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Abstract

Background: Although oligonucleotide microarray technology is ubiquitous in genomic research,
reproducibility and standardization of expression measurements still concern many researchers.
Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a
primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be
modeled at a population-level using a combination of material balance equations and
thermodynamics. However, the hybridization reaction network may be exceptionally large for
commercial arrays, which often possess at least one reporter per transcript. Quantification of the
kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible
with customary approaches.

Results: In this paper, we present a robust and computationally efficient algorithm for the
simulation of hybridization processes underlying microarray assays. Our method may be utilized to
identify the extent to which nucleic acid targets (e.g. cDNA) will cross-hybridize with probes, and
by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using
this algorithm, we characterize cross-hybridization in a modified commercial microarray assay.

Conclusions: By integrating stochastic simulation with thermodynamic prediction tools for DNA
hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray
design at the probe and "system" levels. Our code is available at http://www.laurenzi.net.

Background

Presently, there are several high throughput methods of
quantifying changes in gene expression including oligo-
nucleotide microarrays, quantitative realtime PCR (qPCR)
and "next generation sequencing" (e.g. [1]). Of these,
high density oligonucleotide microarrays are arguably the
most important tools for genomic investigation. Although
next generation sequencing is a promising alternative to
microarrays for genome-scale expression profiling, and
exhibit more sensitivity in the low-expression limit [2,3],
microarray technology is substantially less expensive and

the resulting data sets require much less information
processing. Moreover, microarrays have substantially
higher throughput than qPCR.

Microarrays consist of DNA probes (reporters) which are
orderly arranged on a glass slide. Probes may be attached
to (or synthesized from) the slide surface via (1) mask-
dependent [4-9] or maskless photolithographic DNA syn-
thesis technology [10,11], or (2) robotic printing of PCR
products or synthetic oligomers [12]. The first two of these
methods yield oligonucleotide arrays (e.g. Affymetrix
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GeneChips), which are more reliable than PCR product-
based arrays; they comprise the majority of commercial
arrays by market share. Thus, we restrict our considera-
tions to microarrays of these types.

Each probe is designed to hybridize with a specific cell-
derived and fluorolabeled DNA species such as cDNA or
cRNA [6,13]. If these targets originate from mRNA, then
the fluorescence associated with each microarray feature is
assumed to be proportional to the amount of each tran-
script [14-16]. However, in recent years, this assumption
has been called into question. Several studies have shown
that different microarray assays yield different results
when used to quantify differences in expression (e.g.
[17]). Moreover, significant differences have also been
reported among the results of microarray and qPCR assays
[18-21]. Although the MicroArray Quality Control con-
sortium confirmed a "high level of interplatform concord-
ance in terms of genes identified as differentially
expressed" for several commercial microarrays targeting
the human transcriptome in 2006 [22], the reliability of
many other array designs and experimental protocols
have not been characterized systematically.

Theoretical analyses of smaller systems have suggested
that problems with probe reliability are thermodynamic
in origin [23,24]. Sequence and GC content heuristics are
commonly employed in the design of probes [25,26].
However, these heuristics do not preclude the possibility
of finite lengths of complementary sequence between
probe candidates and non-target ssDNA. Consequently,
all probe-ssDNA interactions will exhibit favorable ener-
getics of interaction to some extent, and there will always
be a finite amount of cross-hybridization between probes
and non-target cDNA. However, experimental identifica-
tion and quantification of the relative amounts of cor-
rectly-hybridized and cross-hybridized probes is
impractical, since the only measurement of an array
reader is the fluorescence associated with each microarray
feature.

Chemical Dynamics of DNA Hybridization

However, the relative amounts of these species may be
quantified using population-balances combined with an
appropriate thermodynamic model of hybridization.
Consider a microarray with N oligonucleotide probes
that target many if not all of the N solution-phase ssD-
NAs (e.g. cDNA) The hybridization network may be writ-
ten as

ki
cDNA, + Probe,, \kLT

‘m

Hybrid ,,, (1)

where € € (0, N;] and m € (0, NP]. Note that N, and Ny
needn't be equal, since an array needn't measure the
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expression levels of all transcripts (N, < Ny). Most arrays
have multiple reporters per target [27]. The deterministic
time evolution of the process is completely specified by
the following chemical population balance equations

N
dX _ N\| knm XPxT _poff xH
dt - \ m*n nm“*nm
n=1
T Np on
dx ok
I __Z Ui xPxT _poff x H (2)
- i (i li
d & v
H on
%:%XPXT—kOffXH
dt Vv m L m“>(m

In Eq. 2, V is the volume of cDNA solution added to the
array, X,IZ, is the population of unhybridized probes of

typem (m=1..N;), X! is the population of unhybrid-

ized transcripts of type € (m = 1 ... Np), and Xj, is the

population of hybrids composed of probe m and tran-
script €. Before the addition of cDNA to the array, there are

N unhybridized probes per feature and X ZO molecules of
each cDNA ¢. Thus, the initial conditions of this system of

N, + Nj+ Np Ny ordinary differential equations are X (¢
=0)=N, X/ (t=0)= X/° and X} (t=0)=0. Numer-

ical solution of Eq. 2 until t ~oo yields the equilibrium
populations of desired hybrids (between probes and their
targets) as well as cross-hybrids. Unfortunately, this deter-
ministic approach exhibits certain practical pitfalls. Since
the reaction rate constants and cDNA populations vary
over many orders of magnitude, Egs. 2 are "stiff". The size
of the hybridization reaction network compounds the
problem; typical genomic assays are designed to measure
the expression levels of thousands of transcripts. For
example, baker's yeast (S. cerevisiae) possesses approxi-
mately 6,700 genes (Ny= 6700) [28] and humans possess
approximately 25,000 [29]. Since most microarrays fea-
ture one or more distinct reporters (N, ) for each target,
the size of the hybridization network (2N, N reactions)
will be enormous. For these genomes, Eq. 2 represents
millions to billions of stiff ordinary differential equations.

Stochastic Simulation

Alternately, one may utilize the stochastic approach to
chemical kinetics, which underlies the aforementioned
rate equations [30,31]. To begin, let us consider the gen-
eral case where a volume of solution containing N;,cDNAs
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at populations X;° (€=1 ... N;) is added to an array with

Njp surface-bound probes at populations X% = N (m = 1
... Np), where again, the superscript "0" denotes the initial

state. Upon addition of the solution to the slide, unhy-
bridized probes and targets will randomly hybridize in
accordance with Eq. 1. Assuming perfect mixing and iso-
thermal hybridization - both ostensibly achieved with
most assays - the state of this system may be defined in

terms of the populations of unhybridized probes X,’:l,

unhybridized target DNA X,T hybrids Xgn, and the

hybridization volume, V. The probability of a transition
from one state to another is defined by the stoichiometry
of Eq. 1. Since ssDNA molecules directly interact to form
a dsDNA hybrid,

kon
~lm XPx {61+ o(51) ()

is the probability that probe m will hybridize with cDNA
€ within the imminent time interval 6t, and

kOTXH 5t + 0(51) (4)

is the probability that any of the X ﬁn hybrids composed
of probe m and cDNA € will dehybridize within the immi-

. . ok
nent time interval Jt. We recognize #XYI;X/T and

k off

or X i, as the rates of the forward and reverse reactions

of Eq. 1, respectively. Eqgs. 3 and 4 are microphysically
valid [32-35] and are in fact the basis of the validity of the
aforementioned rate equations (Eq. 2). We refer interested
readers to Gillespie's paper on this subject [31].

