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Abstract

Background: There are several studies in the literature depicting measurement error in gene
expression data and also, several others about regulatory network models. However, only a little
fraction describes a combination of measurement error in mathematical regulatory networks and
shows how to identify these networks under different rates of noise.

Results: This article investigates the effects of measurement error on the estimation of the parameters
in regulatory networks. Simulation studies indicate that, in both time series (dependent) and non-time
series (independent) data, the measurement error strongly affects the estimated parameters of the
regulatory network models, biasing them as predicted by the theory. Moreover, when testing the
parameters of the regulatory network models, p-values computed by ignoring the measurement error
are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to
overcome these problems, we present an improved version of the Ordinary Least Square estimator in
independent (regression models) and dependent (autoregressive models) data when the variables are
subject to noises. Moreover, measurement error estimation procedures for microarrays are also
described. Simulation results also show that both corrected methods perform better than the standard
ones (i.e., ignoring measurement error). The proposed methodologies are illustrated using microarray
data from lung cancer patients and mouse liver time series data.

Conclusions: Measurement error dangerously affects the identification of regulatory network
models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions.
This could be one of the reasons for high biological false positive rates identified in actual regulatory
network models.

Background
There has been an increasing interest among bioinfor-
maticians in the problem of quantifying correctly gene
expression in a given sample. It is well accepted that the
observed gene expression value is a combination of the

“true” gene expression signal with intrinsic biological
variation (natural fluctuation) and a variation caused by
the measuring process, also known as measurement
error. Studies have documented the presence of sizable
measurement error in data collected mainly from
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microarrays and also by other approaches such as Real
Time RT-PCR, Northern blot, CAGE, SAGE, etc [1,2]. This
measurement error can be easily observed when two
technical replicates are plotted in a MA (M is the
logarithm of the intensity ratio and A is the mean of
the logged intensities for a dot in the plot) or scatter
plots. Frequently, a considerable dispersion can be
observed. This dispersion is due to the measurement
error, since, in theory, technical replicates (same sam-
ples) must present the same quantifications. In general,
these fluctuations are derived from probe sequence,
hybridization problems, high background fluorescence,
signal quantification procedures (image analysis), etc
[3,4]. In the last few years, a considerable number of
reports on the problem of quantifying and separating
“true” gene expression signal from noise [5-7] has been
published with the main aim to find differentially
expressed genes [8,9]. Despite these results in gene
expression analysis and a large amount of research
performed in modeling regulatory networks (Bayesian
networks [10,11], Boolean networks [12,13], Relevance
networks [14], Graphical Gaussian models [15], Differ-
ential equations [16], etc), only a fraction of the
statistical studies use procedures designed for modeling
networks taking into account measurement error.

Frequently, Ordinary Least Squares (OLS) and methods
related to it, such as Pearson and Spearman correlations
[17], ridge, lasso and elastic net regressions [18] are
widely used as estimators to quantify the strength of
association between gene expression signals and model
regulatory network structures. In the time series context,
estimation process of Autoregressive (AR) [19-22]
models also use OLS to identify which gene is or is not
Granger causing another gene. Generally, a regression is
carried out between the target gene and its potential
predictors in order to test which predictor gene has, at a
gene expression level, association with the target gene.

It is well known in the statistical literature that, when the
measurement errors are ignored in the estimation
process, OLS and its variants become inconsistent (i.e.,
even increasing the sample size the estimates do not
converge to the true values). More precisely, the
estimation of the slope parameters is attenuated [23]
and consequently, regulatory network models become
biased. Moreover, there is no control of type I error since
standard OLS was not designed to treat measurement
error. In this context, an adequate inference treatment
must be considered for the model parameters in order to
avoid inconsistent estimators. Usually, measurement
equations are added to the model to capture the
measurement errors effect, therefore, producing consis-
tent estimators, efficient and asymptotically normally
distributed. A careful and deep exposition on the

inferential process is presented in [23] and the references
therein. Although there are studies referring to problems
caused by measurement errors in the statistical literature,
there is a gap in the network modeling theory which
must be filled in to avoid misinterpretation and distort
conclusions from the inferential process. Here, we focus
on the development and present some important
statistical tools to be applied in OLS-based and VAR
network models taking into account the measurement
errors effect. We also conduct simulation studies in order
to evaluate the impact of the measurement error in the
identification of gene regulatory networks using the
standard OLS in both conditions, time series and non
time series data. Surprisingly, both the simulations and
theory described that, in the presence of measurement
error, the estimated coefficients are biased even increas-
ing the amount of observations, and the statistical tests
are not controlling the rate of false positives properly.
These results were also observed in time series context,
where the autoregressive coefficients were strongly
affected. Thus, a corrected version of the OLS estimator
for independent (in the regression context) and depen-
dent (in the autoregressive context) data containing
measurement error were developed. Results in both,
simulated and actual biological data are illustrated.
Moreover, two procedures to estimate measurement
error in microarrays are presented.

Results and discussions
In order to evaluate the performance of conventional
OLS and VAR methods in practice, simulations were
carried out in artificial data with absence and presence of
measurement error. Noise was added at different rates,
and sample size was increased in order to evaluate the
consistence of conventional and proposed approaches.

In the following we give a brief explanation about the
usual and proposed methods. Let x and y be variables
(gene expression values) with the following relationship
y = a + bx + ε, where ε is the random error (intrinsic
biological variation) of the model with zero mean and
finite variance. In general, we are interested in estimating
the parameters a and b to make inferences about them.
In practice, we take a sample xi, yi for i = 1,..., n and use
these quantities to obtain estimates for the parameters of
interest. However, it is not always possible to observe
directly the values of x and y because sometimes they are
latent values, i.e., they are masked by measurement
errors derived by the measurement process in micro-
arrays, for example. Then, instead of observing the true
variables, we observe surrogate variables X and Y which
carry an error, that is X = x + �1 and Y = y + �2, where �1
and �2 are measurement errors. Generally, what is done
in practice is a naive solution, since it simply replaces x
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with X and y with Y in the regression equation and uses
the OLS approach to estimate the parameters. That is,
based on the equation Y = a + bX + ε, estimators are
built. On the other hand, the proposed approach is
slightly different. The latter considers three equations,
namely: y = a + bx + ε, X = x + �1 and Y = y + �2 and uses
them to estimate the model parameters. This little
difference can result great impact in the estimators
properties of each approach. Notice that the former
produces inconsistent estimators and the latter produces
consistent estimators when the data contains measure-
ment error. The same idea can be applied in the time
series context.

The corrected versions of the OLS estimators in both
independent and dependent data were compared to their
conventional forms in order to evaluate the performance
under gene expression data containing measurement
error. The standard OLS and VAR models are particular
cases of the proposed models in the case when the
measurement error is absent. Firstly, simulations were
performed in regression models. Table 1 illustrates
average coefficients estimated by standard OLS in
10,000 Monte Carlo simulations. Notice that increasing

the rate of measurement error, more attenuated become
the estimated coefficients, i.e., the estimates are shifted
towards zero. Table 2 illustrates the percentage of
rejected hypotheses in 10,000 Monte Carlo simulations.
Analyzing when b1 = 0, i.e., when there is no association
between the corresponding covariate and the response
variable, Table 2 shows that the OLS approach does not
control, at a 5% nominal level, the rate of false positives.
The larger the sample size, the worst the OLS perfor-
mance, as it was expected to be. On the other hand, the
coefficients of the corrected OLS are unbiased (Table 1 -
values between brackets) and converge to “true” value
when sample’s size becomes larger. Moreover, the rate of
false positives are actually controlled under the null
hypothesis (Table 2 - values between brackets).

