of multiple sequence alignments is a powerful
methodology for the detection remote protein sequence similarity, which is essential for the
inference and analysis of protein structure, function, and evolution. Accurate estimation of
statistical significance of detected profile similarities is essential for further development of this
methodology. Here we analyze a novel approach to estimate the statistical significance of profile
similarity: the explicit consideration of background score distributions for each database template
(subject).

Results: Using a simple scheme to combine and analytically approximate query- and subject-based
distributions, we show that (i) inclusion of background distributions for the subjects increases the
quality of homology detection; (ii) this increase is higher when the distributions are based on the
scores to all known non-homologs of the subject rather than a small calibration subset of the
database representatives; and (iii) these all known non-homolog distributions of scores for the
subject make the dominant contribution to the improved performance: adding the calibration
distribution of the query has a negligible additional effect.

Conclusion: The construction of distributions based on the complete sets of non-homologs for
each subject is particularly relevant in the setting of structure prediction where the database
consists of proteins with solved 3D structure (PDB, SCOP, CATH, etc.) and therefore structural
relationships between proteins are known. These results point to a potential new direction in the
development of more powerful methods for remote homology detection.

Background
The accuracy of detecting remote protein sequence rela-
tionships is essential for the inference and analysis of pro-
tein structure, function, and evolution. With the sample of
solved structural folds growing close to the complete cov-

erage of protein world [1], the ability to confidently detect
a distant homolog with known 3D structure is becoming
the major limiting factor in the fold prediction for any
given protein sequence. Currently this ability is far from
perfect, as once again highlighted by the recent Critical
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Assessment of Techniques for Protein Structure Predic-
tion, CASP8 [2].

Comparing protein families, as profiles or hidden Markov
models (HMMs) derived from multiple sequence align-
ments (MSA), rather than individual sequences, intro-
duces information about the evolutionary constraints on
sequence patterns dictated by protein structure and func-
tion, and therefore improves the quality of remote homol-
ogy detection [3-11]. The similarity score of optimal
profile-profile alignment is strongly influenced by residue
composition, secondary structure (SS), and other features
of the query and the template (subject) families. Depend-
ing on these properties, the same score value can be highly
significant for one pair of profiles and marginal for
another. Thus an important methodological step is the
estimation of statistical significance of a similarity score,
so that the most distant relationships are discriminated
from spurious hits. This estimation is typically based on a
background distribution inferred from the query's proper-
ties, which is generated from the scores for the random
comparisons of unrelated proteins, either simulated
[5,7,12,13] or real [4,9-11]. We have previously shown
that improving the accuracy of the background distribu-
tions results in the increased detection quality of MSA
comparison [14].

Although highly effective, this query-centered approach to
the statistical significance cannot adequately reflect the
uneven properties of different MSAs in the search data-
base: subjects have different propensity to appear as a
highly scored match when compared to an unrelated
query. As adjustments to these propensities, multiple
implicit schemes have been proposed that account for the
subject's properties at the step of alignment score calcula-
tion, ranging from low-complexity filtering [15] to com-
position-based score rescaling [15] and composition-
specific substitution matrices [16,17].

Here we consider an explicitly symmetrical approach to
the background modeling at the step of estimating statis-
tical significance, based on combining the background
distributions for both query and subject. As a first step in
this direction, we use a primitive scheme to combine
query- and subject-based score distributions, and show
that (i) inclusion of background distributions for the sub-
ject increases the quality of homology detection; (ii) this
increase is higher when the distributions are based on the
scores to all known non-homologs rather than a calibra-
tion subset of the database representatives; and (iii) these
distributions make the dominant contribution to the
improved performance: the removal of query-based cali-
bration does not significantly deteriorate the perform-
ance.

Results
Distributions of scores for the comparisons of a query to
real database profiles (in contrast to profiles generated
under a certain random model, e.g. shuffling of profile
columns) are often used to estimate the statistical signifi-
cance of a similarity between this query and any given
profile. A major problem in the construction of these dis-
tributions is filtering out query homologs that should not
be included in the assessment of the statistical back-
ground. As a solution to this problem, a current state-of-
the-art HHsearch method [9], builds the background dis-
tributions based on a calibration database that contains a
single protein representative from each structural fold and
thus should not include more than one query homolog.