Egs. 3 and 4 are the bases of the stochastic simulation
algorithms (SSAs) [34,36]. SSAs simulate the time evolu-
tion of a chemical process by repetitively (1) selecting a
reaction z among a set M of potential reactions, (2) select-
ing the time 7z until that reaction occurs, (3) updating the
state of the system to reflect the occurrence of the selected
reaction, and (4) updating the time. Exact SSAs differ only
in how the first two steps are implemented. Each method-
ology features its own memory and speed enhancements
and restrictions.

Direct Method

The Direct Method samples two exact density functions to
obtain the quiescence time and imminent reaction event.
The selection rule for the quiescence time is

http://www.biomedcentral.com/1471-2105/10/411

1 1
7= ag ln(l—rl ] ©)

where a, is the sum of all reaction rates and r, ~U (0, 1)
(i.e. r; is a uniform random number). The selection rule
for the imminent event  is

u-l u
Zav <Tyag < Zav (6)
v— v-1

In a microarary hybridization network, these rates are
defined by Eqs. 3 and 4, as discussed, such that € [1, 2N,
Nyl

Although the Direct Method is the faster and more mem-
ory efficient of the two SSAs first developed by Gillespie
[34], it is numerically intensive when applied to large
chemical networks. Since O(M) operations are required
for Eq. 6, simulations with M reaction types require O(M)
calculations per time step. Since each probe may poten-
tially bind every target, M = 2N, N for the reaction system
described by Eq. 1. Thus, there are O(N, N;) operations
per time step with the Direct Method. Considering typical
values for Npand N, there will be hundreds of millions of
operations per time step in DM simulations of conven-
tional microarrays.

Next Reaction Method

In 2000, Gibson & Bruck proposed a new exact SSA called
Next Reaction Method. This approach purportedly
reduces the number of required calculations per time step
from the O(M) of the Direct Method to O(k log M), where
k is tantamount to the number of chemical species with
which the average chemical species will react [37] (e.g. the
number of cross-hybrids per probe). The speed enhance-
ment of this algorithm is most prominent when the reac-
tion network is sparse (k << M), however, it should be
much faster than the Direct Method for reaction networks
as coupled as Eq. 1, where k vNpand M = 2N, N;. The Next
Reaction Method is significantly different than the Direct
Method in both its data handling and MC selection rules.
First, the absolute times at which all reactions might occur
((z ,-t) ~ Exponential(e,), v € [1, M]) are selected by MC,
by contrast to the MC selection of just one quiescence
time in the Direct Method. One may show that the small-
est of these times (7,) is the time at which the next reac-
tion (u) occurs, and that this selection rule is an exact MC
selection from the reaction probability density function,
like Egs. 5 and 6 [37].

Another noteworthy difference between the Direct
Method and the Next Reaction Method is the employ-
ment of a "dependency graph" by the latter. This data
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structure reduces the number of calculations per reaction
event, both for event selection and updating the reaction
times. However, the dependency graph requires O(kM)
objects to store the dependencies of reaction rates upon
the populations of reactants and products shared with
other reactions. For microarray hybridization, this trans-

lates to a storage requirement of O(NpN,) reaction

objects, which is prohibitively large for genome-sized
microarray simulations; Even current supercomputers
with terabytes of memory cannot meet these require-
ments.

Results

Algorithm

In simulations of microarray hybridization, the extreme
computational burden of the Direct Method and the
memory burden of the Next Reaction Method may be alle-
viated by judicious storage and summation of the terms in
Eq. 6. Our algorithm employs a data structure called a
Hybridization Table (HT) that stores partial sums of the
terms in Eq. 6. For this reason, we call our approach the
"method of partial sums" (Algorithm 1).

Initialize (X] =N, j=1,2..Np X/ ,i=1,2 .. Nyvia
the "gold standard", t)

Calculate the auxiliary variables (¢, j = 1, 2 ... NP (Eq.
7), ¢,j=1,2..Np(Eq. 8), «and ¢ (Egs. 9, 10)

repeat

Calculate the total reaction rate ¢ (Eq. 11) and quies-
cence interval 7 (Eq. 5)

http://www.biomedcentral.com/1471-2105/10/411

if the next reaction is a hybridization (Eq. 12) then

Select the hybridizing probe m and cDNA € (Eq. 14,
17)

else

Select the dehybridizing probe m and cDNA ¢ (Eq.
20, 21)

end if

Update populations X ,’;, X7, X Zn

Update hybridization rates: @, and &, j=1,2 ... Np
(Egs. 22, 23)

Update Dehybridization Rates: ¢,,, ¢ (Eqs. 24, 25)

[<t+71

until P >0.05 for @ = @

Algorithm 1: Method of partial sums for the simulation of
the coupled reaction network composed of the hybridiza-
tions of N, oligonucleotide probes and N cDNA species.

Hybridization Table
The structure of the Hybridization Table is outlined in Fig.

1. In addition to storing the populations of targets { X, },
probes { X!}, hybrids {X} } and rate constants

con=kin/V and cfy =k (m e [1,Np], € € [1, Ny]),

o[ xXF]{ea]¥E] om|XR]  [omelXK ] [ ® [ ® | [ ® | [ ew |
T .on on .on . on off H off H |. .. off H .. off H
| Xq | | C12 H 12 || Cim | ) | CiINp | | ‘11 |X11 | | €12 | Xia | T | Xim | CiNp | Xinp |
T on on .on on off H fF H |... off H off H
| X3 I | €21 H €22 | | C2m | | C2Np | | €21 | X351 | | €32 | X35 | C2m szl | CaNp | XoNp |
T on on on on off H off H off H off H
|Xz | | Co1 H Cg2 || Cem | | CNp | |C31|X41| |sz‘Xe2 | cem|sz|"'| Csz|Xsz|
T on on .. on . on off H off H ... | ~off H .| poff H
IXNTI | ENp1 ‘ | ENz2 | | CNpm | ENpNp | CNT1|XNT1| CNT2‘XNT2| |CNT£|XNTE| CNTNP|X-’VT"\"P|
Figure |