Analyzing Figure 1A, we conclude that, the standard OLS
is not controlling the rate of false positives in the
presence of measurement error for any significance level
(p-value threshold). On the other hand, Figure 1B
describes the consistency of the test performed by the
corrected OLS, i.e., the uniform distribution of p-values
illustrates that the rate of false positives is actually
controlled under any considered threshold, since the

Table 1: Ordinary least squares

EM n b1 b2 b3 b4 b5 b6 b7 b8 b9

0 -0.1 -0.2 -0.3 -0.4 0.5 0.6 0.7 0.8

0 50 0.00 -0.10 -0.20 -0.30 -0.40 0.50 0.60 0.70 0.80
100 0.00 -0.10 -0.20 -0.30 -0.40 0.50 0.60 0.70 0.80
200 0.00 -0.10 -0.20 -0.30 -0.40 0.50 0.60 0.70 0.80
400 0.00 -0.10 -0.20 -0.30 -0.40 0.50 0.60 0.70 0.80

0.2 50 0.01 (0.00) -0.09 (-0.11) -0.18 (-0.20) -0.28 (-0.30) -0.37 (-0.41) 0.48 (0.50) 0.58 (0.61) 0.67 (0.71) 0.76 (0.81)
100 0.01 (0.00) -0.09 (-0.10) -0.18 (-0.20) -0.28 (-0.30) -0.38 (-0.40) 0.48 (0.50) 0.58 (0.60) 0.67 (0.70) 0.77 (0.80)
200 0.01 (0.00) -0.09 (-0.10) -0.19 (-0.20) -0.28 (-0.30) -0.38 (-0.40) 0.48 (0.50) 0.58 (0.60) 0.67 (0.70) 0.77 (0.80)
400 0.01 (0.00) -0.09 (-0.10) -0.18 (-0.20) -0.28 (-0.30) -0.37 (-0.40) 0.48 (0.50) 0.58 (0.60) 0.67 (0.70) 0.77 (0.80)

0.4 50 - - - - - - - - -
100 0.02 (0.00) -0.07 (-0.11) -0.15 (-0.21) -0.23 (-0.31) -0.31 (-0.42) 0.44 (0.51) 0.52 (0.62) 0.60 (0.72) 0.69 (0.82)
200 0.02 (0.00) -0.06 (-0.10) -0.15 (-0.20) -0.23 (-0.31) -0.31 (-0.40) 0.44 (0.51) 0.52 (0.61) 0.60 (0.71) 0.69 (0.81)
400 0.02 (0.00) -0.06 (-0.10) -0.15 (-0.20) -0.23 (-0.30) -0.31 (-0.40) 0.44 (0.50) 0.52 (0.60) 0.60 (0.70) 0.69 (0.80)

0.6 50 - - - - - - - - -
100 - - - - - - - - -
200 0.03 (-0.01) -0.04 (-0.11) -0.10 (-0.21) -0.17 (-0.32) -0.24 (-0.42) 0.38 (0.52) 0.45 (0.62) 0.52 (0.72) 0.58 (0.82)
400 0.03 (0.00) -0.04 (-0.10) -0.10 (-0.20) -0.17 (-0.31) -0.24 (-0.41) 0.38 (0.51) 0.45 (0.61) 0.52 (0.71) 0.58 (0.81)

0.8 50 - - - - - - - - -
100 - - - - - - - - -
200 - - - - - - - - -
400 0.05 (0.00) -0.01 (-0.11) -0.07 (-0.21) -0.12 (-0.32) -0.18 (-0.42) 0.32 (0.51) 0.38 (0.62) 0.43 (0.72) 0.49 (0.83)

Average OLS estimated coefficients and corrected OLS (between brackets) in 10,000 simulations. The model is described in (Simulations section,
simulation I - independent data).“-” means that it was not possible to calculate due to high measurement error in comparison to sample’s size. EM:
Standard deviation of the Error of Measure. n: Number of samples. Notice that, in the presence of measurement error, the coefficients (b) estimated
by the corrected OLS (between brackets) converge to the “true” values, while the estimated by standard OLS do not.
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uniform distribution emerges for p-values when the
distribution of the statistic is correctly specified (other-
wise, the p-value distribution may not be uniform).

In the time series case, similar results were observed. The
standard VAR estimates produce biased coefficients in
the presence of measurement error (Table 3). Moreover,
there is no control of the type I error in both,
autoregressive and cross-autoregressive coefficients (in
all the text, in order to simplify the notation, auto-
regressive coefficient will denote the auto-loop, i.e., the
coefficient related to zi, t-r → zi, t and cross-autoregressive
coefficient will represent the coefficient for zj, t-r → j and
r < t) (Table 4). Analyzing the results produced by the
proposed VAR model (Table 3 - values between brackets), it
is possible to observe that the estimated coefficients
converge to the true value as time series length increases.
Notice that, the results produced by the standard VAR model
indicate that, increasing the sample size does not imply in
convergence of the estimates to the true values (Table 3). By
observing Table 4, we see that the corrected VAR approach is
actually controlling the rate of false positives in the set
significance level (p < 0.05). Figure 2 emphasizes this result.

Figure 2A and 2B describe the p-value distributions of
autoregressive and cross-autoregressive coefficients of stan-
dard VAR under the null hypothesis (b0 = 0 (autoregressive)
and b1 = 0 (cross-autoregressive)). Notice that when b0 = b1 = 0,
the p-value distributions should be uniform in the interval
[0,1]. However, there is a high concentration around zero,
demonstrating that the rates of false positives are inflated
(and consequently not controlled) in both autoregressive or
cross-autoregressive cases. In Figures 2C and 2D, the
p-value distributions are uniform, i.e., the test under the
null hypothesis (b0 = 0 and b1 = 0) using the corrected VAR
model is actually controlling the type I error in autoregres-
sive and cross-autoregressive coefficients (uniform distribu-
tion). Figures 3 and 4 illustrates the corrected power curves
for both, OLS and VAR. The corrected power curve Pc(a)
can be defined as

P
P a
a

c( )
( ( ))
( ) /

α α
α α

= (1)

where a is the adopted type I error nominal level,
P(a(a)) is the power using the true probability of the
type I error, namely a(a). Notice that the corrected

Table 2: Ordinary least squares

EM n b1 b2 b3 b4 b5 b6 b7 b8 b9

0 -0.1 -0.2 -0.3 -0.4 0.5 0.6 0.7 0.8

0 50 4.94 9.06 21.57 41.73 63.19 81.09 92.15 97.24 99.03
100 4.90 13.82 42.31 74.11 93.20 98.83 99.87 100.0 100.0
200 4.99 25.62 72.24 96.64 99.95 99.99 100.0 100.0 100.0
400 5.17 44.31 95.53 99.98 100.0 100.0 100.0 100.0 100.0

0.2 50 4.81 (4.73) 8.24 (8.45) 17.52 (18.12) 34.39 (34.94) 54.86 (55.38) 76.09 (73.71) 88.70 (86.95) 95.40 (94.61) 98.12 (97.69)
100 5.30 (5.20) 11.35 (12.27) 34.69 (36.27) 65.53 (67.16) 88.92 (89.57) 98.22 (97.81) 99.76 (99.66) 99.97 (99.96) 100.0 (100.0)
200 5.23 (5.25) 19.93 (22.02) 62.73 (65.22) 92.67 (93.53) 99.50 (99.58) 99.99 (99.99) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)
400 5.05 (5.09) 36.11 (40.14) 90.44 (92.05) 99.86 (99.92) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)

0.4 50 - - - - - - - - -
100 5.87 (5.17) 7.91 (9.77) 21.92 (25.30) 45.15 (48.55) 70.62 (72.95) 93.44 (88.64) 98.29 (96.46) 99.63 (99.13) 99.96 (99.82)
200 5.59 (5.13) 11.58 (16.32) 40.43 (47.45) 76.71 (81.23) 95.15 (96.48) 99.88 (99.58) 100.0 (99.99) 100.0 (100.0) 100.0 (100.0)
400 5.84 (4.76) 19.00 (28.10) 68.88 (77.88) 98.88 (98.36) 99.93 (99.98) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)

0.6 50 - - - - - - - - -
100 - - - - - - - - -
200 6.79 (4.71) 6.75 (10.73) 20.87 (28.78) 48.56 (57.07) 77.02 (81.95) 98.53 (93.71) 99.81 (98.52) 99.99 (99.76) 100.0 (99.99)
400 8.42 (4.48) 8.88 (18.17) 38.42 (54.88) 78.94 (88.15) 97.28 (98.78) 99.99 (99.91) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)

0.8 50 - - - - - - - - -
100 - - - - - - - - -
200 - - - - - - - - -
400 10.95 (4.40) 5.22 (10.97) 17.99 (33.05) 48.43 (63.97) 79.65 (87.84) 99.88 (96.46) 99.99 (99.35) 100.0 (99.95) 100.0 (100.0)

Percentage of the number of associations (rejected hypothesis) obtained using standard OLS and corrected OLS (between brackets) in 10,000
simulations. The first line contains the strength of association between predictors and response variables as described in simulation I. The rate of
false-positives was controlled in 5%. In bold, are the rate of false-positives, i.e., the number of false-positives divided by the number of simulations. “-”
means that it was not possible to calculate due to high measurement error when compared to sample’s size. EM: Standard deviation of the Error of
Measure. n: Number of samples. Notice that, in fact, the corrected OLS controls the rate of false positives in 5% while the usual OLS does not (values
in bold).
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power is just the power penalized by the distance
between a(a) and a. This correction in the power is
necessary because under the null hypothesis, the power
has to be the nominal level, and for comparing powers
from different statistics it must be done using the same
nominal level.

For a good statistic, notice that under an alternative

hypothesis and when n → ∞, the corrected power Pc(a)

converges to one because a
n

( )α α→
→∞

and P a
n

( ( ))α →
→∞

1 .