Although this approach provides individualized treat-
ment of each query, it does not explicitly distinguish
between various profiles in the search database, which
also differ in their propensity to produce random high-
scoring alignments with non-homologs. Here we consider
a further development of this scheme, which involves the
combination of individual background distributions for
the query and each subject. Although the same calibration
database can be used for both query and subjects, its com-
position is usually different from the search database: dif-
ferent folds have a different representation in the protein
world, varying from a single tight sequence family to a
plethora of divergent proteins as in Rossmann-type folds,
TIM-barrels, imunnoglobulins, etc. As a way to preserve
the structure of the search database in the background dis-
tributions, we consider constructing these distributions
from the comparisons of the subject to all of its non-
homologs in the search database. This approach is possi-
ble in the particular setting of structure prediction, where
the database consists of proteins with solved 3D structure
(PDB, SCOP, CATH, etc.), which in most cases allows for
a straightforward assignment of their homology relation-
ships.

As a method to produce profile-profile similarity scores,
we use our recently developed scoring system imple-
mented in PROCAIN for profile comparison [10]. In brief,
PROCAIN score for the similarity between two MSA posi-
tions includes four terms: a standard measure for residue
composition [7] combined with three additional meas-
ures for SS, amino acid conservation, and sequence motifs
[10]. The resulting positional scores are subjected to com-
position-based rescaling [7,15] and used to construct opti-
mal local Smith-Waterman alignment of the two profiles.
Based on alignment scores for profile pairs in the testing
set of distant SCOP representatives, we apply different
schemes of estimating statistical significance (E-value)
and compare the corresponding receiver operating charac-
teristic (ROC) curves.
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Effect of considering background distributions for 
individual subjects
First, we assess the E-values based on two types of back-
ground score distributions: query calibration distribution
alone and mixed with a background distribution for each
individual subject. We consider several ways of modeling
the subject distributions that involve the comparison of a
subject to different profile sets representing unrelated pro-
teins (Fig. 1). We use two sets of profiles for real protein
families: the calibration database containing a single pro-
tein representative per fold (the same as used to calibrate
query's background), and the full set of proteins from the
search database that are classified as non-homologous to
the subject. As a control, we use two sets of randomized
profiles generated by random shuffling of positions in the
profiles of the search database. These two artificial sets dif-
fer in the SS assigned to the profiles' positions, as a way to
assess the contribution of SS to the background score
modeling. In the first set, the shuffled profiles retain the
same SS as the original real profiles; in the second set, all
profile positions are uniformly assigned the coil SS (C).

As shown in Fig. 1, introduction of subject background
distributions based on the calibration database improves
the quality of similarity detection (green Vs black curve),
with ROC increased from 0.21 to 0.24 on the set corre-
sponding to the mean of 50 false positives per query (see
also Table 1). The performance is further increased by
including all non-homologs from the search database into
the distribution (red curve), resulting in the ROC of 0.28
(Table 1). The distributions derived from the subject's
comparison to the randomly shuffled profiles reduce
detection quality to the levels comparable to or lower
than the setting of query and subject comparison to the
calibration subset. These distributions are significantly
affected by the predicted SS of the database profiles:
destruction of native SS patterns (cyan curve) leads to the
performance inferior to that in the presence of original SS
predictions (blue curve).

The separate evaluations of these statistical schemes on
queries from different major SCOP classes are shown in
Additional File 1: Fig. S1.

Background distributions for subjects contribute more 
than background distribution for query
To assess the role of query calibration in our symmetrized
scheme, we compare the method's performance in the set-
tings with background distributions for the subjects used
alone and mixed with the calibration distribution for the
query. Fig. 2 shows ROC plots produced by query calibra-
tion alone (black) and combined with subject compari-
son to all non-homologs (red), compared to two settings
with no consideration of query's background distribution:
with E-values based only on the scores for the subject
against the calibration database (green) or the full set of
all non-homologs (blue).