Structure of the hybridization table (HT). Rate constants and populations are stored in such a way as to simplify the cal-
culation of the quantities «, @, @ and @ (See Egs. 7, 8, 9, and 10) thereby reducing the number of operations per time step of

the simulation from O(2N, N;) to O(N, + N;).
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the table also contains the rates at which probes of type j
will hybridize with any target,

Ny
@ = X] D X 9

i=1

and the rates at which all hybrids composed of probes j will
dissociate,

(D ZkOffXH (8)

Two additional quantities are stored in the table: the total
rate of hybridization

o= aj, 9)
and the total rate of dehybridization

Np
@:Zcpj.
j=1

The total rate of reaction may then be calculated from

(10)

(11)

Egs. 7, 8, 9, and 10 effectively subdivide the running sum
in Eq. 6 into independently manageable groups of infor-
mation. This in turn reduces the number of operations
required for event selection reaction rate updates.

ag=a+®

Reaction event selection

The selection of the imminent hybridization or dehybrid-
ization event is accomplished by summing the terms of
Eq. 6 such that the total number of operations in Eq. 6
(including the calculation of a,) is minimized. We begin

by ordering the reactions according to column and row in

the HT (Fig. 1) such that

ay=ciPX{ X[ ,ay =cIX{X],..ay = kNTNPXNTNP Eq.
6 is then implemented by summing the reaction rates cor-
responding to each entry in the HT, by column and then
by row: first, by hybridization events, and then by dehy-

bridization events.

One begins by identifying whether or not the imminent
event will be a hybridization. Since the imminent event is
defined by the reaction whose rate causes the sum of &, to
exceed the quantity r,¢,, and all hybridization reactions

http://www.biomedcentral.com/1471-2105/10/411

precede the dehybridization reactions in the HT, it follows
that

r,d, < oo — Hybridization (12)

2 a — Dehybridization

If Eq. 12 results in the selection of a hybridization event,
a >7,d, and one needn't consider the dehybridization
rates in the selection of the event to come.

The next step is the selection of the probe (m) that will
hybridize in the imminent event. Using the notation of
the Direct Method and the order of summation, the index
of the event to come (x) must be less than or equal to N,
Ny, where ay . is the last of the hybridization rates in

the table (Fig. 1). Eq. 12 becomes

m
PyT E:
jXi <may<

j=1 i=1 j=1 i

?
ConXPXT
=1

(13)

In essence, the event is selected by summing the rates cor-
responding to each column of the "hybridization" section
of the HT, column by column, followed by row, until the

quantity z:
quantity is equal to ¢; (Eq. 7), Eq. 13 may be simplified to

m
aj <Tp, < E a;
j=

which defines the probe that will hybridize in the immi-
nent event.

ci"X TX 7,4, is exceeded. Noting that the

-1

E

(14)

I
—

J

The equation defining the selection of the target may be
derived similarly First, we express the sums on the right
and left sides of Eq. 13 as

m—1 /-1

Zaj+ c"XIxP <ra, (15)
j= i=1
and
m-1 4
Thdg < Y «a; +Zc°nX1—TX,1; (16)
j=1 i=1
Simplifying these expressions, we obtain
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/-1 m—1

ony T on T
E CimX; <| 1ag — a; E mX j
i=1 j=1 xP

(17)
Thus, the target (€) in the imminent event may be

obtained by summing the quantities ¢2"X/ until the

-1

quantity (r2a0 - 2:”:1 a; )/X,‘:1 is exceeded.

If the event to come is a dehybridization, then « <r,a,.
Hence, the sum of all hybridization rates may be sub-
tracted from each term in Eq. 6, leaving

u=l u
2 a, <(r,ap—oa) < z a, (18)
v=NpNr+1 v=NpNr+1

where {a,} are the rates of the dehybridization reactions
and we have explicitly noted the fact that all N, N, hybrid-
ization rates are contained within «. Expressing this in
terms of the hybrid indices, we obtain

m —

S5t << 33

j=1 i=1 j=1 i=1
(19)

Again, the selection of the the event may be simplified
using the auxiliary variables in the HT. If the probe m is
released in the imminent event, the value of m may be
defined by sequential addition of the values of {®;} until
the quantity (1,4, - @) is exceeded

m—1 m
Z(I)i < (rya, —a)<2d>j
=1 =1

Note that this also defines the identity of the probe that
will dissociate from the target. The cDNA to be released in
the dehybridization event (€) may be calculated by sub-
traction of Eq. 20 from Eq. 19:

(20)

(=1

off
E le< Thdy —Q —

i=1

-1

3

]
Q; |< Zc"ffX

i=1

.
1l
—

(21)
The selection rules for hybridization (Egs. 14, 17) and
dehybridization (Egs. 20, 21) substantially reduce the
number of operations required by Eq. 6. Whereas the
Direct Method may require 2N, N operations to select a
reaction, our selection rules require at most (Np + Ny)

http://www.biomedcentral.com/1471-2105/10/411

operations. For a genome-sized microarray simulations,
with Np~Np~ 104, our reaction selection approach will be
several orders of magnitude faster than those of other
algorithms.

System state accounting
Upon selection of the imminent event, the populations of

the species involved (X>, X], and X/} for the probe,

target, and hybrid, respectively) must be updated in
accordance with the stoichiometry of the reaction. The
structure of the HT facilitates this procedure: the row and
column of the selected event designate the identities of
both the reactants and products as well as the stoichio-
metric changes in population.

However, other quantities must be updated, most notably
the partial sums of reaction rates that facilitate event selec-
tion. The first quantity to be updated is the hybridization
rate of the probe m

Xfl:l old +1 on
Ay = P (am,old + Cﬁml) (22)
X
m,old

where I = -1 for hybridization and +1 for dehybridization.
Since each partial sum ¢; is a function of the population
of the €th cDNA (Eq. 7), these quantities must also be
updated:

a;=(ajou +c(jl) j#Em (23)
Subsequently, a must be recalculated using Eq. 9. Collec-

tively, 2N, operations are required for the update of the
hybridization section of the HT.

After a hybridization or dehybridization event, only one
of the dehybridization rates must be updated. Thus, only
one partial sum requires modification:
_ off (24)
CDm _q)m,old C/mI
Moreover, inasmuch as ®,, is the only affected partial
sum, ® may also be updated in one operation,
Thus, only two operations are required to update the
dehybridization section of the HT.

In summary, after selection of a reaction, the HT may be
updated in O(N,) operations, a substantial improvement
over the Direct Method. This is largely a result of the fact
that reaction rates (a,) are not stored in the HT, precluding
the need to update N, rates of events featuring probe m
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and N rates featuring target €. The same argument applies
to the dehybrization reaction rates {®;}. Ultimately, the
method of partial sums is efficient so long as the partial
sums can be updated easily.