On the one hand, for a statistic that does not control the
rate of false positives, for example, when a is set to 5%
and the true probability of the type I error is a(a) = 0.08,
since a(a)/a is greater than one, Pc(a) will not converge
to one. On the other hand, for a good statistic, the rate a
(a)/a converges to one when n → ∞, then Pc(a) will
converge to one. Analyzing Figures 3 and 4, it is possible
to verify that, for standard OLS and VAR approaches

(dashed lines), the ratio a(a)/a increases faster than the
corresponding powers P(a(a)), i.e., the dashed lines is
decreasing as n increases. Notice on Tables 2 and 4 that
the rates of false positives (a(a)) increase as n increases,
and consequently, in our specific case, the ratio a(a)/a
increases and the corrected power Pc(a(a)) converges to
zero. On the other hand, the proposed methods (full
lines) keep the false positive rates controlled while the
corrected power increases as n increases. It can be
observed by the full lines converging to one (Figures 2
and 4) and also on Tables 2 and 4. The variations present
in the curves are probably due to variations in Monte
Carlo simulations, since these variations decreased
(become smoother) when the number of simulations
was increased from 5,000 to 10,000 and from 10,000 to
15,000. In order to illustrate the performance of
standard and corrected OLS and VAR approaches in
actual biological data, firstly, the measurement error was
estimated using the method described in the

Figure 1
P-value distribution under the null hypothesis (b1 = 0) in independent data with standard deviation of the
measurement error equal to 0.6 and sample size equal to 400 (model described in Simulations section,
simulation I). This simulation was performed 10,000 times. (A) Standard Ordinary Least Squares (non uniform distribution);
(B) Corrected Ordinary Least Squares (uniform distribution).
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Measurement error estimation section (No technical repli-
cates subsection). Then, the TP53 network was con-
structed using a dataset composed of 400 microarrays.

Table 5 illustrates the results of a multivariate regression
using OLS. Four genes known to be direct targets of TP53
were selected, namely, MDM2, FAS, BAX and MAP4, and
a multivariate network was constructed using OLS. In
fact, these four genes were actually identified as targets of
TP53 (high t-statistics). Notice that comparing the
standard and corrected OLS estimators, it is possible to
conclude that the t-statistics are different probably due to
the biased standard OLS estimator in the presence of
measurement error.

OLS model

MDM TP53 FAS BAX MAP4 MDM2

FAS

z z z z z

z
2 1 2 3 4= × + × + × + × +β β β β ε

== × + × + × + × +
= × + ×

β β β β ε
β β

5 2 6 7

8 3

z z z z

z z
TP53 MDM2 BAX MAP4 FAS

BAX TP53 zz z z

z z z z
MDM2 FAS MAP4 BAX
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6 9
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⎪
⎪
⎪
⎪
⎪

Table 6 shows the application of both, standard and
proposed VAR models in a set of well known five genes

related to circadian rhythm, namely, CLOCK, CRY2,
PER2, PER3 and DBP. The genes CRY2, PER2, PER3 and
DBP are known to be regulated by the complex BMAL1-
CLOCK in mammals [24]. A VAR process of order one
was adjusted and applied in a multivariate manner.
Notice that also in the time series data, the estimators
presented different results due to measurement error.

VAR model

CLOCK, CLOCK CRY2 PERz z z zt t t t= × + × + × +− − −β β β1 1 2 1 3 2 1, , , ββ
β ε
β β

4 3 1

5 1
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Comparison of the usual and proposed methods in
actual biological data is a difficult task since no one
knows the “true” values. However, as observed in the
simulation results, it is possible to conclude that the

Table 3: Vector autoregressive model

EM n b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

0 0 -0.1 -0.2 -0.3 -0.4 0.5 0.6 0.7 0.8

0 50 -0.04 0.00 -0.10 -0.20 -0.30 -0.41 0.51 0.61 0.71 0.81
100 -0.02 0.00 -0.10 -0.20 -0.30 -0.40 0.50 0.61 0.71 0.80
200 -0.01 0.00 -0.10 -0.20 -0.30 -0.40 0.50 0.60 0.70 0.80
400 0.00 0.00 -0.10 -0.20 -0.30 -0.40 0.50 0.60 0.70 0.80

0.2 50 -0.03 (-0.04) 0.01 (0.00) -0.09 (-0.10) -0.19 (-0.21) -0.28 (-0.31) -0.38 (-0.42) 0.49 (0.51) 0.58 (0.61) 0.69 (0.72) 0.78 (0.82)
100 -0.01 (-0.02) 0.00 (0.00) -0.09 (-0.10) -0.19 (-0.20) -0.28 (-0.31) -0.38 (-0.41) 0.48 (0.50) 0.58 (0.61) 0.68 (0.71) 0.78 (0.81)
200 0.00 (-0.01) 0.00 (0.00) -0.09 (-0.10) -0.19 (-0.20) -0.28 (-0.30) -0.38 (-0.40) 0.49 (0.50) 0.58 (0.60) 0.68 (0.71) 0.77 (0.81)
400 0.01 (0.00) 0.00 (0.00) -0.09 (-0.10) -0.19 (-0.20) -0.28 (-0.30) -0.38 (-0.40) 0.48 (0.50) 0.58 (0.60) 0.68 (0.70) 0.77 (0.80)

0.4 50 - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-)
100 0.02 (-0.03) 0.02 (0.00) -0.07 (-0.11) -0.16 (-0.21) -0.24 (-0.32) -0.32 (-0.42) 0.44 (0.52) 0.53 (0.62) 0.61 (0.72) 0.70 (0.83)
200 0.03 (-0.01) 0.02 (0.00) -0.07 (-0.10) -0.16 (-0.21) -0.24 (-0.31) -0.32 (-0.41) 0.44 (0.51) 0.53 (0.61) 0.61 (0.71) 0.70 (0.81)
400 0.04 (-0.01) 0.02 (0.00) -0.07 (-0.10) -0.15 (-0.20) -0.24 (-0.30) -0.33 (-0.41) 0.44 (0.50) 0.53 (0.61) 0.61 (0.71) 0.70 (0.81)

0.6 50 - - - - - - - - - -
100 - - - - - - - - - -
200 0.06 (-0.02) 0.03 (-0.01) -0.04 (-0.11) -0.12 (-0.21) -0.19 (-0.32) -0.26 (-0.42) 0.39 (0.52) 0.46 (0.62) 0.53 (0.73) 0.60 (0.83)
400 0.07 (-0.01) 0.03 (0.00) -0.04 (-0.10) -0.12 (-0.20) -0.19 (-0.31) -0.26 (-0.41) 0.39 (0.51) 0.46 (0.61) 0.53 (0.71) 0.60 (0.81)

0.8 50 - - - - - - - - - -
100 - - - - - - - - - -
200 - - - - - - - - - -
400 0.10 (-0.02) 0.04 (0.00) -0.02 (-0.11) -0.08 (-0.21) -0.14 (-0.32) -0.20 (-0.42) 0.33 (0.52) 0.39 (0.62) 0.45 (0.72) 0.51 (0.83)

Standard VAR average estimated coefficients and corrected VAR (between brackets) in 10,000 simulations. The first line contains the strength of
association between predictors and response variables as described in simulation II. “-” means that it was not possible to calculate due to high
measurement error when compared to sample’s size. EM: Standard deviation of the Error of Measure. n: Number of samples. Notice that, in the
presence of measurement error, the coefficients (b) estimated by the corrected VAR (between brackets) converge to the “true” values, while the
estimated by standard VAR do not.
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Table 4: Vector autoregressive model

EM n b0 b1 b2 b3 b 4 b5 b6 b7

0 0 -0.1 -0.2 -0.3 -0.4 0.5 0.6

0 50 6.48 5.66 10.47 23.78 44.69 66.62 83.62 93.13
100 5.86 5.44 16.09 49.39 81.50 96.45 99.37 99.97
200 5.72 5.07 30.90 81.55 98.90 100.00 100.00 100.00
400 5.19 5.21 54.80 98.49 100.00 100.00 100.00 100.00

0.2 50 5.39 (6.64) 5.08 (5.40) 8.13 (8.80) 20.17 (20.78) 37.99 (38.41) 59.73 (59.74) 78.68 (75.96) 89.67 (87.72)
100 5.26 (6.17) 5.20 (5.20) 13.41 (14.65) 41.15 (42.79) 74.12 (75.29) 93.39 (93.78) 98.84 (98.60) 99.91 (99.91)
200 4.84 (5.50) 5.22 (5.46) 24.19 (26.85) 73.89 (76.10) 97.15 (97.57) 99.91 (99.92) 100.0 (100.0) 100.0 (100.0)
400 5.72 (5.09) 5.53 (5.44) 44.73 (48.95) 96.59 (97.29) 99.97 (99.98) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)

