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Abstract

Background: In high density arrays, the identification of relevant genes for disease classification is
complicated by not only the curse of dimensionality but also the highly correlated nature of the
array data. In this paper, we are interested in the question of how many and which genes should
be selected for a disease class prediction. Our work consists of a Bayesian supervised statistical
learning approach to refine gene signatures with a regularization which penalizes for the correlation
between the variables selected.

Results: Our simulation results show that we can most often recover the correct subset of genes
that predict the class as compared to other methods, even when accuracy and subset size remain
the same. On real microarray datasets, we show that our approach can refine gene signatures to
obtain either the same or better predictive performance than other existing methods with a
smaller number of genes.

Conclusions: Our novel Bayesian approach includes a prior which penalizes highly correlated
features in model selection and is able to extract key genes in the highly correlated context of
microarray data. The methodology in the paper is described in the context of microarray data, but
can be applied to any array data (such as micro RNA, for example) as a first step towards predictive
modeling of cancer pathways. A user-friendly software implementation of the method is available.

Background number of genes (in the tens of thousands), so that we

High density arrays evaluate DNA, RNA and protein levels
at the genome and proteome scale. These high throughput
experiments enable the identification of some biomarkers
associated with disease. For example, classification of
gene expression profiles has the potential to help diagno-
sis, prognosis, to suggest targeted treatment and to predict
response to treatment. From the machine learning point
of view, it is well known that high throughput array data
suffers from the curse of dimensionality where a relatively
small number of samples (in the tens) compared to the

face over-fitting. Over-fitting occurs when a supervised
learning algorithm adapts too well to the training data
and ends up performing well on training data but not on
testing data. Feature selection is one of the ways to counter
over-fitting.

The goal of feature selection is to find genes (features) that
best distinguish groups of instances (e.g. disease vs. nor-
mal) to reduce the dimensionality of the dataset. Several
univariate statistical methods (also known as filter meth-
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ods) including t-test, significance analysis of microarrays
(SAM) [1], and analysis of variance (ANOVA) have been
applied to select features from microarray data. In classifi-
cation experiments, feature selection methods generally
aim to identify relevant gene subsets to construct a classi-
fier with good performance [2]. Features are considered to
be relevant when they can predict the class: the strongly
relevant features are indispensable to prediction and the
weakly relevant features may only sometimes contribute
to prediction.

Filter methods evaluate feature subsets regardless of the
specific learning algorithm used. These methods ignore
the fact that there may be redundant features (features
that are highly correlated with each other and as such one
can be used to replace the other) and so do not seek to
find a set of features which could perform similarly with
fewer variables while retaining the same predictive power
[3]. For this reason multivariate methods are more appro-
priate. Wrappers belong to the family of multivariate
methods that consider the learning algorithm as a black-
box and use prediction accuracy to evaluate feature sub-
sets [4]. Wrappers are more direct than filter methods but
depend on the particular learning algorithm used. Several
search algorithms can be used such as forward selection
(starting with an empty set and adding features one by
one) or backward elimination (starting with all features
and removing them one by one). From the classification
standpoint, the simple naive Bayes classifier [5] has been
shown to perform at least comparably to decision trees
[6,7]. A naive Bayes classifier contains a directed edge
between the class variable and every other node and no
edges between the other nodes. In other words, in naive
Bayes classifiers, the following assumptions hold: all vari-
ables are relevant to classification and other variables than
the class are independent of each other.

These assumptions are often violated in many application
domains and several research directions have been devel-
oped to relax either of those assumptions. One of these
research direction is to allow the addition of directed
edges between attributes such as tree augmented naive
Bayes [8], Bayesian network augmented naive Bayes or
general Bayesian network augmented naive Bayes [9].
Another way to leverage the naive Bayes assumption is
selective naive Bayes [10], where the idea is to use only a
subset of features by ignoring features that reduce classifi-
cation accuracy.

Within the selective naive Bayes approaches, a maximum
a posteriori (MAP) method was recently presented by [11]
to select the most probable subset of variables compliant
with the naive Bayes assumption. This method introduces
a compromise between the number of variables and the
performance of the classifier. Our work is closely related
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to the approach presented by [11] but different in that we
penalize for the correlation between variables in the
model. We argue that this is important for high density
array datasets due to their highly correlated nature, as it is
well-known that genes act together in pathways [12]. We
performed an extensive simulation study in order to eval-
uate the performance of our algorithm and then applied
our approach on real cancer datasets. Our results show
that we obtain either similar or better performance than
other competing methods with a smaller number of
genes.