Determination of equilibrium

Microarray analysis is predicated upon the assumption
that the probes and solution-phase cDNA have equili-
brated prior to scanning the slide and measuring the fluo-
rescence associated with each feature. We follow this
experimental convention in silico.

The hybridization process is at equilibrium when the rates
of change of all chemical populations in Eq. 2 are zero,
implying

on

%X,I;X/T — kOffXZIn. (26)

Im

As straightforward as this criterion appears, it is difficult to
employ in practice. Eq. 26 represents millions of compar-
isons for genome-scale microarrays, requiring O(N, Ny)
operations per time step. This many operations would
also be required if one determined the steady states of all
molecular species, which would additionally require stor-
age of the current state as well as previous states. Clearly,
this is memory-prohibitive. Furthermore, Eq. 26 is exact
only on average [30,32]. Hence, it will never be exactly
satisfied at any point in time within a single simulation.

To circumvent these issues, we propose an alternate
approach that employs the average total rates of hybridi-
zation () and dehybridization (®). Considering the def-
initions of these quantities (Egs. 7, 8, 9, and 10)
summation of Eq. 26 over all € and m yields the result that
a = @ at equilibrium. This criterion may be established
using Student's ¢ test for two populations with unknown
means and standard deviations [38]. Strictly speaking, this
is necessary but insufficient for the specification of ther-
modynamic equilibrium. However, it is remarkably effec-
tive as a heuristic. We implement it as follows:

repeat
Save o and @ to disk every O(N)) reaction steps

Maintain the last ten saved values of & and ® in mem-
ory as vectors ¢ and @

Keep running averages of the numbers in these vec-

tors, @ and @ .

if @ <® then

http://www.biomedcentral.com/1471-2105/10/411

ifP<0.05forHy: & = ® (H;: @ # @) then
Reinitialize & and ®
end if

end if

until P >0.05 for Hy: & = @

Testing

Heuristic for the determination of equilibrium

To evaluate the heuristic approach to the determination of
the equilibrium state, we performed simulations of the
hybridization of modified Agilent probes with yeast
cDNA (Methods). A typical example of the time evolution
of a and F is presented in Fig. 2, where the time at which
equilibrium is attained (as defined by our heuristic) is
marked by the red circle. At and after this point, the pop-
ulations of all hybrid species were at steady state, fluctuat-
ing in accordance with the predictions of equilibrium
statistical mechanics.

Subsequent comparison of hybrid populations with Eq.
26 confirmed the findings of our "equilibrium heuristic"
for all simulations.

In standard hybridizations, imperfect mixing causes the
transport of cDNA or cRNA to be diffusion limited [39].
This in turn presents an obstacle to hybridization, as the
time required for a (large) target to diffuse to it's probe is
large. This, in turn affects the kinetics. The most common
solution to this problem is to increase the concentration
of target cDNA or cRNA, which results in an abundance of

10" ¢
4o «
|
e
E10° |
[¥p]
® P
2
o g
-10 1 1
10 -6 0 6 12
10 10 10 10
Simulation time ¢ (s)
Figure 2

Determination of equilibrium within simulations of

hybridization. Results are shown for the hybridization of all
6256 Agilent probes with 6718 full-length yeast cDNAs. The
red circle indicates the time at which equilibrium is attained.
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these molecules at equilibrium. As we have discussed, our
simulations feature perfect mixing. Thus, we may use sub-
stantially less solution-phase cDNA. As a result, free cDNA
is sparse at equilibrium, which introduces fluctuation into
a. By contrast, F exhibits little fluctuation because hybrid
populations are fairly large compared to the change in
population accompanying a (random) reaction.

Effect of reaction rate constants upon the steady state

As discussed, the values of the kinetic rate constants
should not affect the equilibrium state of our simulations
provided that their ratios are constant (Eq. 35). This
assumption may be formulated as a testable hypothesis as
follows: If the values of k2T and k9" affect the equilib-

rium state of simulation, then they will affect the frac-
tional occupancy of each probe m € [1, N| defined by

Ym=Xu IN (27)
In this expression
Ny
Xﬂ:jzxﬂl (28)
(=1

is the total population of probes m hybridized with any
type of cDNA at equilibrium.

We test these hypotheses at the system level by performing
simulations using rate constants

off * _ off
k(m - 7‘fmk(’m

on* _ off *
k(m - K(’mké‘m

(29)

That is, we perturb the rate constants generated via Eqs. 37
and 35 by multiplying their results by a uniform random
number r€,,. Since a unique random number is generated
for each probe m and cDNA €, one may quantify the effect
of kinetic perturbations on the equilibrium state of a sim-
ulation via the hypothesis

H, : y,(unperturbed) = y,, (unperturbed) Vi
(30)

If kinetic rate constants significantly affect any of the frac-
tional occupancies at the equilibrium state (t — ), then
this hypothesis will fail.

Simulations of the hybridization of all 6256 modified
Agilent probes with 6718 full-length yeast cONA mole-
cules were conducted for two types of perturbations. In
the first study, r ~U (0, 1), where U (a, b) is a uniform ran-
dom number on the interval (a, b). This allowed us to
evaluate the effect of the widest variation of the rate con-

http://www.biomedcentral.com/1471-2105/10/411

stants. In the second study, r ~U (0.001, 1). Rate constants
for all 42,027,808 hybridization events were independ-
ently perturbed. The results of our hypothesis tests are
illustrated in Fig. 3.

In both cases, our results clearly indicate that the equilib-
rium state is unaffected by the values of the rate constants,
as expected. Interestingly, the time required to reach equi-
librium correlates with the heterogeneity of the dehybrid-
ization rate constants: deviations of the results for the two
cases at 100 hours of CPU time (not hybridization time)
indicate that the hybridization of many probes with solu-
tion-phase cDNA was incomplete in cases where their rate
constants were perturbed by factors less than 10-3.

Analyses of the timeseries of the overall rate of reaction
(Fig. 2) revealed that the progression to equilibrium is
considerably slower if r ~U (0, 1) than if r ~U (0.001, 1).
This conforms with the experimental observations of Dai
and coworkers [40], which demonstrated differences
between the kinetics of specific and nonspecific hybridiza-
tions.