0.4 50 - - - - - - - -
100 6.02 (6.48) 5.03 (5.15) 9.59 (11.39) 27.88 (31.93) 54.11 (57.93) 79.25 (81.32) 95.92 (93.17) 99.12 (98.03)
200 10.20 (5.79) 5.45 (4.97) 14.37 (19.86) 51.19 (58.67) 86.74 (90.40) 98.45 (98.90) 99.96 (99.88) 100.0 (100.0)
400 20.49 (5.52) 5.64 (5.06) 25.14 (36.21) 82.24 (88.42) 99.29 (99.66) 99.98 (100.0) 100.0 (100.0) 100.0 (100.0)

0.6 50 - - - - - - - -
100 - - - - - - - -
200 22.79 (5.39) 5.98 (5.14) 8.13 (13.65) 29.25 (39.74) 61.55 (70.80) 87.76 (91.46) 99.65 (98.34) 99.93 (99.68)
400 49.01 (5.36) 7.56 (4.97) 12.29 (24.33) 52.77 (69.83) 90.96 (95.68) 99.52 (99.83) 100.0 (100.0) 100.0 (100.0)

0.8 50 - - - - - - - -
100 - - - - - - - -
200 - - - - - - - -
400 70.58 (5.49) 9.73 (5.29) 6.26 (15.25) 27.24 (46.89) 65.41 (81.53) 91.82 (96.48) 99.98 (99.45) 100.0 (99.45)

EM n b8 b9

0.7 0.8

0 50 97.52 99.20
100 100.00 100.00
200 100.00 100.00
400 100.00 100.00

0.2 50 96.11 (94.87) 98.44 (98.89)
100 100.0 (99.99) 100.0 (100.0)
200 100.0 (100.0) 100.0 (100.0)
400 100.0 (100.0) 100.0 (100.0)

0.4 50 - -
100 99.89 (99.65) 99.99 (99.97)
200 100.0 (100.0) 100.0 (100.0)
400 100.0 (100.0) 100.0 (100.0)

0.6 50 - -
100 - -
200 100.0 (100.0) 100.0 (100.0)
400 100.0 (100.0) 100.0 (100.0)

0.8 50 - -
100 - -
200 - -
400 100.0 (99.99) 100.0 (100.0)

Percentage of the number of associations (rejected hypothesis) obtained using standard VAR and corrected VAR (between brackets) in 10,000
simulations. The first line contains the strength of association between predictors and response variables as described in simulation II. The rate of
false-positives was controlled in 5%. In bold, are the rate of false-positives, i.e., the number of false-positives divided by the number of simulations. “-”
means that it was not possible to calculate due to high measurement error when compared to sample’s size. EM: Standard deviation of the Error of
Measure. n: Number of samples. Notice that, in fact, the corrected VAR controls the rate of false positives in 5% in both cases, autoregressive (b0)
and cross-autoregressive (b1) coefficients, while the usual VAR does not (values in bold).
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corrected approaches provide more reasonable results
than biased standard methods.

In order to uncover more details about the performance
of both, OLS and VAR, other experiments were con-
ducted. These experiments consist in adding correlation
in the residues and testing other null hypothesis (data
not shown). The results obtained ignoring the errors by
these methods can be compiled as:

1. in both, independent and time series data,
standard OLS does not work correctly in the presence
of measurement error and correlated residues;
2. in the presence of measurement error and no
correlation among all predictors of independent
data, the t-test built, under the standard OLS
approach, to test H0 : bj = m for j = 1,..., p works

perfectly only if m = 0 (for other null hypothesis this
t-test does not work correctly). This happens because,
under this hypothesis, there is no covariate effect
and, consequently, there is no measurement error
effect associated with the covariate. The same
behavior can be seen in Patriota et al. (2009) [25];
3. in the time series case, the t-test (or Wald’s test)
does not control the type I error rate in the presence
of measurement error, independent whether there is
or not correlation between time series;
4. in the presence of measurement error, the
estimates obtained by standard OLS are always
attenuated.

Therefore, these results demonstrate that improved
methods to construct regulatory networks become
necessary, since it is known that genes belong to an

Figure 2
P-value distribution under the null hypothesis in time series data with standard deviation of the measurement
error equal to 0.6 and time series length equal to 400 (model described in Simulations section, simulation II).
This simulation was performed 10,000 times. (A) Standard VAR p-value distribution of autoregressive coefficient b0 = 0 (non
uniform distribution); (B) Standard VAR p-value distribution of cross-autoregressive coefficient b1 = 0 (non uniform
distribution); (C) Corrected VAR p-value distribution of autoregressive coefficient b0 = 0 (uniform distribution); (D)
Corrected VAR p-value distribution of cross-autoregressive coefficient b1 = 0 (uniform distribution).
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intrincate network, i.e., the covariates may be correlated
and, moreover, gene expression quantification processes
such as microarray technology measure with consider-
able error. If these conditions are ignored, one may
obtain distort results and, consequently, conclude that
there is a relationship between gene expressions where
there is no association.

Construction of large networks is a challenge in
bioinformatics. The methods proposed here do not
allow the identification of networks when the number of
variables is larger than the number of observations.
Increasing the number of variables, the estimates
become imprecise and the chances of obtaining multi-
collinearity problems also increases. In the presence of
multicollinearity, one may use a feature selection
procedure such as a stepwise (forward or backward, for
example) in order to choose the optimum set of
predictors.

Analyzing Pearson correlation coefficient, one can
observe that it is simply a normalized linear regression
coefficient (OLS) between -1 and 1. Therefore, Pearson
correlation-based methods such as Relevance networks
[14] or Graphical Gaussian models [26] need further
studies in order to evaluate if they are also super-
estimating the rate of false positives and attenuating the
coefficients like OLS. Moreover, Pearson correlation is
widely used in order to test linear correlation between a
certain gene expression signal and another characteristic
such as prognostic, phenotype, tumor grade etc. Since
these covariates may be measured with error, it is also
crucial to develop a corrected Pearson correlation.

In order to develop a corrected Pearson correlation for
measurement error, verify that it is possible to use the
improved OLS presented in this report. The corrected
Pearson correlation (r) between two random variables X
and Y, both measured with error is given by

ρ
β σ σ

σ σ
( , )X Y

X

Y

=
−

−

2
1
2

2
2

2

ε

ε

(2)

where b should be estimated by using the corrected OLS
(i.e., by simultaneously considering the three equations:
y = a + bx + ε, X = x + �1 and Y = y + �2), sX and sY are the
standard deviations of the observed variables X and Y,
respectively, and σ ε1

and σ ε2
are the standard devia-

tions of the error of measure �1 and �2, respectively. In
this way, the estimate of the corrected version of the
Pearson correlation is consistent (the larger the sample
size, the smaller estimation error tends to be). Notice
that, the difference between the corrected and

Figure 3
Corrected power curve. The full line represents the
proposed OLS and the dashed line represents the standard
OLS. It was performed 15,000 Monte Carlo simulations
(model described in simulation I) for each n where n varied
from 300 to 1,000 in steps of 100. n: sample size. P-value and
standard deviation of measurement error were set to 0.05
and 0.5, respectively.

Figure 4
Corrected power curve. The full line represents the
proposed VAR and the dashed line represents the standard
VAR. It was performed 15,000 Monte Carlo simulations
(model described in simulation II) for each n where n varied
from 300 to 1,000 in steps of 100. n: sample size. P-value and
standard deviation of measurement error were set to 0.05
and 0.5, respectively.
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uncorrected version of the Pearson correlation is that
we are removing the excess of variability from the
estimated variances of the latent x and y, since the
sample variances of X and Y always over-estimate them
due to the measurement errors �1 and �2 (note that,
σ σ σX x

2 2 2
1

= + ε and σ σ σY y
2 2 2

2
= + ε ), where σ x

2 and σ y
2

are the variances of x and y, respectively.

Although the examples provided here only treat regula-
tory network models, the proposed approaches can be
applied in a straightforward manner also to estimate
linear relationships between random variables measured
with error.

Conclusions
Unfortunately, avoiding measurement error in a com-
plete manner is a very difficult task, however, it can be
minimized in the measuring (experimental) process and
treated during the data analysis step. Here, we have
shown evidence that presence of the measurement errors
has a high impact in regulatory network models. In order
to overcome this problem, approaches in both major
data conditions, independent and time series data were
proposed in addition to measurement error estimation
procedures. Further studies are necessary in order to
verify how is the performance of other regulatory
networks (Bayesian networks, Structural Equation mod-
els, Graphical Gaussian models, Relevance networks, etc)
in the presence of measurement error.