Calibration of subject alone on the set of fold representa-
tives leads to slightly better performance than calibration
of query (Fig. 2), with the ROC values of 0.107 Vs 0.102
(Table 1). Using score distributions of subject against all
non-homologs significantly increases detection quality
(ROC = 0.28, Table 1). Surprisingly, this quality stays vir-
tually the same when query calibration distribution is
mixed in (Fig. 2, ROC value of 0.2819 ± 7 10-5 Vs 0.2808
± 7 10-5). This result suggests that the knowledge of all
subject's non-homologs is a dominant factor in the
improvement of the statistical estimates. This dominance
has a potential practical implication: when homology
relationships between database entries are defined, the
calibration of query may become unnecessary since it
does not contribute to the detection accuracy.

The separate evaluations of these statistical schemes on
queries from different major SCOP classes are shown in
Additional File 1: Fig. S2.

Considering background distributions for individual subjects improves detection qualityFigure 1
Considering background distributions for individual 
subjects improves detection quality. The standard 
approach based on the query calibration only (black ROC 
curve) is compared to the schemes that involve combining 
the query-based score distribution with individual subject-
based distributions, produced by the comparison to the cali-
bration database (green), to the set of all non-homologs in 
the search database (red), or, as controls, to the sets of ran-
domized database profiles with shuffled positions: blue, pro-
files with the secondary structure assignment the same as in 
the real profiles; cyan, profiles with artificial secondary struc-
ture, 'coil' assigned to all positions. Combination of distribu-
tions produced by the comparison of query to the calibration 
database and of subject to the full set of its non-homologs 
results in the highest performance (red curve).
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A possible explanation of this relatively weak influence of
query calibration on the performance might be the differ-
ence in the sizes of score samples produced by the com-
parison to the calibration database (~1000 fold
representatives) and all defined non-homologs in the full
database (~4000 entries). In our original implementation,
the scores from these two sources are mixed without addi-
tional weighting, therefore the contribution of the query
calibration distribution is several fold smaller than the
contribution of subject's distribution. As a control, we
increase the weight of the query calibration in the mixture
and observe the resulting performance (Fig. 3). Interest-
ingly, increasing the weight of the query-based distribu-
tion up to the same level as the subject-based distribution
(approximately four-fold) does not improve detection
quality; in fact, the performance gradually deteriorates
when the mixing ratio is changed (Fig. 3, Table 1).

The separate evaluations of these statistical schemes on
queries from different major SCOP classes are shown in
Additional File 1: Fig. S3.

Effects of statistics based on the knowledge of all query's 
non-homologs
Since the use of the full set of subject's non-homologs has
a significant advantage over the use of the calibration sub-
set (Fig. 2), it is interesting to assess the performance in
the hypothetical situation when the query calibration is

also based on the full set of its non-homologs in the
search database. In this setting, query-based background
distributions and score averages (see Methods) are based
on the query's non-homologs in the search database
rather than on the calibration database. In Fig. 4, ROC
plots for such query calibration alone (cyan) or together
with subject calibration (green) are compared against
plots for other settings. Similar to the result for subject-
based distributions (Fig. 2), including all query non-
homologs significantly improves the quality of statistical
estimates, as compared to using only the calibration sub-
set (Fig. 4), with ROC increasing from 0.21 to 0.27 (Table
1). Interestingly, the resulting performance is very similar
to that for the individual subject-based distributions
including all non-homologs of the subject. This perform-
ance is significantly improved by mixing both query- and
subject-based distributions of scores against respective full
non-homolog sets (Fig. 4), with ROC reaching the value
of 0.31 (Table 1). These results suggest that considering all
non-homologs in the background distributions on either
query or subject side has approximately the same effect,
and that combining these effects can contribute to the per-
formance in an additive way.

The separate evaluations of these statistical schemes on
queries from different major SCOP classes are shown in
Additional File 1: Fig. S4.