Comparison of stochastic simulation algorithms

Results of all SSAs applied to the process described by Eq.
1 should yield statistically indistinguishable results since
they share a common stochastic process. In his seminal
work [34], Gillespie showed that the "First Reaction
Method" and "Direct Method" were equivalent. Subse-
quently, Gibson and Bruck demonstrated that their "Next
Reaction Method" is equivalent to Gillespie's algorithms.
Since the Method of Partial Sums shares the mathematical

r~U(0,1) r ~ U(0.001,1)

= 4 hrs——100 hrs 4 hrs—— 100 hrs
_g 1

2

@

=

= 0

0 1

y (unperturbed)

Figure 3

Effect of kinetic rate constants upon the equilibrium
state in microarray simulations. The fractional occupan-
cies of probes at equilibrium (Eq. 27) are unaffected by ran-
dom perturbations of rate constants as t — o. Each point
represents a pair of results for each of the 6256 Agilent
probes targeting yeast ORFs. The CPU time required for
equilibration of simulated systems (4 h, 100 h, above), like
the hybridization time (not shown) does, however, depend
upon the rates. Our methodology for estimating rate con-
stants yields rapidly converging simulations.
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underpinnings of the Direct Method, its results should be
indistinguishable from those generated by the Next Reac-
tion Method or Gillespie's algorithms, as well as the law
of mass action.

We initially tested this hypothesis by conducting simula-
tions of the hybridization of ten full length cDNA species
from yeast to ten probes for those species. Five simula-
tions were conducted via both the Method of Partial Sums
and the Next Reaction Method. Additionally, we solved
the corresponding population balance equations (Egs. 2)
for this illustrative hybridization process. Our results (Fig.
4) clearly show that all methods yield equivalent results.
Average populations for all 100 hybrid species could not
be distinguished by simulation or calculation method via
the T-test (p > 0.05).

Interestingly, several common differential equation solv-
ers could not integrate Egs. 2 for this ten by ten system
from t = 0 until steady state, including the Matlab pack-

Probe Target Hybrids
1 1000
A_06_P1095
| L1, -_ e
YALO69W YALO69W YFLO63W
1 500
A_06_P2378
I 0 Lo
YDR385W YDR385W YORI33W
1 200
A_06_P2537 -
L 1, Lo
YDR543C YDR543C YNRO077C
1 600
A_06_P2891
| Tz, O eom|,
YFLO65C YHLO49C YFL065C
12 1200
A_06_P2889 -
i | 0 Lo
YFLO63W YFLO63W YALO69W

B |Law of Mass Action

Figure 4

B Next Reaction Method
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ages ode23 and ode45. The two hundred equations neces-
sary to model this small array required the use of the
odel5s, which is designed for stiff sets of ODEs. By con-
trast, the stochastic simulation algorithms were unim-
peded in their numerical progress. Although the stochastic
simulation algorithms give indistinguishable results for
the population states both in time and at equilibrium,
their computational performances are significantly differ-
ent. The differences in the computational speeds of the
SSAs were evaluated by conducting simulations of the
hybridization of full length yeast cDNAs to microarrays
featuring 32, 64, 128, 256, and 512 probes targeting those
c¢DNAs (Np= Ny for all cases). Additionally, a simulation
with 6256 probes and 6718 targets was conducted with
the Method of Partial Sums. The same initial populations
of targets and the same set of probes (Methods) were used
in both the Next Reaction and MPS simulations. Estima-
tion of the time at which equilibrium is attained was
determined as discussed, and then used in simulations
conducted with the Next Reaction Method.

Probe Target Hybrids
1 1200
A_06_P3567 | I -
Lo Lo
YHL049C YHL049C YFLO65C
1 100
A_06_P591 |
o LENEm 2= |,
YNLI40C YNLI40C YFLO63C
1 100
A_06_P6107
L |, [mom [,
YNL335W YNL335W YFL063W
1 800
A_06_P6190
YNRO77C YNRO77C YFLO63W
1 600
A_06_P6495 -
L Lo Lo
YORI33W YDR385W YOR33W

Il Method of Partial Sums

Comparison of SSAs and the Law of Mass Action. Results of simulations of the hybridization of ten Agilent probes with
their targets (N, = Ny = 10) under standard experimental conditions are illustrated (mean + SD, n = 5). All three approaches
yield statistically indistinguishable results. In these simulations there are 1000 probe molecules per feature (N = 1000), corre-

sponding to a hybridization volume of 0.275 nL.
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Our results are illustrated in Fig. 5, and the contrast is
stark. The Method of Partial Sums outperforms the Next
Reaction Method for simulations of microarrays of all
sizes. It requires one hour to complete a simulation for an
array large enough to be used for genomic characteriza-
tion. By contrast, the Next Reaction Method is not capable
of performing such simulations due to its memory
requirements. If N, ~N~ 6000, the pointers required by
the Next Reaction Method will consume approximately
three terabytes of 64 bit computer memory by themselves;
the HT requires no such pointers. Next Reaction simula-
tions with as few as 512 probes required 12 hrs of CPU
time to reach equilibrium, and for a computer with
extraordinary memory, we forecast that simulations using
the Next Reaction Method would require a month to sim-
ulate the hybridization to the Agilent yeast array.

In addition, the scaling of the CPU time with respect to
the number of probes differs among the two stochastic
simulation algorithms. Both algorithms feature power-
law scaling, however, the Method of Partial Sums scales as

Np#*99  whereas the Next Reaction Method scales as

N37*013 (mean + SE). These differences arise due to the

differences in the data structures underlying the two meth-

5 -
10°
al 31 days
° 107 1 4
10 10

O Method of Partial Sums
T + Next Reaction Method

CPU Time (10* min)
N
1

10 10°
Number of Reporters (Np)

10° 10

Figure 5

Computational performance of the Method of Partial
Sums and Next Reaction Method. CPU times for of sim-
ulations of hybridization until equilibrium are illustrated. The
in silico time t required to establish equilibrium is determined
by our method and utilized as an end point in "Next Reac-
tion" simulations. Our algorithm outperforms the Next
Reaction Method in both absolute terms as well as on a per-
probe basis (frame).
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ods, which in turn affect the number of calculations
required per time step.

Our algorithm permits two concurrent simulations of an
84 million-reaction system (e.g. the Agilent yeast array
with cDNA from the yeast transcriptome) to reach equi-
librium within two hours using 2.1 GHz Dual G5 Apple
servers with 2 GB memory. 4 GB of memory are sufficient
for simulations featuring 12,000 probes, e.g. simulations
of yeast arrays with one perfect match probe and one mis-
match probe for each transcribed gene. Simulations of an
array designed for the human genome with one probe per
gene - at approximately 25,000 genes - possess hybridiza-
tion reaction spaces approximately 16 times larger, and an
estimated run time of 30 - 60 hours based on CPU time

scaling of t ~ N7 . Such simulations can be achieved on

most University shared-resource machines (i.e. the SGI
Altix at Lehigh University), which commonly feature hun-
dreds of gigabytes of RAM.

lllustrative Example: Characterization of Cross Hybridization

The in silico characterization of cross hybridization is only
as sensitive as the number of probe molecules per feature.
Agilent arrays have 2.0 x 108 probe molecules per feature,
facilitating the hybridization and measurement of as
many target cDNAs and giving, in principle, as much res-
olution. However, the time required for stochastic simula-
tions is proportional to the number of molecules therein
[34,36,41]. Balancing these resolution and population
considerations, we selected a hybridization volume of
0.275 nL corresponding to initial probe populations of
1000 molecules/feature and concomitant scaling of the
feature diameter to maintain the surface concentration.
We also employed a total concentration of 100 ng per 60
L hybridization volume. At this concentration, only a
few if any probes become saturated. This concentration is
a tenfold dilution of that recommended by Agilent's pro-
tocol, however, it is is within the range of commercial oli-
gonucleotide microarray protocols [42]. Moreover, the
Agilent array effectively has a probe population four times
higher than the one we used, as it has four redundant fea-
tures per probe (the 4 x 44 design, Methods).