Methods
In this section, standard Ordinary Least Squares and
Vector Autoregressive models will be described. Further-
more, corrected methods for measurement error will also
be presented. Finally, the model used in the simulations
will be detailed.

Ordinary least squares
In a multivariate regression model, let x1, x2,..., xp be p
predictor variables (genes) possibly being related to a
response variable y (gene). The conventional linear
regression model states that gene y is composed of an
intercept or constant a which is the basal expression
level of y, the predictors or gene expressions xj ’s (j =
1,..., p) which relationship with y is represented by b =
(b1,..., bp)⊤ (the sign of bj represents the relationship
between y and xj, i.e., positive or negative association),
and a random error ε, which accounts for an intrinsic
biological variation (this is not the measurement
error).

Table 5: Gene TP53 (lung cancer data)

Association t(bstandard) t(bcorrected) t(bstandard) -t(bcorrected)

p53 → mdm2 -2.2550 -2.1250 -0.1299
p53 → fas -3.3547 -3.0059 -0.3487
p53 → bax 5.2148 4.5290 0.6859
p53 → map4 2.8486 3.0243 -0.1757

mdm2 → fas -1.5495 -1.5002 -0.0493
mdm2 → bax 0.1880 0.4716 -0.2836
mdm2 → map4 -0.8153 -0.2766 -0.5387

fas → bax 0.0987 0.5746 -0.4759
fas → map4 2.5776 2.6374 -0.0598

bax → map4 -0.3538 -0.7187 0.3650

t
var

( )
( )

β β
βstandard
standard OLS  

standard OLS
= �

� ;

t
var

( )
( )

β β
βcorrected
corrected OLS

corrected OLS
= �

� . The direction of the arrows

means the direction of regression, i.e., in the head of the arrow is the
predictor and in the tail of the arrow is the response variable. Since it is
not a time series data, the t statistics are equal independent of the
direction of regression, in other words, the t statistics of x Æ y or y Æ x
are equal.

Table 6: Gene CLOCK (actual data)

Association t(bstandard) t(bcorrected) t(bstandard) -t(bcorrected)

clock → clock -2.5462 -2.3086 -0.2376
clock → cry2 1.4255 1.4165 0.0090
clock → per2 -0.1459 0.2372 -0.3830
clock → per3 0.5827 0.5320 0.0507
clock → dbp -1.6838 -1.6204 -0.0634

cry2 → clock -0.8201 -0.9070 0.0869
cry2 → cry2 -3.0326 -2.9813 -0.0513
cry2 → per2 0.7007 -0.0915 0.7921
cry2 → per3 0.8740 0.5134 0.3606
cry2 → dbp 0.5087 0.7566 -0.2479

per2 → clock 2.3427 2.3032 0.0394
per2 → cry2 0.8596 0.9123 -0.0527
per2 → per2 -1.7977 -1.6259 -0.1718
per2 → per3 -0.4415 -0.5319 0.0904
per2 → dbp -0.7264 -0.7320 0.0056

per3 → clock -1.3426 -1.3651 0.0225
per3 → cry2 -0.0824 -0.0569 -0.0255
per3 → per2 0.0492 -0.0515 0.1007
per3 → per3 -1.9925 1.6944 -3.6869
per3 → dbp 0.4787 0.4176 0.0611
dbp → clock 0.1788 0.1420 0.0368

dbp → cry2 0.4228 0.3759 0.0469
dbp → per2 1.0039 0.8547 0.1492
dbp → per3 -0.6207 -0.2896 -0.3311
dbp → dbp -1.0694 -1.1063 0.0369

t
var

( )
( )

β β

β
standard VAR

standard VAR  

standard VAR
=

�

�
;

t
var

( )
( )

β β

βcorrected VAR
corrected VAR

corrected VAR
=

�
�
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With n independent observations (microarrays) y and
the associated gene expression values of xj, the complete
model becomes

y x x x

y x x
i i i p ip i

i i i

1 1 11 1 12 2 1 1

2 2 21 1 22 2 2

= + + + + +
= + + + +

α β β β ε
α β β β

…
… pp ip i

iq q q i q i qp ip iq

x

y x x x

+

= + + + + +

⎧

⎨
⎪
⎪

⎩
⎪
⎪

ε

α β β β ε

2

1 1 2 2

#
…

for i = 1,..., n. In matrix notation, it is described as

y xi i i= + +α β ε (3)

where

y i

i

i

iq

y

y

y

=

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

1

2

# , (4)

α

α
α

α

=

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
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1

2

#

q

, (5)

x i

i

i
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x

x

x

=

⎛

⎝

⎜
⎜
⎜
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⎟
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β

β β β
β β β

β β β

=

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
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"
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p
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, (7)

ε

ε
ε

ε

i

i

i

iq

=

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
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1

2

# . (8)

The entire vector of error terms, εi = (εi1,..., εiq)
⊤, are

assumed to be independent and identically distributed
as a q-variate normal distribution with zero vector mean
and positive definite covariance matrix Σε for all i = 1,...,
n, where q is the number of response variables. Notice
that the proposed method is considering the homo-
scedastic case, i.e., the covariance matrix Σε does not
change with i. Let Σyx, Σxx and Σyy be the covariances of
(y, x), (x, x) and (y, y), respectively. These covariance
matrices could be estimated by:

ˆ ( )( ) ,ΣΣyx i i

i

n

n= − −−

=
∑1

1

y y x x F (9)

ˆ ( )( )ΣΣxx i i

i

n

n= − −−

=
∑1

1

x x x x F (10)

and

ˆ ( )( )ΣΣyy i i

i

n

n= − −−

=
∑1

1

y y y y F (11)

where

x x= −

=
∑n i

i

n
1

1

, (12)

and

y y= −

=
∑n i

i

n
1

1

. (13)

Then, the intercept a is estimated as

ˆ ˆα β= −y x (14)

and the estimator for the model’s coefficient is given by

ˆ ˆ ˆβ = −∑∑ ∑∑yx xx
1 (15)

The asymptotic variance-covariance matrix of vec( β̂ F )
and its estimate are given, respectively, by

∑∑ ∑∑ ∑∑β̂ ε= ⊗− −n xx
1 1 (16)

and

ˆ ˆ ˆ
ˆ∑∑ ∑∑ ∑∑β ε= ⊗− −n xx

1 1 (17)

wh e r e ⊗ i s t h e K r o n e c k e r p r o d u c t a n d
ˆ ( ) ˆ ˆ∑∑ε ε ε= − − −

=∑n p i ii

n
1 1

1
F (non biased estimator).

Notice that, the diagonal elements of ∑∑β̂ are the

variances of the elements of β̂ , say ∑∑β̂ j

2
for j = 1,..., p.

Let ˆ ˆ ˆy x= +α β denote the fitted values of y, then, the
residuals are

ˆ ˆ .ε i i i= −y y (18)

Hypothesis testing
The main interest in a simple regression model (yi = a +
bxi + εi) lies in testing the strength of the relationship
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between the predictor variable (gene) x and the response
variable (gene) y, in other words, if b is equal to a certain
value m (in general, m = 0, i.e., there is or not linear
relationship between genes x and y).

The asymptotic distribution of vec( β̂ F ) is given by

n N
D

( ( ) ( )) ( , ).vec vecβ β β
F F− → 0 ∑∑ (19)

and the test is described by:

H H0 1: ( ) : ( )C m C mvec versus vecβ βF F= ≠ ,

This test may be performed using the Wald-type statistic
expressed as

n( ( ) ) [ ] ( ( ) ).C m C C C mvec vec� ��β ββ
F F F F− −−∑∑ 1 (20)

where C is a matrix of contrasts (usually, C = I). For more
details about the matrix of contrasts, see [27]. Under the
null hypothesis, (20) has a limit c2(d) distribution,
where d = rank(C) gives the number of linear restrictions.

Ordinary least squares with measurement error
Now, we shall study models of the regression type where
one is unable to observe expression values of genes x and
y (as described before) directly. Instead of observing x
and y, one observes the sum

X x= + ε1 (21)

and

Y y= + ε2 (22)

with

y x= + +α β ε (23)

where �1 ~ N(0, ∑∑ε1
) independent of �2 ~ N(0, ∑∑ε2

) with
∑∑ε1

and ∑∑ε2
known are called as measurement errors,

i.e., the variation derived by the measurement process
(for example, the measurement error introduced when
analyzing microarrays), ε ~ N(0, Σε) is the random error
(intrinsic biological variation) and x ~ N (μx, Σxx), y ~ N
(μy, Σyy) with μy = a + bμx and Σyy = bΣxxb⊤ + Σε.

The matrices ∑∑ε1
and ∑∑ε2

are given by
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i.e., the measurement errors may be different for each
variable. Notice that the components of the measure-
ment error’s vector may be correlated but the entire
vectors are independent.