Methods

The problem we face is the following: given K variables
(e.g. gene expressions) and a class variable Y (e.g. clinical
outcome), we aim to select m variables that predict the
response Y. In the microarray literature, this set of m vari-
ables is called the gene signature. In this paper, we pro-
pose a two-step approach to refining gene signatures.
Specifically, our work consists of a Bayesian method for
feature selection with regularization which penalizes cor-
relation between the variables selected. The method is
developed in the context of microarray data, but can be
applied to any array data (such as micro RNA, for exam-
ple), where the variables (e.g. gene expressions) are con-
tinuous. First, from the thousands of genes present in an
array, we select the few (hundreds or less) of those associ-
ated with the class variable using some known feature
selection methods, or by using some existing gene signa-
tures. From these pre-selected genes, we then use a for-
ward selection algorithm with a beam search in order to
find the smallest and least correlated subset of variables.
This search is done using a cost function derived from the
posterior likelihood of a naive Bayes classifier, including
the probability of selecting a model as a prior which
penalizes models containing highly correlated variables.

Model

Let (X,..., Xi) be the set of K gene expressions (assumed
to be continuous) available for each of the N biological
samples (e.g. biopsies collected from patients), such that
X, = (Xppse- Xin)- Let Y = (Y7,..., Yy) be the class variable
one wants to predict, taking values in {1, 2}, assuming
that Y, ,..., Yy are independent. We also note ,, the set of
all possible sets of m gene expression variables chosen
without replacement among the K gene expression varia-

bles available. Finally, we note M = Uranl M,, the set of
all possible combinations of m variables chosen among K

variables.

In the naive Bayes classifier setting, we note P (X,|Y = y)
the conditional density distribution of X, given Y = y and
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we assume that X, ..., Xy are all independent conditionally
to the class variable Y.

For a given set of variables M € , the posterior probability
of Yis

N
IT| P(Yi=yi) TI P(XgilYi=yi)
i=1 XpeM

P(Y =y|M) =
N 2
I x
i=1y=1

P(Yi=y;) TI P(XpilYi=yi)
XpeM

We shall assume a prior distribution on the set of varia-
bles M included in the model. Specifically, if model M is
of size m (i.e. contains m variables), we set

P(M) = P(M|Me M, )P(Me M,),

where P (M e ,,) represents the probability to choose a set
of variables of size m chosen among all the possible mod-
els of any size.

In this work, we wish to weigh each probability P (M)
according to the amount of correlation among the varia-
bles present in M. In other words, if the variables from M
are highly correlated, the probability to select this particu-
lar set of variables is low, and vice versa. Specifically, we
set the probability of selecting a model M as an inverse
function of Cormax(M), the maximum of all the pairwise
correlations among the variables of M :

1-| Cormax(M)|

Y (1-|Cormax(M)])
Me My,

P(M|Me M,) =

In this paper, we do not claim to model the correlation
structure of a signature although we acknowledge it would
be interesting to do that. Note that we only measure the
magnitude of the correlations, and the Cormax statistics
was designed to answer this objective.

To compute the denominator of equation (1), it is clear
that enumerating all the possible models containing the
edge with maximum correlation would be computation-
ally prohibitive. Instead, we can notice that the number of
models of size m with maximum correlation among all
pairs of variables in the model can be easily computed
using the binomial coefficients from Pascal's triangle.
First, let p; be the correlation measure between (X; X;),
withi=1,.., K, j=1, .., Kandi#j. We also note the cor-
responding ordered correlations p(1)> p(2) > ... > p(K(K-1)/2),
Now, consider a Pascal triangle with (K - 1) rows (recall-
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ing that the first row/column of Pascal triangle is noted
row/column Oth) and let us note P,, the entry of the trian-

gle corresponding to row ¢ and column r, which corre-
sponds to the combination [q ] We now define the
T

vector Z of size K(K - 1)/2 such that we repeat the triangle
coefficients of column j in reverse order by shifting one
position each time:

Z= (Pk=ym-2)....Poam=2) » Pik=2)(m=2)....Po(m=2)

Pk-3)(m-2),...Pogm-2) 1 -+ Prm-2) Pom=-2)  Pogm-2))
—_—

Then, we have

K(K-1)/2

> a-[pz,
I=1

where Z; is the Ith element of Z. A simple example of the
calculation above is presented in the Appendix. Now that
we have set the probability of selecting a particular model
of size m, we can define the prior probability of selecting
a model containing m variables:

2 1—|Cormax(M)| =

MeM,,

P(Me M,,)
= P(Choose m variables among K)
K+m-1
m
2K
]
where variables are chosen with replacement according to
the same argument as described in [11].