In Fig. 6 we illustrate a small subset of the hybrid popula-
tions predicted from our simulations. The average popu-
lations of hybrids were calculated from five replicate
simulations, each of which required 1.1 hours of CPU
time as discussed (Fig. 5). The complete sets of results are
provided in Additional Files 1 and 2.

Many of the cross-hybridizing cDNA species are excep-
tionally homologous. For instance, A_06_P7042 - the
probe designed to target cDNA for YPL281C (ERR2) also
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Figure 6

Hybridization of cDNA with Agilent 4 X 44 array probes. The populations of hybrids with these fourteen probes (mean
* SD) are a subset of the complete set of results, which are generated from five replicate simulations.

hybridizes with cDNA for YOR393W (ERR1); in this case,
the two ORFs are identical. The third hybrid, YMR323W
(ERRS3), shares all but twelve bases of the other two. Other
cross hybridizing ¢DNA species have less overlap in
sequence, but share the probe sequences completely or in
part. All cross-hybrids listed in Fig. 6 share at least 90% of
the target sequence. A probe's proclivity to cross hybridize
in the presence of thousands of potentially competitive
cDNAs may be expressed in terms of its selectivity, S,
defined as the fraction of fluorescence intensity associated
with a microarray feature that originates from the corre-
sponding target. Mathematically,

Sm = X‘TI:I(m),m /Xrlrf (31)

where X! is the population of hybrids composed of

probe m and its target (7 (m)), and X! is calculated via

Eq. 28. For example, the selectivity of the aforementioned
Agilent probe A_06_P7042 is 13.8%. In Fig. 7, we present
a summary of the selectivities for all probes in the Agilent
set. As these results show, the vast majority of the probes
for this commercial microarray are selective (e.g
A_06_P6109 in Fig. 6), and do not exhibit cross hybridi-

zation when they bind yeast cDNA at the concentrations
specified by the expression state. For other microarrays
and probe sets designed by various publicly available soft-
ware packages, the cross hybridization may be more
extreme.

I 10 100 1000 6256
ORF (ordered)

Figure 7

Selectivity distribution for the Agilent probe set. The
black line illustrated the selectivities (Eq. eq:Selectivity) of all
Agilent probes when the array is hybridized to yeast cDNAs
at the initial concentrations described in Methods. The gray
lines are results for four different initial initial conditions. The
red line delimits 90% selectivity. The distribution is independ-
ent of the initial concentrations (x-axes are different for all
five sets of results). About 100 probes will not be selective in
any given microarray experiment.
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Since the populations of all hybrids depend upon the
populations of potentially cross-hybridizing cDNA mole-
cules, the value of S for each probe depends upon the
expression state of a cell. Interestingly, the distribution of S
among the probes is independent of the expression state.
Simulations with different initial conditions correspond-
ing to four additional MC-generated expression states
yielded selectivity distributions that were indistinguisha-
ble from the aforementioned distribution (Fig. 7). This
result suggests a method of characterizing the overall reli-
ability of a proposed probe set. Since the distribution of
selectivities is invariant with respect to the initial target
populations (provided the total cDNA concentration does
not force saturation of probes), a statistic that character-
izes that distribution should be robust. We propose that
the average selectivity can serve as such a metric. The use
of such metrics should be used with care, however, inas-
much as they lend themselves to "ecological fallacy".

Implementation

Our software is implemented in C++ and executed on
Apple G5 processors running MacOS X (Tiger). UNA-
FOLD 3.5 is available for download at the DINAMelt
server http://dinamelt.bioinfo.rpi.edu/ and compiles on a

variety of operating systems.

Additionally, we have implemented the Next Reaction
Method as described by Gibson and Bruck [37] in C++ for
the purposes of comparing its performance with that of
our algorithm.

Discussion

In recent years, advances in microarray manufacturing
have opened the doors to custom microarray design. Indi-
vidual researchers can now upload their own microarray
probe sequences to one of many sites (e.g. Agilent's e-
array website) and have a custom array manufactured. In
response, many probe design algorithms have been arisen
to fill the needs of researchers intent on performing global
investigations of gene expression [25,26,43-47]. How-
ever, none of the probe sets generated by these algorithms
have been evaluated in terms of their selectivity or procliv-
ity to give a linear relationship between feature fluores-
cence and target concentration. Studies of this type carried
out by the MicroArray Quality Control Consortium [22]
were costly, involving dozens of participants. Such labori-
ous quality control is not feasible for each and every probe
set designed by a novel probe tool. However, robust pop-
ulation-based simulations of the hybridization process
may be employed to evaluate candidate probe sets, given
robust estimates of the thermodynamic free energies of
hybridization.

In the tests of our simulation algorithm, we have utilized
equilibrium constants that were calculated via the NN

http://www.biomedcentral.com/1471-2105/10/411

model of Allawi and SantaLucia. This model predicts free-
energies to within three significant digits of experimen-
tally measured values for solution-phase hybridization
[48] and has been validated for oligonucleotide arrays in
which the oligonucleotides are connected to the surface
by linkers, making them more "solution like" [49-52].
However, many studies have demonstrated that NN mod-
els do not accurately predict the thermodynamic proper-
ties of hybridization between solution-phase and surface-
bound oligonucleotides (e.g. [53,54]).

Electrostatic interference in conventional microarrays -
which do not feature 3D linkers of the type employed by
Weckx and coworkers [52], is a major reason for this dis-
crepancy. Solution-phase Na+ may shield the phosphate
groups of both hybridized and single-stranded probes and
targets [55]. Cations will also shield the negatively-
charged glass surface to which the probes are bound by
organizing the formation of a layer of counter ions. The
surface density the oligonucleotide probes also plays a
role, partly via steric interference and partly via changes in
the charge distribution at the glass-water interface [50,55-
58]. Ultimately, surface electrostatic effects cause a loca-
tion-dependent effect of mismatches [54,59].