Let ΣYX, ΣXX and ΣYY be the sample covariances of (Y, X),
(X, X) and (Y, Y), respectively. These covariance matrices
could be estimated by substituting x and y by X and Y in
equations (8-12). Then, the intercept a is estimated as

ˆ ˆα β= −Y X (26)

and the estimator for the model’s coefficient is given by

ˆ ˆ ˆβ = −∑∑ ∑∑YX xx
1 (27)

where

ˆ ˆ ˆ∑∑ ∑∑ ∑∑xx XX= − ε1
(28)

Notice that ∑̂ XX
is estimated using equation (10) and

∑̂ ε1
must be known a priori (it can be estimated using

the procedures described in the section “Measurement
errors estimation”).

The asymptotic variance-covariance matrix of vec( β̂ F )
and its estimate are given, respectively, by (the proof is in
the Appendix)

∑∑ ∑∑ ∑∑ ∑∑ ∑∑ ∑∑ ∑∑ ∑∑ˆ ( )[ ( )( )( )](β ϑ ϑ β β= ⊗ + ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗− −
xx q xx q q q
1 1

1 1 1
I I I Iε ε ε

F ∑∑∑∑ xx
−1)

(29)

and

ˆ ˆ ˆ ( ˆ )[ ˆ ˆ ( ˆ )( ˆ ˆ)(ˆ∑∑ ∑∑ ∑∑ ∑∑ ∑∑ ∑∑ ∑∑β ϑ ϑ β β= ⊗ + ⊗ ⊗ + ⊗ ⊗ ⊗− −
xx q xx q q
1 1

1 1
I I Iε ε

F ˆ̂ )]( ˆ )∑∑ ∑∑ε1

1Iq xx⊗ −

(30)

where Iq denotes the q × q identity matrix and

∑∑ ∑∑ ∑∑ ∑∑ϑ ε β β= + +ε ε2 1

F (31)

Notice that, in the absence of measurement error,
i e., ∑∑ ∑∑ε ε1 2

0= = the corrected OLS is exactly equal to
standard OLS. Furthermore, it is noteworthy that this
asymptotic variance is similar to the one presented by
[23] but in a multivariate manner with no correlation in
the errors.
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Hypothesis testing
Similar to the OLS with no measurement error, the
interest in a simple regression model (yi = a + bxi + εi)
lies in testing the strength of the relationship between
the predictor gene x and the response gene y. The
asymptotic distribution of vec( β̂ F ) is given by

n N
D

( ( ) ( )) ( , ).vec vec� �β β β
F F− → 0 ∑∑ (32)

and the test is similar to the previous case (standard
OLS) described by:

H H0 1: ( ) : ( )C m C mvec versus vecβ βF F= ≠ ,

This test may be performed using the Wald-type statistic
expressed as

n( ( ) ) [ ] ( ( ) ).C m C C C mvec vec� ��β ββ− −−F FΣ 1 (33)

where C is a matrix of contrasts. Under the null
hypothesis, (33) follows a c2 distribution with rank(C)
degrees of freedom.

Vector autoregressive model
Here we define the usual VAR model as defined in
Lütkepohl (2006) [28].

Let zt = (z1t,..., zpt)
⊤ be a (p × 1) vector of time series

variables. The usual VAR(r) model (of order r) has the
form

z z zt t r t r t t n= + + + + =− −α β β ε1 1 1… …, , , (34)

where n is the time series length, bj for j = 1,..., p are (p × p)
coefficient matrices and εt is an (p × 1) unobservable zero
mean white noise vector process with covariance matrix
Σε. Under stationarity conditions, the mean and auto-
covariance function are given, respectively, by

E t z p j

j

r

( ) ( ) ,z I= = −
=

−∑μ β α
1

1 (35)

γ μ μ β γ( ) ( )( ) ( ), , ,h E h j ht z t h z j

j

r

= − − = − =−
=
∑z z F

1

1 2 3 for …

(36)

and

γ β γ ε( ) ( )0
1

= − +
=
∑ j

j

r

h j ∑∑ (37)

where Ip denotes the p × p identity matrix.

The model (34) can be re-written as

z zt t r t t n= + + =−α β ε† , , ,1… (38)

where b = (b1b2... br) is a p × pr matrix and
z z z zt r t t t r− − − −=† ( , , , )1 2

F F F F… .

Therefore, if the white noise (ε) has normal distribution,
the conditional Maximum Likelihood (ML) estimators of
a, b and Σε are equal to the OLS estimators. They are
given, respectively by

ˆ ˆ ,†α β= − −z zt t r (39)

ˆ ( )† †β =
− −

−S Sz z zt r t r t

1 F (40)

and

ˆ ˆ ˆ∑∑ε ε ε= −

=
∑n i i

i

n
1

1

F (41)

where

z zt r i r

i

n

n−
−

−
=

= ∑† † ,1

1

(42)

z zt i

i

n

n= −

=
∑1

1

(43)

ˆ ˆ ˆ ,†ε α βi i i r= − − −z z (44)

S z z zz t r
n i r t r i r

i

n

−
= −−

− − −
=
∑† ( )† † †1

1

F (45)

and

S z z zz zt r t
n i r t r i

i

n

−
= −−

− −
=
∑† ( ) .† †1

1

F (46)

The consistence of those conditional ML estimators is
assured under the stationary conditions [28]. The
covariance function of z t r−

† is given by

ΓΓ r h

h h h r

h h h r

h r

( )

( ) ( ) ( )

( ) ( ) ( )

( ) (

=

+ + −
− + −

− +

γ γ γ
γ γ γ

γ γ

1 1

1 2

1

…
…

# # % #
hh r h− +

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟2) ( )

.

… γ

(47)
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Vector autoregressive model with measurement error
Now, the VAR model with measurement error will be
presented.

Let zt be the “true” variables that are not directly
observed. Let Zt be the observed surrogate variables
which have an additive structure given by

Z zt t t t n= + =ε , , ,1… (48)

where Zt = (Z1t, Z2t,..., Zpt)
⊤ is the surrogate vector and

�t = (�1t, �2t,..., �pt)
⊤ is the measurement error vector.

In most cases, if the usual conditional ML estimator is
adopted for the observations subject to errors, i.e.,
replacing zt with Zt in the equation (34), the estimator
of b will be biased as well as its asymptotic variance.
Therefore, in order to overcome this limitation the
measurement errors should be included in the estima-
tion procedure. Nevertheless, the model (34) plus the
equation (48) is not identifiable, since the covariance
matrices of εt and �t are confounded. This problem can
be avoided considering known the variance of �t.

Let �t ~ N (0, Σ�) be the measurement error with Σ�

known (refer to section Measurement error estimation for
details about how to estimate Σ�). Then, the parameters
of the model (34) under measurement errors as in (48)
have consistent estimators (Patriota et al.: Vector auto-
regressive models with measurement errors for testing
Granger causality, submitted) given by

ˆ ˆ ,†α β= − −Z Zt t r (49)

ˆ (( ) )†
†β = − ⊗

− −

−S I Sz z zt r t r t
r ∑∑ε

1 F (50)

and

ˆ ( ˆ ˆ )( ˆ ˆ ) ˆ( ) ˆ† †∑∑ ∑∑ ∑∑ε α β α β β β= − − − − − − ⊗−
− −

=
∑n i i r i i r

i

n

r
1

1

Z Z Z Z IF
ε ε

FF

(51)

where

Z Zt r i r

i

n

n−
−

−
=

= ∑† † ,1

1

(52)

Z Zt i

i

n

n= −

=
∑1

1

, (53)

S Z Z Zz t r
n i r t r i r

i

n

−
= −−

− − −
=
∑† ( ) .† † †1

1

F (54)

Then, the asymptotic distribution of vec( β̂ ) is given by
[29].

n N
D

( ( ) ( )) ( , ),vec vec� �β β β
F F− → 0 ∑∑ (55)

where the matrix ∑ β̂ is given by

∑∑ ∑∑ ΓΓ ΓΓ ΓΓˆ ( ) ( ( ) ) ( ( ) )β = ⊗ + ⊗ ⊗− − −
v r p r r p r0 0 01 1 1I A I (56)

where

A I Ir r r

h r h rh h

= ⊗ ⊗ + ⊗ ⊗

− ⊗ + ⊗ −

∑∑ ∑∑ ∑∑ ∑∑

∑∑ ΓΓ ∑∑ ΓΓ

υ β β

β β

( ) [ ( )]

{( ) ( ) ( ) ( )

ε ε ε

ε ε

F

F }}

[ ( ) ] ( ).

h

r

h r

h r

r

h

=

−
= −

−

∑

∑− ⊗ ⊗

1

1

1

β βJ ∑∑ ΓΓε
F

where Σv = Σε + Σ� + b(Ir ⊗ Σ�)b⊤ and Jl is a (r × r) matrix
of zeros with one’s in the |l|th diagonal above (below)
the main diagonal if l > 0 (l < 0) and J0 is a (r × r) matrix
of zeros.