Table 1: ROC values

Scheme ROC(2 104) ROC(2 105) ROC(745550)

Query × Cal 0.1020 ± 2 10-4 0.2099 ± 7 10-5 0.3135 ± 3 10-5

Query × Cal, Subj × DB 0.1427 ± 2 10-4 0.2819 ± 7 10-5 0.3990 ± 3 10-5

Shuffled DB, SS = C 0.1093 ± 2 10-4 0.2444 ± 7 10-5 0.3718 ± 3 10-5

Shuffled DB, original SS 0.1248 ± 2 10-4 0.2688 ± 7 10-5 0.3983 ± 3 10-5

Query, Subj × Cal 0.1146 ± 2 10-4 0.2382 ± 7 10-5 0.3540 ± 3 10-5

Subj × Cal 0.1074 ± 2 10-4 0.2268 ± 7 10-5 0.3462 ± 3 10-5

Subj × DB 01437 ± 2 10-4 0.2808 ± 7 10-5 0.3959 ± 4 10-5

Query × Cal × 4, Subj × DB 0.1323 ± 2 10-4 0.2676 ± 7 10-5 0.3844 ± 3 10-5

Query × Cal × 2, Subj × DB 0.1384 ± 2 10-4 0.2767 ± 7 10-5 0.3944 ± 3 10-5

Query × DB 0.1417 ± 2 10-4 0.2690 ± 7 10-5 0.3711 ± 3 10-5

Query × DB, Subj × DB 0.1607 ± 2 10-4 0.3052 ± 7 10-5 0.4184 ± 3 10-5

Receiver operating characteristics (ROC) for tested statistical schemes, calculated for different numbers of top false positives: the mean of 5 top 
false positives per query (2 104 false positives total); the mean of 50 top false positives per query (2 105 false positives total), and the point where 
PROCAIN retrieves half of all true positives in the dataset (745550 false positives total). The total number of true positives in the testing set is T = 
474929. Statistical schemes are denoted the same way as in Fig. 1-4.
Page 4 of 8
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:399 http://www.biomedcentral.com/1471-2105/10/399
Discussion
Using MSA rather than single sequences for homology
detection provides stronger similarity signals: patterns of
residue usage at individual positions, conserved motifs,
interdependence of residue content at different positions
and other information help detecting remote relation-
ships in the cases where individual sequences diverged
beyond recognition. However, these signals create new
challenges for the discrimination between MSA similari-
ties caused by homology and produced by chance, for
example by a local structural similarity involving a few SS
elements in globally different proteins.

The calculation of profile-profile similarity scores in PRO-
CAIN already includes implicit consideration of both
query and subject properties [7,10] in a fashion similar to
the composition-based statistic implemented in PSI-
BLAST [15]. Specifically, the scale of all scores between
individual positions of query and subject is forced to a
standard level, which allows for using universal gap pen-
alties and makes the scores of optimal profile-profile
alignments compatible for different profile pairs. In PRO-
CAIN's predecessor, COMPASS [7], these rescaled scores
are used directly in the calculation of E-values according
to Karlin-Altschul formula [18] with pre-computed

parameters of statistical distributions derived from exten-
sive upfront simulations. However, while developing
PROCAIN, we found that deriving distribution parame-
ters from the comparisons of real unrelated proteins leads
to a better detection accuracy [10].

Here we analyze a novel approach to estimating statistical
significance of similarity between MSAs, based on the
explicit consideration of background distributions for
both query and subject. In order to conduct a proof-of-
principle study that would not rely on a specific statistical
treatment of the data, we use a primitive mixing of PRO-
CAIN scores and simple EVD approximations of the dis-
tributions, rather than more elaborate statistical
formalisms. We find that (i) the quality of estimation of
statistical significance for a given similarity score
improves by incorporating information about statistical
properties of the subject, and (ii) this improvement signif-
icantly increases when the full set of subject's non-
homologs, rather than a subset of fold representatives, is
used to infer the background distribution.

Our most unexpected finding is that the improvement in
the performance is dominated by using the score distribu-
tions for all non-homologs of the subject, and that consid-
ering the calibration distribution of the query has almost

Analysis of scores of subject to all database non-homologs has a dominant effect compared to query calibrationFigure 2
Analysis of scores of subject to all database non-
homologs has a dominant effect compared to query 
calibration. The performance of the query calibration alone 
(black) and combined with subject calibration on the full 
database (red), compared to the subject calibration alone, 
using either the calibration database (green) or the full set of 
non-homologs (blue). Surprisingly, the latter scheme pro-
vides virtually the same detection quality regardless of 
whether query calibration scores are additionally considered 
(blue Vs red curve).