However, one can notice that the above probability is a
monotonic function increasing with the model size m.
This implies that one would tend to prefer models with a
large number of variables. In order to penalize for large
models, we choose the following instead of (2)

P(Me M,)
= P(Choose m variables among K-m)
2K-m-1
K-m
2K

()
noting that (2) and (3) are symmetric. In the Bayesian
framework, the posterior probability of a model M is eval-
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uated as the product of the prior and the likelihood. The
log-posterior probability of a model M is then

log[P(Y =y | M)] + log|P(M | Me M,,)] + log|[P(Me M,,)]

The middle part of this posterior probability penalizes for
the correlation among variables in the model, whereas the
last part penalizes for the size of the model. This means
that the posterior probability of a model M decreases with
the amount of correlation among variables in M and
decreases with the number of variables in M . In cases
where data are highly correlated, as it is the case in micro-
array data, one may want to give more weight to the cor-
relation penalty, and by including a weight lambda, the
penalty terms become:

log[P(Y =y | M)] + Alog|P(M | Me M,,)] + log|P(Me M,,)].

Results

In order to evaluate our approach, we first performed an
extensive simulation study (section 3.1) and then applied
our approach on real datasets (section 3.2). The goal of
the simulation is to evaluate the performance of our
method in the general context of feature selection with
correlated variables, where we simulate data such that
only a subset of the variables predicts the class. For fair
comparison, we compared our approach with two other
methods based on a naive Bayes classifier: a naive Bayes
wrapper [4] and the [11] method (our proposed strategy
is a direct extension of their work). Note that the wrapper
searches for feature subsets by optimizing the classifica-
tion accuracy and it is known as a very powerful multivar-
iate approach. For each method, we identified whether we
could successfully retrieve the original subset of variables
that was simulated to predict the class. In such a way, we
are able to evaluate our approach and we shall show later
that we can most often recover the correct subset of genes
that predict the class, even when accuracy and subset size
remain the same. The Weka machine learning tool [13]
was used in all the experiments described below.

Simulations

Our simulation study was designed such that only a sub-
set of the variables simulated predicts the class outcome.
Our aim is to address the following questions: i) Can we
select the relevant features; ii) Can we remove redundant

Table I: Summary of simulated datasets
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features; iii) Can we handle noisy data; iv) How does the
number of features and instances affect the results; v)
What is the impact of the penalty weight on the feature
selection results. For the simulations, we supposed that a
subset of variables predicts the class according to a logistic
model and that other variables can be correlated with
them. We simulated correlations among variables using a
network representation, as shown in Figure 1. Nodes
without parents were simulated according to a standard-
ized normal distribution with mean 0. Children of those
nodes were simulated using a linear regression model
containing their parents with coefficients uniformly ran-
domly chosen between 1 and 5. Finally, the class outcome
Y in the network was simulated according to a logistic
model containing only the parents of Y . We varied the
connectivity in the networks from sparse, full or half con-
nection (with number of edges in between sparse and full)
for 2 sets of 5 and 10 variables respectively (see Figure 1).
In each of these 6 cases, we generated datasets varying
sizes for training (see Table 1) and 1000 instances for test-
ing. We repeated this simulation over 100 iterations in
each of the 12 situations. On each training dataset, we per-
formed a 10 fold cross-validation. We also compared the
performance of our approach with varying penalty weight
lambda 1 and 100, denoted corrl and corr100 respec-
tively) with Boullé's method and the wrapper approach.
Over the 100 iterations, we computed the number of
times the correct subset of variables was found.

Can we select the relevant features?