Notice that, if r = 1 we have the VAR(1) model and the
asymptotic covariance simplifies to

∑∑ ∑∑ˆ ( ) ( ( ) ) ( ( ) )β γ γ γ= ⊗ + ⊗ ⊗− − −
v p p0 0 01 1

1
1I A I (57)

where

ΑΑ == ∑∑ ∑∑ ∑∑ ∑∑ ∑∑ ∑∑1 0 0v ⊗ + ⊗ − ⊗ + ⊗ε ε ε ε εβ β β γ β β βγF F F( ) [( ) ( ( ) ) ( ) ( ))].

(58)

The ith element of vec( β̂ F ), is asymptotically normally
distributed with standard error given by the square root
of ith diagonal element of ∑ β̂ . Thus, we can construct
hypotheses testing on the individual coefficients, or in
more general form of contrasts

H H0 1: ( ) : ( )C m C mvec versus vecβ βF F= ≠ 

involving coefficients across different equations of the
VAR model. It may be tested using the Wald statistic
conveniently expressed as

n( ( ) ) ( ( ) )C m C C C mvec ) ( vec T� �β ββ
F F F− −−ΣΣ 1 (59)

where C is a matrix of contrasts (C = I, for instance) and
m is usually a (p × 1) vector or zeros.

Under the null hypothesis, (59) has a limiting c2(d)
distribution where d = rank(C) gives the number of
linear restrictions. This test is useful to identify, in a
statistical sense (controlling the rate of false positives),
which gene (predictor variable) is Granger causing
another gene (response variable).
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Measurement error estimation
Here, two methods to estimate measurement error are
proposed. One when technical replicates are available
and another one in the case when they are not available.

Technical replicates
When technical replicates are available, measurement
error estimation may be performed by applying a
strategy extending the methods described by Dahlberg
(1940) [30] (more details about Dahlberg’s method in
the Appendix). For microarray data, it is known that the
variance varies along the spots (heteroscedasticity) due
to variations in experimental conditions (efficiency of
dye incorporation, washing process, etc) [31]. Moreover,
it is known that Dahlberg’s approach is not suitable in
the presence of systematic errors. Therefore, the applica-
tion of the Dahlberg’s formula is not straightforward. In
order to overcome this problem, we suggest the
following algorithm [32].

Let W and W’ be two microarrays, where W’ is the
technical replicate of W.

1. Perform a non-linear regression such as splines
smoothing between log(W) and log(W’), i.e., log(W’) =
f(log(W)) + ε1. Notice that the logarithm was
calculated as a variance stabilizer (due to the high
variance observed in microarray data). This is a
common practice in microarray analysis;
2. Apply again the splines smoothing between ε1

2

and log(W), i.e., ε1
2 = g(log(W)) + ε2;

3. Calculate ˆ ( ( ))δ = g log W
2

. This is a possible estimate

for the standard deviation of the measurement error.
Notice that with this process, we obtain one δ̂ i for
each spot i = 1,..., m, where m is the number of spots
in the microarray, also in the presence of hetero-
scedasticity.

No technical replicates
However, unfortunately, technical replicates is not
always available. To this case, we have developed a
strategy based on negative control probes and house-
keeping genes frequently provided in commercial micro-
arrays. Technically, housekeeping genes and negative
controls should not change their expression levels [33].
Therefore, any variation measured by them can be
understood as measurement error. In order to overcome
the problem of heteroscedasticity in microarrays, we
present a method based on splines smoothing. The main
idea of this method consists in estimating how much of
the total variance (intrinsic biological variation +
measurement error) is due to measurement error. The
method is as follows:

1. Let S be the set of all probes in the microarray and
H be the set of housekeeping genes and negative
controls. Calculate the mean and variance for each
probe of S and H;
2. Perform a splines smoothing in both sets of probes
separately, i.e., a splines smoothing var(H) = f(mean
(H)) + ε1 and var(S\{H}) = g(mean(S\{H})) + ε2,
where H is a matrix containing the expression values
of each housekeeping gene and negative controls in
each row and S\{H} is a matrix containing the
expression values of the remaining set of probes in
each row. The functions f and g may be represented
by a linear combination of spline functions jj(·), i.e.,
they may be written as

f c j
j

d

j( ) ( )⋅ = ⋅
=
∑

1

φ (60)

where d is the number of knots used in the spline
expansion (d may be obtained by selecting the value
that minimizes the Generalized Cross Validation).
mean(H) and var(H) (or mean(S\{H}) and var(S\
{H})) are vectors containing the mean and variance
values of each row of H (or S\{H}), respectively. In
this step, the smoothed curves f̂ and ĝ represent the
estimated variance for each probe. Notice that the
smoothed curve in housekeeping genes and negative
controls f̂ represents the estimated measurement
error for each gene expression level. Moreover, the
smoothed curve in the remaining set of probes ĝ
represents the total variance (intrinsic biological
variance + measurement error) for each gene expres-
sion level;
3. Divide the smoothed curve f̂ (obtained in step 2)
by the other smoothed curve ĝ . Notice that this ratio
( ˆ / ˆf g ) is the estimation of measurement error in
percentage of the total variance for each probe. With
this percentage, it is possible to estimate the variance
of the measurement error for each probe.

Simulations
In order to evaluate the behavior of both, standard and
proposed methods, we have conducted two simulations
in small, moderate and large samples sizes (50, 100, 200
and 400). Computations were performed on the R
software (a free software environment for statistical
computing and graphics) [34]. For each group of
simulation, 10,000 Monte Carlo samples were gener-
ated. Simulation I is for independent data and Simula-
tion II for time series data.

Simulation I - independent data
In order to evaluate the performance of both, usual and
corrected OLS methods, a controlled structure was
defined. Let x and y be gene expression values where

BMC Bioinformatics 2009, 10:412 http://www.biomedcentral.com/1471-2105/10/412

Page 15 of 19
(page number not for citation purposes)



one is interested in examining if a certain gene xi (i = 1,...,
p; p = 9) is linearly correlated to gene y (q = 1) partialized
by other genes. This situation can be represented by the
following structure

y x x x x x x x x x= + + + + + + + + +β β β β β β β β β ε1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

where

β =

−
−
−
−

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

.

.

.

.

.

.

.

.

⎟⎟
⎟⎟

.

The observed variables Xi (i = 1,...,9) and Y are defined
by

X x

Y y
i i= +
= +

ε

ε

1

2,

where xi ~ N(0, 1), ε ~ N (0, Σε) is the intrinsic biological
random variation and �1 ~ N(0, ∑∑ε1

) independent of
�2 ~ N(0, ∑∑ε2

) are the measurement errors, with ∑∑ε1
=

∑∑ε2
varying from 0 to 0.8. The standard deviation Σε is

defined by

ΣΣε
( )

. .

.

.

. .

9 9

1 0 2 0 2

0 2 1

0 2

0 2 0 2 1

× =

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

…
% #

# % %
…

In order to become the simulation more realistic (since
actual biological gene expression signals are generally
quite correlated), notice that Σε is not a diagonal matrix,
i.e., there are little correlations between the predictors.
The sample’s size varied from 50 to 400.

Simulation II - time series data
In the time series case, the data has some peculiarities
which are not present in the independent data. Time
series data are known to be autocorrelated (past values
associated with future values) and also contempora-
neously correlated (contemporaneous correlation
between time series). Considering these characteristics,
a similar structure described in the previous section was
designed. Let Xt and Yt being gene expression time series
data and one is interested in verifying if certain gene xi, t
(i = 1,..., p; p = 9) Granger causes gene yt (q = 1). This

problem can be modeled by a VAR process of order one
as described below:

y y x x x x x

x
t t t t t t t= + + + + +
+

− − − − − −β β β β β β

β
0 1 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1

6

, , , , ,

66 1 7 7 1 8 8 1 9 9 1, , , ,t t t t tx x x− − − −+ + + +β β β ε

where

β =

−
−
−
−

⎛

⎝

⎜
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⎜
⎜
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and

x x ii t i t t, ,. , , .= + =−0 5 1 91 ε  …

The observed variables Xt and Yt are defined by

X x

Y y
t t

t t

= +
= +

ε

ε

1

2,

where ε ~ N(0, Σε) is the intrinsic biological random
variation and �1 ~ N(0, ∑∑ε1

) independent of �2 ~
N(0, ∑∑ε2

) are the measurement errors, where

∑∑ε

ε ε

ε ε

1

1 1

1 1
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, varies from 0 to 0.8. The

standard deviation Σε is defined by

ΣΣε
( )

. .