Effect of the mixing ratio of query- and subject-based distri-butionsFigure 3
Effect of the mixing ratio of query- and subject-based 
distributions. The performance for the distributions pro-
duced by unweighted mixture of query- and subject-based 
scores (red curve) is compared to the schemes that intro-
duce additional weighting, so that the samples of query and 
subject calibration scores have similar sizes. Increasing the 
weight of query calibration scores two-fold (blue) or four-
fold (green) leads to a monotonic decrease of detection qual-
ity. Black, ROC curve for the query calibration alone.
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no additional effect (Fig. 2). Conceptually, there are sev-
eral potential sources of this improvement. First, detec-
tion quality may increase simply due to individualized
treatment of each subject, as opposed to using query-
based distribution in all comparisons. The second source
is the combination of query and subject distributions
resulting in better modeling of statistics on both sides of
comparison. The third source is the more representative
sampling in the construction of background distributions,
given the knowledge of all actual non-homologs of the
subject in the database. Based on our results, we can
exclude the first source. Similarity in performance of 'sub-
ject-only' and 'query-only' distributions derived from the
full set of non-homologs (Fig. 4), as well as from the cali-
bration set (Fig. 2) suggests that individualized treatment
of subjects alone cannot provide a dramatic increase in
detection quality. According to the evaluations shown in
Fig. 1 and 4, the largest source of improvement is the
inclusion of the full set of non-homologs in the back-
ground modeling. This full sampling, normally impossi-
ble for the query, can be achieved for the subjects when
relationships within the database are known. Combining

subject- and query-based distributions, derived either
from the calibration set or the full sets of non-homologs,
makes an additional contribution to the improvement of
performance.

The presented results suggest a potentially important
approach to increasing the quality of remote homology
detection. Effective implementation of this approach in
new computational methods will require additional
research in at least two areas: (i) fuller usage of the infor-
mation about homology relations in the search database,
for example, consideration of scores for homologs; and
(ii) more detailed and accurate statistical treatment of
mixed background score distributions.

Conclusion
We present and analyze a novel approach to the estima-
tion of statistical significance of profile-profile similari-
ties, based on explicit consideration of both query and
subject background score distributions. This approach
provides a higher quality of homology detection than
query calibration alone. A significant additional increase
can be achieved by using the knowledge of actual homol-
ogy relationships between subjects in the search database,
which allows for a more representative sampling of statis-
tical background for each subject. The presented results
can serve as a basis for the development of more powerful
methods for remote similarity detection.

Methods
Search and calibration databases
As a search database, we use the set of 4147 PSI-BLAST
MSAs of homologs for SCOP domain representatives with
less than 20% sequence identity that was constructed and
extensively used as a part of a previously described bench-
marking system [19]. MSAs for SCOP 1.69 domains were
generated from homologs detected after up to 8 PSI-
BLAST iterations with default parameters, combined with
additional processing to remove fragments and eliminate
obvious misalignments, followed by SS prediction by
psipred [20]. The calibration database includes 935 pro-
files from the search database, chosen as a single repre-
sentative per SCOP fold, the same domain set as used for
query HMM calibration by HHSearch [9]. The lists of
SCOP domains included in the search database and the
calibration set are given in Additional Files 2 and 3,
respectively.

PROCAIN similarity scores
To produce profile similarity scores, PROCAIN [10] com-
plements the standard measure for positional similarity of
amino acid content with the measures for structure- and
function-related patterns revealed by MSA: similarity in
SS, amino acid conservation, and MSA motifs. For every
database profile A we calculate the set of similarity scores