First, consider the simple case of finding 2 variables out of
5 from the dataset A100-sparse. All methods seem to per-
form similarly in terms of training accuracy (85.48% on
average +/- 0.18% over the methods considered), testing
accuracy (84.87% on average +/- 0.08%) and number of
selected variables (2.54 on average +/- 0.14). However our
approach finds the correct variables more often than the
other methods (Table 2).

Can we remove redundant features?

When varying the connectivity with the network of 5 var-
iables, our approach always outperforms the others in
terms of finding the correct variables. Increasing the pen-
alty weight lambda improves the performance (Table 2).
Similarly, when varying the connectivity with the network
of 10 variables (Table 3), we see that it is more difficult

Network Total # variables # variables predicting the class # instances in training dataset
Dataset A100 5 2 100
Dataset A500 5 2 500
Dataset C100 10 5 100
Dataset C500 10 5 500

Page 4 of 11

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:410

© 0
e

netAsparse

netChalf

netCsparse

Figure |
Networks used for simulations.
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netCfull

with the small training set size to recover the correct vari-
ables (with 9 variables recovered with half connectivity or
12 variables recovered with full connectivity for dataset
C100) but increasing the number of instances in training
improves the performance of our approach (with 75 vari-
ables recovered with half connectivity and 84 variables
recovered with full connectivity for dataset C500).

Can we handle noisy data?

We added noise to the training sets by randomly flipping
the values of 5, 10 and 20% of the class variable. Our
approach outperforms the others but we note that the
wrapper approach is fairly tolerant to noise (Table 4).

How does the number of features and instances affect the results?

By comparing tables 2 and 3, we can see that the number
of features correlated with the subset of interest greatly
affects the methods ability to recover the correct subset of
variables. This is true for every method. However, with
increasing number of instances, our approach can find the

Table 2: Number of times (out of 100) the correct variables are
found with each method for network A

correct subset even though the other compared methods
did not.

What is the impact of the penalty weight ) on the feature selection

results?

We performed the same experiments as previously with
varying penalty weight 4 (1, 10, 100, 500 and 1000) and
found that increasing A generally improves the results.
However, increasing A over 500 doesn't seem to make any
difference in terms of the number of correct subsets recov-
ered (results not shown).

Real datasets

We also applied the proposed method to real cancer data-
sets. In this case, gene expressions are usually measured
from biopsies collected on patients affected by a given
type of cancer. For each real dataset, the data we used was
normalized according to the methods in the papers
describing the datasets.

Table 3: Number of times (out of 100) the correct variables are
found with each method for network C

Dataset Boullé Wrapper Corrl Corrl00 Dataset Boullé Wrapper Corrl Corrl100
A100-sparse 55 46 59 97 C100-sparse 22 3 35 45
A100-half 43 40 47 98 C100-half 5 2 5 12
A100-full 45 35 47 92 C100-full | 2 3 9
A500-sparse 64 37 64 97 C500-sparse 35 13 52 98
AS500-half 50 33 50 93 C500-half 32 8 51 75
AS500-full 48 30 55 96 C500-full 34 5 52 84
Page 5 of 11
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Table 4: Number of times (out of 100) the correct variables are
found with each method for network C-sparse

Dataset Boullé Wrapper Corrl Corrl00
C100-noise0 22 3 35 45
C100-noise5 16 3 22 27

C100-noisel0 7 3 19 32
C100-noise20 6 3 12 17
C500-noise0 35 13 52 98
C500-noise5 32 I 48 97
C500-noisel0 22 12 35 87
C500-noise20 15 10 27 77