Therefore, extra care must be taken when applying our
algorithm to characterize cross hybridization in real
microarray assays. If equilibrium constants are calculated
using NN models (e.g. UNAFOLD [60,61], Pairfold
[62,63] or BINDIGO [44]), corrections for the effect of the
Debye layer should be introduced at a bare minimum.
Theoretical predictions of the effect of the resulting
"Debye layer" upon the melting temperature T,, [64,65]
have been confirmed via experimental measurements
[66]. This correction may be applied to NN models for
DNA-cRNA duplexes as well (e.g. the semi-empirical
model of Wu and coworkers [67]), if simulations of
cRNA-DNA assays are to be conducted.

We have not explicitly considered additional effects of sin-
gle-strand secondary structure (SS) formation among full-
length cDNA or probes

Probe,, = Probe;, (32)

cDNA, = cDNA] (33)

Nor, for that matter, have we considered the possibility of
hybridization between cDNA molecules in solution

cDNA; +cDNA; = cDNA,;...cDNA;  (34)
The hybridization between probes, or folding thereof, is

customarily not a substantial problem in oligonucleotide
microarrays. Probe design software packages such as Oli-
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goArray 2.0 routinely screen probes for secondary struc-
ture, and inter-probe hybrids are precluded due to spatial
separation. The remaining interactions among cDNAs
(folding and inter-hybridization) serve only to sequester
single-stranded cDNA from the probes [68]. Inasmuch as
this can only further degrade the sensitivity of probe-tar-
get interactions, we have restricted our algorithm to con-
sider only probe-cDNA hybridization dynamics. Hence,
the method we have presented for probe and array charac-
terization (Figs. 6 and 7) gives the performance of a
microarray under a "best case" scenario, even as it fully
accounts for the interactions between oligonucleotide
probes and full length cDNA targets at the system-scale.

For the end user we note that simulation-based character-
ization of putative microarray probe sets requires no more
information than that contained in MAGE-TAB (Microar-
ray Gene Expression Tabular) or MAGE-ML (Microarray
Gene Expression Mark-up Language) formatted array
information [69,70], which are required for publication
of microarray data to ensure MIAME compliance. The
Array Design Format (ADF) component of MAGE-TAB
contains all of the probe sequence information and its tar-
get(s), whereas the Investigation Description Format
(IDF) contains the experimental protocols, including the
hybridization temperature and salt conditions. Addition-
ally, the ADF contains information regarding the relation-
ship between reporter sequences and features: there may
be multiple features with the same reporter sequence, or
alternately, signals from several reporters may be com-
bined to produce a signal for a single gene (e.g. Affymetrix
Gene Chips). As the total cDNA concentration is ostensi-
bly included in the IDF, and the individual cDNA concen-
trations are randomly generated, the system-scale
selectivity of any array can be computed via simulation
from a proposed experimental protocol.

In this work, we have not explicitly considered the predic-
tion of the time evolution of the hybridization process,
focusing instead on the equilibrium state. Simulations
employing our algorithm are most accurate when they uti-
lize experimentally-determined rate constants [54,57,71].
However, care must be taken to ensure simulations are
conducted for the same surface densities and ionic
strengths employed in the experiments employed to esti-

mate the rate constants, for the reasons previously dis-

off

cussed. Given accurate estimates of the rate constants k_,

and kj, the time required for microarray hybridizations
may be estimated via the method illustrated in Fig. 3, as
the time variable would represent the actual hybridization

time.
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Conclusions

In this work, we have developed an algorithm for the sto-
chastic simulation of exceptionally large and complex
probe-cDNA hybridization reaction networks that under-
lie microarray assays.

Using the method of partial sums in conjunction with the
data structure we denote the "hybridization table", our
algorithm requires O(IN) operations per reaction event.

This is substantially fewer than Gillespie's Direct Method
(O(N3}) operations per event) and the Next Reaction
Method of Gibson and Bruck (O(N, log(N,)) operations

per event). Moreover, our algorithm requires less the data
storage than others, obviating the need for pointers that
track of the dependencies of reactions. For instance, the
Next Reaction Method requires (N, + Ny.- 1) pointers for

each of its 2N, Ny reactions, which can consume a vast

amount of memory for genome-scale simulations.

As a result of these innovations, our algorithm permits
system-level simulation of the complete reaction network
composed of all potential probe-target hybridizations (for
any genome or array) without the need for high-perform-
ance computing. Furthermore, such simulations are now
possible within a reasonable amount of time. Thus, given
robust thermodynamic predictions of the free energies of
DNA hybridization, one may obtain a conservative esti-
mate of the reliability of a candidate probe set in silico.

Methods

Microarray specifications and simulation protocols

We investigated the hybridization of ¢cDNA originating
from S. cerevisiae to a reproduction of the Agilent Yeast
Oligo Microarray Kit (V2, see Additional File 3). 6,256 of
the probes on this array target yeast ORFs, each targeting
one gene, and the remainder consist of randomly located
oligonucleotide probes, control features, and empty
spots. The Agilent array features multiple identical report-
ers, each of which is randomly distributed over the array
surface to abrogate spatial artifacts. Insofar as our simula-
tions treat the hybridization volume as homogeneous, we
have not included redundant probes in our simulations.
We have also removed control features that do not target
yeast ORFs.

Agilent arrays of the type considered here possess of 65
um wide features with surface probe densities of is 6.0 x
1012 probe molecules per cm? [72]. Therefore each
(redundant) feature consists of 2.0 x 108 probe molecules.
The hybridization protocol for Agilent microarrays sug-
gests addition of 60 xL of cDNA mixture to the microar-
ray. Thus, a "total probe concentration" of 3.3 x 10¢ probe
molecules/ 1L was used for each feature in all simulations.
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The Agilent protocol also suggests that the hybridization
mixture contains 1.65 ug of linearly amplified and labeled
cRNA and possesses a NaCl concentration of 750 mM -
specifications that are typical among experimental proto-
cols [42,73,74]. Agilent also recommends hybridization
at 65°C.