Statistics based on the knowledge of all query's non-homologs: a possible hypothetical performanceFigure 4
Statistics based on the knowledge of all query's non-
homologs: a possible hypothetical performance. The 
detection quality that could potentially be achieved by using 
the distribution of query's scores to all non-homologs is 
compared to the performance of other schemes. ROC curve 
for the query-based distribution produced on the full set of 
non-homologs (cyan) is similar to that for the subject-based 
distribution produced on all non-homologs alone (blue) or 
mixed with query calibration distribution (red). This per-
formance can be additionally improved by combining both 
query- and subject-based distributions generated on the full 
sets of their non-homologs (green). Black, ROC curve for 
the query calibration alone.
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against all non-homologous profiles and find the mean
value of this set, <s>A. Then we process this set by subtract-
ing the mean score of the counterpart profile B from each
score sAB between A and B: s'AB = sAB - <s>B. The resulting
distribution of scores {s'AB} for profile A is stored. In a
similar fashion, for every profile C in the calibration data-
base, we pre-compute the set of similarity scores {sCA}
against entries of the searching database and then calcu-
late the mean value of this set, <s>C. When query profile
Q is compared to profiles in the calibration database; the
mean score of each profile C is subtracted from its similar-
ity score to the query sQC: s'QC = sQC - <s>C: During the
actual search, when query Q is compared to profile A in
the searching database, the distributions of adjusted cali-
bration scores for the query, {s'QC}, and for the subject,
{s'AB}, are analyzed and combined according to the
scheme being evaluated. The resulting distribution is fit-
ted with EVD to estimate EVD parameters k and λ, which
are then used in Karlin-Altschul formula to calculate E-
value: E = kmne-λS, where m and n are effective lengths of
the two profiles and S = sQA - 0.5(<s>QC + <s>A) is the
adjusted score for query against the database profile A
[10]. The latter formula corresponds to the average of two
scores corresponding to the two mixed distributions: s'QA
= sQA - <s>QC, i.e. the score adjusted on the query side by
the mean of query's calibration scores, and s'AQ = sQA -
<s>A, i.e. the score adjusted on the subject side by the
mean of subject's scores to its non-homologs.

In the setting when the calibration database is substituted
by all query's non-homologs in the search database (Fig.
4), the query-based background distributions are gener-
ated on these non-homologs, and the adjusted score for
query vs subject is calculated as S = sQA - 0.5(<s>Q + <s>A),
where <s>Q is the query's mean score against all non-
homologous profiles.

Evaluation of homology detection quality
To assess the detection quality, we build receiver operat-
ing characteristic (ROC) curves based on the results of
searches use in the database of ~4000 SCOP representa-
tives selected at 20% sequence identity of structure-based
alignment described above. True and false positive defini-
tion combines expert assignments of superfamilies by
SCOP and our automated SVM classifier based on multi-
ple scores for sequence and structure similarity of the two
proteins, applied as previously described [19]. These
homology assignments reduce the number domain rela-
tionships classified in SCOP as undefined when the two
domains share a SCOP fold but belong to different super-
families. In brief, we constructed a classifier that combines
multiple sequence- and structure- based similarity scores
and trained it on a SCOP subset of 1000 pairs that belong
to different SCOP classes and are labeled as negative for
SVM training, and 1000 pairs that belong to the same

SCOP superfamilies and are labeled positive. The five
most dominant features of the resulting classifier are as
follows: DALI Z-score, FAST score, coverage of FAST align-
ment, GDT_TS of TM alignment, and BLOSUM score of
DALI alignment [19].

The resulting SVM makes a binary classification of
domain pairs into the categories of similar and dissimilar.
However, there is a number of domain pairs that share
short regions of similarity but are poor global structural
templates for each other (for example, Rossmann-type
folds vs. TIM barrels). Forcing such cases to either of the
two categories might bias the evaluation protocol. There-
fore, following others, we use the third category of 'unde-
fined' relations and establish the corresponding lower and
higher thresholds of SVM score to define the three areas:
dissimilar, unknown and similar [19], with unknowns
comprising ~10% of all pairs [19].

Two proteins are classified as similar if they share a SCOP
superfamily or have a high SVM score. They are classified
dissimilar if do not share a superfamily and have a low
SVM score. Relationships between domains from different
superfamilies with intermediate SVM score are classified
as unknown. We successfully tested and applied the
resulting classification to the evaluation of various meth-
ods for remote homology detection [7,10].

ROC values and their error estimates are calculated as
described in [15]: for the top n false positives ROCn = (1/
nT)Σi = 1

nti, where ti is the number of true positives that
were ranked ahead the ith false positive in the list, and T
= 474929 is the total number of true positives in the data-
set.

Randomly shuffled profiles
As negative controls, we build subject-based score distri-
butions from the comparison of the subject to the set of
randomized profiles produced by shuffling positions of
original database profiles. To assess the contribution of
predicted SS to the accuracy of the statistics, we compare
the performance with the original SS assignments pre-
served in the randomized profiles to the performance with
the artificial uniform coil SS assigned to all positions.
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