The class variable Y may represent the cancer prognostic,
for example. Note that in this case, we do not know the
true set of prediction variables but can only measure clas-
sification performance. It is important to note that accu-
racy (ACC) is not the best measurement for model
evaluation [14]. This is why we also computed the Area
Under the receiver operating Curve (AUC) [15], as there is
often a trade-off between misclassifications in terms of
true positives (TP) or false positives (FP). We remind that
the Receiver-Operator Characteristic (ROC) curve com-
pares sensitivity and specificity directly by plotting the TP
rate vs. FP rate (Fawcett, 2003). Computing the area under
this curve (AUC) reduces the ROC performance to a single
scalar value and it represents the probability that the clas-
sifier will rank a randomly chosen positive instance higher
than a randomly chosen negative instance. We also meas-
ured sensitivity (SENS), specificity (SPEC), Positive Pre-
dictive Value (PPV), which is the proportion of True
Positives (TP) over all the predicted positives, and Nega-
tive Predictive Value (NPV), which is the proportion of
True Negatives (TN) over all the predicted negatives. Since
models must be evaluated carefully to prevent selection
bias [16], we used a 10 fold cross-validation (CV) strategy
for feature selection. It is important to apply CV not only
on the creation of the prediction rule but also on the fea-
ture selection otherwise a bias is introduced in the esti-
mated error rates resulting in over-optimistic
classification accuracy [17]. As a consequence, results
from many studies are controversial due to methodologi-
cal flaws [18]. Therefore, models must be evaluated care-
fully to prevent selection bias [16]. Nested CV is
recommended, with an inner CV loop to perform the tun-
ing of the parameters and an outer CV to compute an esti-
mate of the error [19]. It is important to note that using
nested CV, a different feature subset of variables is selected
at each iteration. To look at the stability of the feature sub-
sets selected at each fold, we could use the stability index
proposed by [20]. However, this index is defined only to
compare subsets of the same size, which is not applicable
in our case. In a similar spirit, we suggest instead to look
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at the stability of the feature subsets by considering the
number of folds where each variable was selected.

van't Veer dataset

We first ran our algorithm on the 70 genes signature from
the van't Veer breast cancer dataset [21]. Van't Veer and
colleagues investigated the problem of molecular classifi-
cation of breast cancer and found a 70 genes profile also
known as the Amsterdam signature to predict breast can-
cer prognosis. From the key observation that 70 to 80% of
patients receiving chemotherapy would have survived
without it, [21] identify a 70 genes signature to classify
good prognosis (patients who remained free of disease for
at least five years) and poor prognosis (patients who
developed distant metastases within five years). The van't
Veer training set contains 78 patient samples of which 34
have poor prognosis and 44 have good prognosis. In a fol-
low-up study by [22], tumors of primary invasive breast
carcinoma less than 5 cm in diameter from 295 women
were examined for validation. The cohort of 295 patients
studied includes 61 of the 78 patients from the previous
study [21]. The Amsterdam signature assigns a given
instance to good prognosis if this instance has correlation
coefficient greater than 0.4 with the 70 genes profile, and
assigns the instance to poor prognosis otherwise. For
training, we used 77 samples instead of the original 78 as
one sample had 44.5% missing value.

Note that we used preprocessed data for both van't Veer
and van de Vijver datasets where the fluorescence intensi-
ties were quantified, corrected for background noise and
normalized [21,22].

First, we evaluated the performance of each approach with
a nested 10 fold CV looking at the classification perform-
ance (note that results did not change for lambda greater
than 10). We also looked at the genes selected in each fold
to evaluate the consistency of the nested CV. Figure 2
shows the frequency of the genes found over the folds. It
shows that our approach is more stable than the others.

We also evaluated the performance of the different meth-
ods on the independent test set from the van de Vijver
dataset [22]. We considered only the 234 new tumor sam-
ples from the van de Vijver dataset (not included in the
previous study) as the independent test set. Our approach
finds 11 genes with at least 50% confidence in nested 10
fold CV (that means genes that were found in at least 5 of
the 10 folds). Even though the wrapper and Boullé meth-
ods produce less number of genes, their sensitivity is sig-
nificantly lower than with our approach (Table 5).
Furthermore, our accuracy on the independent test set is
not significantly different than the 70 genes in the Amster-
dam signature (p = 0.6069 with McNemar test) but used
11 genes instead of 70.
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Variable number

corrl

Number of times genes were selected in 10 fold nested CV for van't Veer breast cancer dataset.

Pomeroy medulloblastoma outcome dataset

[23] investigated the response to treatment of medullob-
lastomas with gene expression profiles from biopsies of
60 similarly treated patients and found a 100 genes signa-
ture.

Note that we used the preprocessed Pomeroy medullob-
lastoma dataset after thresholding, filtering and rescaling
as described in [23]. We applied our algorithm to the
Pomeroy medulloblastoma training dataset of 60 samples
(39 survivors, 21 failures) to predict clinical outcome and
evaluated the classification performance using a 10 fold
nested CV using the original 100 genes signature. In gen-
eral our prediction is slightly better than the prediction

obtained using Pomeroy's 100 genes but used only 11
genes (with at least 50% confidence in nested 10 fold CV)
instead of 100 (Table 6). Varying the penalty weight
lambda did not alter the results. As we did before, we also
looked at the stability of the subset of genes selected in
each fold and found that our approach is more stable
compared to others (Figure 3).