.

.

. .
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The time series length varied from 50 to 400.

Notice that b0 is the autoregressive coefficient and all time
series Xi for i = 1,...,9 are autocorrelated and also
contemporaneously correlated (Σε is not a diagonalmatrix).

Actual biological data
The standard and proposed OLS methods were applied
to lung cancer gene expression data collected by [35].
This dataset is composed of 400 microarrays, each of
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which constructed using a different cDNA obtained from
a different patient. Standard and corrected VAR
approaches were applied to mouse liver time series
data collected by [36]. This data is composed by 48 time
points distributed at intervals of 1 hour.
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Appendix
Proof of the asymptotic variance of b - equation (29)
Here, we proof equation (29), i.e., the asymptotic variance
of b in the multivariate case with no correlated errors.

Consider the following model:

y x

X x

Y y

i i i

i i i

i i i

= + +
= +
= +

α β ε
ε

ε

1

2

(61)

where Xi and Yi are the observed vectors with dimensions
p × 1 and q × 1, respectively, a is the model intercept (q ×
1), b is a (q × p) matrix of slope parameters, ε i is a white
noise vector with mean zero and covariance matrix Σε.
The joint distribution of �1i, �2i, εi and xi is given by
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(62)

In this section, we investigate the asymptotic distribution of

ˆ ˆ ˆ ,β = −ΣΣ ΣΣYX xx
1

where

ˆ ( )( ) , ˆ ˆΣΣ ΣΣ ΣΣ ΣΣYX i i

i

n

i i xx XXn= − − = −−

=
∑1

1
1

Y Y X X F
ε

and

ˆ ( )( ) .ΣΣXX i i

i

n

i in= − −−

=
∑1

1

X X X X F

The proof idea, similar to presented in [23], has two
main steps. The first step consists in showing that vec
( β̂ F ) - vec(b⊤) can be written as linear combinations of
a vectorial mean. In the second one, we must demon-
strate that this vectorial mean has an asymptotic normal
distribution. Therefore, we need some auxiliar results for
proving the asymptotic result, which are exposed in two
propositions below.

Proposition 1 Under the model (61) under (62) the
proposed estimator β̂ has the following relationship

vec vecT T( ) ( ) ( ) ( ),�β β− = ⊗ +− −I Wq xx prob nΣΣ 1 1O (63)

where

W

W

W
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1
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#

with Wi = (εi + �2i - b�1i) ⊗ (xi - μx + �1i) - Ψ, Ψ = (Iq ⊗
∑∑ε1

)vec(b⊤) and bn = Oprob n( )−1 means that nbn is
limited in probability when n diverges. It implies that,
n nprobO ( )−1

prob(n
-1) goes to zero when n increases.

Proof: Define bk as the coefficients associated with the kth

element of the vector yi, that is

yki k k i ki= + +α β εFx .

Thus, we have that vec(b⊤) = ( β β β1 2
F F F, , ," q )⊤ and its

estimator can be written as vec( ) ( , , , )� � � �β β β β= 1 2
F F F F… q , where

� � �β k XX e XYk
= − −( )ΣΣ ΣΣ

1

1Σ and ˆ ( )ΣΣXY i kii

n

k
n Y= −−

=∑1
1

X X for k = 1,..., q.
Moreover, the model (61) may be rewritten in terms of
the observed variables as

Y Xi i i

i i i i

= + +
= + −

α β ϑ
ϑ ε β

,

,ε ε2 1
(64)

and for the kth element of Yi we have

Ykt k k i ki

ki ki ki k i

= + +

= + −

α β ϑ

ϑ ε β

F

F

X ,

,,ε ε2 1

(65)

where �2i = (�2,1i,...,�2, qi)
⊤.

Then, it follows that

ˆ ( )( ) ˆ ˆ ,ΣΣ ΣΣ ΣΣXY i

i

n

k k i ki XX k Xk k
n= − + + = +−

=
∑1

1

X X Xα β ϑ β ϑ
F

BMC Bioinformatics 2009, 10:412 http://www.biomedcentral.com/1471-2105/10/412

Page 17 of 19
(page number not for citation purposes)



where ˆ ( ) ( ) ( )ΣΣX ii

n
ki i x i kii

n
probk

n n nϑ ϑ μ ϑ= − = − + +−
=

−
=

−∑ ∑1
1

1
11

1X X x ² O .

Thus, denoting ΣΣx k i x i ki
i

n
nϑ μ ϑ= − +−

=∑1 1
1
( )x ε we

have that

ˆ ( ˆ ) ( ),ΣΣ ΣΣ ΣΣ ΣΣ ΨΨXY XX k x k probk k
n= − + − + −

ε1

1β ϑ O

with ΨΨ ΣΣk k= − ε1
β . As a result, we have

ˆ ( ) ( )β βk k q xx k prob n= + ⊗ +− −I WΣΣ 1 1O

where W Wk kii

n
n= −

=∑1
1

and Wki = (xi - μx + �1i)ϑki - Ψk.

Hence, it follows that

vec vec( ) ( ) ( ) ( ),�β βF F O− = ⊗ +− −I Wq xx prob nΣΣ 1 1 (66)

where

W

W

W

W=
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=−

=

−

=
∑ ∑n n

i

i
i

n

i

i

n
1

1

0
1

1

1

#

with Wi = (εi + �2i - b�1i) ⊗ (xi - μx + �1i) - Ψ and Ψ = (Iq ⊗
∑∑ε1

) vec(b⊤).

Proposition 2 Under all conditions stated in this paper,
the mean W of Proposition has an asymptotic
distribution given by

n NW 0 T→
D

( , ),

where " "→
D

means “converge in distribution to”,

T I I= ⊗ + ⊗ + ⊗ ⊗ ⊕ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣϑ ϑ β βxx q qε ε ε1 1 1
( )( )( )F

and ΣΣ ΣΣ ΣΣ ΣΣϑ ε β β= + +e e2 1

F

Proof: Notice that the expectation of Wi is equal to zero

for all i. Then, defining x n xii

n= −
=∑1
1

, where xi =

δ⊤Wi we have that E(xi) = 0, Var(xi) = δ⊤E(Wi Wi
F )δ and

E E E

E

i i i i x i x i i i

i i i

( ) [ ( )( ) ] [ ]

[ (

W W F x x F

F x

F F F= ⊗ − − + ⊗

+ ⊗ −

μ μ

μ

ε ε

ε

1 1

1 xx i i x iE) ] [ ( ) ]F F

F

+ ⊗ −

−

F x μ ε1

ΨΨΨΨ

with Fi = (εi + �2i - b�1i) (εi + �2i - b�1i)⊤. Thus, using
the fact that the random quantities have independent
normal distributions and we have that

E i i xx q q( ) ( )( )( ),W W I IF F= ⊗ + ⊗ + ⊗ ⊗ ⊕ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣϑ ϑ β βε ε ε1 1 1

That is, x1..., xn is an iid sequence and we can use the
central limit theory, which says that

nx N V→
D

( , )0

where V = δ⊤ Tδ with T I I= ⊗ + ⊗ + ⊗ ⊗ ⊕ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣϑ ϑ β βxx q qε ε ε1 1 1
( )( )( )F .

As nδ FW is asymptotically normally distributed for
all δ ≠ 0r then, by the Cramer-Wold device [37], we have
that

n NW 0 T→
D

( , ).

Then, by the Propositions (1) and (2), we have that

n N( ( ) ( )) ( , )vec vec� �β β β
F F

D
− → 0 ΣΣ

where ΣΣ ΣΣ ΣΣˆ ( ) ( )β = ⊗ ⊗− −I T Iq xx q xx
1 1 .

Dahlberg’s error
Consider the following model:

Zij i ij= +μ ε (67)

where Zij is the measure obtained in one experiment
(microarray), i is the sample index i = 1,..., m, m is the
number of spost in the microarray, j is the replicate number
(j = 1, 2 in the case of duplicates), μi is the unknown true
value of the measure and �ij is the error of measure.

Then, assume that E(�ij) = 0 and Var(�ij) = δ ε
2 . Thus, one

quantification of the quality of measure is the standard
deviation of �ij, i.e., δ�. Notice that the lower is the
standard deviation of the error of measure (δ�), the lower
is the measurement error.

Consider

d Z Zi i i= −2 1 (68)

Therefore

Var d Vari i i( ) ( )= − =ε ε ε2 1
22δ (69)

Assuming that there is no bias (systematic error), one
intuitive estimator for 2 2δ ε

is

2
2

2

1

δ̂ ε =
=
∑ di

m
i

m

(70)

The quantity δ̂ ε = =∑ di
mi

m
2

21
is exactly the Dahlberg’s

formula proposed in [30].
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