We have conformed to the Agilent protocol with three
exceptions. First, full-length cDNA were used in lieu of
cRNA in light of the observations of Eklund and cowork-
ers, who demonstrated that replacement of cRNA targets
with cDNA reduces microarray cross hybridization [13].
Second, although 1-100 g of non-amplified RNA is typi-
cally required in experimental protocols for microarrays
[42,74], Nagino and coworkers have shown that it may be
reduced to 10 - 100 ng by improving mixing [42]. This
would also reduce steric effects and electrostatic effects
induced by dense packing of charged oligonucleotides on
the glass surface (cf [55,56]). Finally, we assumed that the
probes are separated from the glass surface by linker mol-
ecules of lengths greater than the Debye length. In so
doing, we may utilize the NN model of Allawi and San-
talucia [75] to calculate the free energies of hybridization
between probes and targets. We then investigated the
effect of total DNA concentration upon cross hybridiza-
tion and signal response by hybridizing 50, 100 and 200
ng of cDNA per 60 L aliquot (1.8, 3.6 and 7.2 nM).

cDNA populations

Oligonucleotide probes were hybridized to cDNAs for
each of the N; = 6718 protein-encoding ORFs in the
November 10, 2006 version of the yeast genome. Differ-
ential expression studies akin to those employed by the
MAQC [22] were performed using a "gold standard"
expression state defined by the amounts of each cDNA,

X%, €=1..6718, which, by convention, we assume to

be proportional to the amounts of the corresponding
mRNA. The amounts of each transcript were selected via
Monte Carlo from a log-normal distribution that was fit to
the yeast expression dataset of Cho and coworkers (Addi-
tional File 4) [76]. The fits of all seventeen expression
datasets (two cell cycles) revealed that the genomic
expression levels of yeast are log-normally distributed
with a coefficient of variation of 0.21, independent of the
expression state; the mean of the distribution corresponds
to the total solution-phase DNA concentration.

Kinetics and equilibrium constants

The methodology thus presented for the simulation of the
time evolution of the hybridization of cDNA to oligonu-
cleotide microarrays is valid if and only if the rate con-
stants employed in silico are valid. At equilibrium, which
corresponds to the condition where microarray slides are
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scanned, the constraints on the population balance equa-
tions (Eq. 2) and stochastic simulation are less stringent.
In this case, the populations of all ssDNA and dsDNA spe-
cies predicted by stochastic simulation will be accurate if
and only if the equilibrium constants K€, are accurate,
where

Ko = R R (35)
This is a direct consequence of the thermodynamic princi-
ple of microscopic reversibility [77-79]. Therefore, our
simulation procedure will accurately predict the extent of
cross hybridization if and only if the equilibrium con-
stants employed in silico are valid.

To this end, we have employed UNAFOLD [60,61] - a
standard bioinformatics tool. Although UNAFOLD is
largely used for the prediction of secondary structures of
DNA and RNA (excluding pseudoknots), it is also capable
of calculating free energies of hybridization (AG¢,,) via
the semi-empirical hybridization model of Allawi and
Santalucia [75]. This "Nearest Neighbor" (NN) model is
exceptionally accurate for two reasons. First, its mathe-
matical form accounts for nearest neighbor interactions
within hybrids (e.g. thermodynamic contributions due to
basepair stacking). Second, its parameters are robustly cal-
culated from an abundance of well-controlled experimen-
tal measurements on mismatched oligomers. Given the
sequences of a pair of DNA molecules, the NN model will
reproduce experimentally-measured AG(,, for (a) solu-
tion-phase hybrids and (b) oligomers that are separated
from the slide surface by distances greater than the Debye
length (cf. [52]).

Using the NN model via UNAFOLD, we calculated AG(,,
between all probes and cDNAs between all probes and
cDNAs under experimental temperatures and salt concen-
trations. Equilibrium constants were then evaluated using
the standard formula

Ky = exp(=AG,, [ RT) (36)
where K€, has units of M-1. Equilibrium constants are
functions of temperature and salt concentrations alone,
and are independent of cDNA concentration.

Although the equilibrium state of hybridization is fully
determined by the equilibrium constants K¢,, SSAs
require reaction rate constants. As we have discussed,
microscopic reversibility precludes the possibility that the
values of the rate constants will affect the populations of
ssDNA and dsDNA species at equilibrium. Therefore, one
of the rate constants may be estimated provided that the
other is calculated using 35 and the NN-model prediction
of the equilibrium constant.
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In our simulations, we have chosen to estimate the "off

rates”, k?,f,f . We do so using Delisi's equation [80], where

3Dy 1
koM = X 37
"2 Korep(vien  C7)

is the diffusion-limited off-rate. In this expression, D¢ is
the diffusion constant of cDNA ¢, and s¢,, is the sum of
radii of gyration of the oligonucleotide probe m and
cDNA ¢, K, accounts for the energetics associated with the
transition state, and A* and V* are associated with surface
potentials. As the off-rate is an estimate, we treat the sec-
ond term of Eq. 37 as a constant and assign

4 3
1 ) gﬂNAVS

_ m (38)
= min
KoA*exp(=V*/kT) {,m

Kym

where N,, is the Avogadro's number [81]. In so doing, we

preclude all "on-rates" { ky, } from exceeding the Smolu-

chowki rate of diffusion-limited association k, =

27D€s€ N,

The on-rates are calculated from Eq. 35, with the estimates
of the off-rate and the free-energies calculated with San-
taLucia's NN model. As the kinetic rate constant estima-
tion procedure preserves the equilibrium constants, the
simulation predictions of the dsDNA and ssDNA popula-
tions will be accurate at equilibrium. The effect of kinetic
parameters upon the time required to reach the equilib-
rium states of hybridization is discussed in the Results sec-
tion.
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Additional file 1

Arslan_Laurenzi_Supplemental. This file contains a list of Agilent
reporter names and the yeast ORFs targeted by each. The sequences of the
Agilent probes may be obtained from https://earray.chem.agilent.com/ear
ray/.
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Additional file 2

Arslan_Laurenzi_Supplemental. This file lists the populations of full
length cDNA molecules used in all simulations conducted with N = 1000
probe molecules per feature. The concentrations of each cDNA species may
be calculated (in number of molecules/nL) by dividing these populations
by the hybridization volume corresponding to this probe population (0.275
nL). The sequences of these cDNA molecules may be obtained from the
Saccharomyces Genome Database http://www.yeastgenome.org; we have
utilized the November 10, 2006 version of the yeast genome.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-411-S2.PDF]

Additional file 3

Arslan_Laurenzi_Supplemental. This file contains the populations of all
hybrids (X) at equilibrium for the experiments described in section "Char-
acterization of Cross Hybridization". Simulations of the hybridization of
full length yeast cDNA to the Agilent probe set were conducted at 65 °C.
Initial cDNA populations (prior to hybridization) are specified in the
worksheet "Initial Target Populations". There are 1000 copies of each of
the 6256 Agilent probes per feature. The simulation is conducted at 0.275
nL. The results of five replicate simulations are provided - differences
between the results of each run are due to the probabilistic nature of chem-
ical reaction. Data are organized by row and column: for instance, there
are thirteen hybrids between A_06_P1002 and Q0010 at the end of the
first replicate simulation (Run number 1)

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-411-S3.PDF]

Additional file 4

Arslan_Laurenzi_Supplemental. The average (and standard deviation)
of the populations of each hybrid are provided in this worksheet, as calcu-
lated from the results provided in Supplemental Table 3.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-411-S4.PDF]
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