Ramaswamy metastases dataset

[24] explored the gene expression profiles of human pri-
mary tumours and metastases. They found a 128 genes
signature that best distinguish primary and metastatic car-
cinomas.

Table 5: Classification performance of naive Bayes algorithm on genes from van't Veer breast cancer dataset as training and

independent test set of 234 samples for testing.

Boulle Wrapper Corrl Corrl0 Amsterdam Signature

Average # of genes 6 8 Il 70

ACC (%) 66.24 60.68 61.54 63.25 61.54

SENS (%) 69.57 65.22 7391 8l.16 86.96

SPEC (%) 64.85 58.79 56.36 55.76 5091

PPV (%) 45.28 39.82 41.46 43.41 42.55

NPV (%) 83.59 80.17 83.78 87.62 90.32

AUC 0.6721 0.6200 0.6514 0.6846 0.6893

The average number of genes represents the average over the nested 10 fold CV.
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Table 6: Classification performance of naive Bayes algorithm with nested 10 fold CV obtained by different methods on Pomeroy

medulloblastoma outcome dataset.

Pomeroy Signature Wrapper Boulle corrl
Average # of genes 100 1.5 48 I
ACC (%) 73.33 71.67 61.67 75.00
SENS (%) 76.92 74.36 76.92 82.05
SPEC (%) 66.67 66.67 33.33 61.90
PPV (%) 81.08 80.56 68.18 80.00
NPV (%) 60.87 58.33 43.75 65.00
AUC 0.8168 0.8180 0.7410 0.7800

The average number of genes represents the average over the nested 10 fold CV.

Note that we used the preprocessed Ramaswamy metas-
tases dataset after rescaling as described in [24]. We
applied our algorithm to the Ramaswamy training dataset
(Ramaswamy et al., 2003) of 86 samples (64 tumors and
12 metastases of diverse origins) to predict metastases and
evaluated the classification performance using 10 fold
nested CV (Table 7). Our prediction is similar to the pre-
diction obtained using Ramaswamy's 128 genes but used
only 8 genes (with at least 50% confidence in nested 10
fold CV) instead of 128. The results did not change when
increasing the penalty weight lambda past 100.

We also looked at the genes selected in each fold and
found that our method is more stable compared to others

(Figure 4).

10

Number
of folds

------ wrapper = =boulle

Figure 3

Discussion and Conclusion

The main question we explore in this paper is how many
genes and which genes should be selected for class predic-
tion? We presented a Bayesian approach for feature selec-
tion with regularization to penalize for the correlation
among the variables in the model. We performed an
extensive simulation study where we simulated variables
to predict the class in order to address the issues of redun-
dancy, noise and scalability in terms of number of features
and number of instances. In such a way we were able to
evaluate the performance of our approach. We found that
we can most often recover the correct genes even when the
accuracy and subset size is the same than compared to
Boulle's method and a wrapper approach. One of the lim-
itations however is that small sample size can severely
affect the frequency of correct subsets found highlighting

1
7
¢

51 61 71 81 91

Variable number

corrl

Number of times genes were selected in 10 fold CV for Pomeroy medulloblastoma outcome dataset.
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Table 7: Classification performance of naive Bayes algorithm with nested 10 fold CV obtained by different methods on Ramaswamy

metastases dataset

Ramaswamy signature Wrapper Boulle corrl corrl00

# of genes 128 5.9 3 84 8

ACC (%) 90.79 89.47 77.63 89.47 90.79
SENS (%) 92.19 95.31 87.50 95.31 95.31
SPEC (%) 83.33 58.33 25.00 58.33 66.67
PPV (%) 96.72 92.42 86.15 92.42 93.85
NPV (%) 66.67 70.00 27.27 70.00 72.73
AUC 0.9297 0.8650 0.7410 0.8740 0.9210

the small sample size problem especially when the genes
are highly correlated, as it is the case in microarray data.
This finding agrees with other reports including the com-
parison of the removal of irrelevant and redundant fea-
tures to binning [25]. It is worth noting that with enough
data, unlike other methods, our approach could recover
correct subsets even in fully connected networks. For the
choice of the penalty weight, we tried various penalty
weights and observed that the larger the penalty weight,
the better the performance. However, the performance of
the method did not seem to change after 1 = 100. We then
applied our method on real cancer datasets (breast cancer,
medulloblastoma and metastases datasets) and showed
that we can refine gene signatures with a smaller number
of genes and similar or better classification performance.
We also showed that the results obtained were not very
sensitive to the tuning parameter A .

10

Number
of folds

1, 41 21 31 @41 51

From the biological standpoint, it is important to note
that genes are known to interact with each other in path-
ways that bring about a particular phenotype. Genes that
act together in a pathway undergo gene regulation and
often have correlated expressions. If one wants to model
gene interactions and infer relationships between the
genes, network-based approaches are currently develop-
ing into a fruitful area of investigation. Nevertheless, the
objective of our paper is not to reconstruct gene pathways
derived from their correlation structure. Instead, we
penalize the gene correlations in order to identify the
smallest set of least correlated genes that can predict a
given phenotype such as disease outcome. In this work,
we ask whether we can identify crucial genes that can pre-
dict a phenotype. The interest of finding a minimal set of
genes to predict the class by refining gene signatures is
mainly to improve prediction with cost reduction of
screening tests for diagnosis, prognosis or treatment

61 71 81

91 101 111 7121 131

Variable number

------ wrapper = - boulle

Figure 4

corrl

Number of times genes were selected in 10 fold CV for Ramaswamy metastases dataset.

Page 9 of 11

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:410

response of future new patients in the pharmaceutical
industry.

In the particular application to microarrays, how to esti-
mate the true correlations between variables is unclear. It
is known [26] that normalization procedures destroy the
correlation structure of the genes on the array, and that we
cannot estimate the true value of correlations between
gene expressions. However, as Qiu and colleagues (2005)
mentioned in their paper: "When analyzing real world
biological data sets, normalization procedures are unable
to completely remove correlation between the test statis-
tics. The long-range correlation structure also persists in
normalized data". In this work, we do not claim to find a
unique set of genes to predict the class but that our algo-
rithm can find one such set with least mathematically cor-
related genes.

In future work, we aim to extend this idea to Bayesian net-
works which relax the assumption of variable independ-
ence of naive Bayes. In a Bayesian network, the Markov
blanket of a class variable Y is the minimal set of variables
such that Y is independent of all other variables given its
Markov blanket. The Markov blanket of Y therefore prob-
abilistically shields off Y from the rest of the network and
would provide a network approach towards the predictive
modeling of cancer pathways.

Finally, note that a user-friendly software implementation
of the method proposed in this paper is available at
httwww.medicine.mcgill.ca/epidemiology/Labbe/Publi
cations.html.
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Appendix

We provide here an example of how to compute the
denominator of equation (1) in Section 2.1 when K = 5
and m =3, i.e:

2 (1—| Cormax(M)|)

MeM,,

This is equivalent to compute the sum over all possible
models of size 3 (chosen among 5 variables) of the maxi-
mum of the pairwise correlations in each model. We
denote the 5 variables {1, 2, 3, 4, 5} and assume without
loss of generality that the ordered correlations are p;,> p; 5

2 P1a2P 152 Pa3 2 Pas 2 Pos 2 P3a 2 P35 2 Pys- If one could

http://www.biomedcentral.com/1471-2105/10/410

list all possible models of size 3 chosen among 5 varia-
bles, equation (4) could be written as:

(1= p12 ) x{# models of size 3 containing (1,2)}
+(1—| p13 |)x {# models of size 3 containing (1,3)}
+...+ (1= pys |) x {# models of size 3 containing (4, 5)}

To compute the formula above, we first construct a Pascal
triangle with K - 1 = 4 rows:

—_— = =
w N = O
w = O O
= o O O

By looking at the (m - 2) = 1st column of the triangle
(recalling that the first column is noted 0), we define

Z2=(3,2,1,0,2,1,0,1,0,0).

Then, Equation (4) is equal to:

K(K-1)/2
Y, =10z
1=1
=3(1=| p12 N+ 2(1=| p15 ) + 100~ pra ) + .- + 0= | pys5 |)-
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