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Abstract

Background: MicroRNA (miRNA), which is short non-coding RNA, plays a pivotal role in the
regulation of many biological processes and affects the stability and/or translation of mRNA.
Recently, machine learning algorithms were developed to predict potential miRNA targets. Most
of these methods are robust but are not sensitive to redundant or irrelevant features. Despite their
good performance, the relative importance of each feature is still unclear. With increasing
experimental data becoming available, research interest has shifted from higher prediction
performance to uncovering the mechanism of microRNA-mRNA interactions.

Results: Systematic analysis of sequence, structural and positional features was carried out for two
different data sets. The dominant functional features were distinguished from uninformative
features in single and hybrid feature sets. Models were developed using only statistically significant
sequence, structural and positional features, resulting in area under the receiver operating curves
(AUC) values of 0.919, 0.927 and 0.969 for one data set and of 0.926, 0.874 and 0.954 for another
data set, respectively. Hybrid models were developed by combining various features and achieved
AUC of 0.978 and 0.970 for two different data sets. Functional miRNA information is well reflected
in these features, which are expected to be valuable in understanding the mechanism of microRNA-
mRNA interactions and in designing experiments.

Conclusions: Differing from previous approaches, this study focused on systematic analysis of all
types of features. Statistically significant features were identified and used to construct models that
yield similar accuracy to previous studies in a shorter computation time.

Background and is involved in the regulation of various biological
MicroRNAs (miRNAs) are short non-coding RNAs of  processes, such as development, differentiation, and
approximately 22 nucleotides with some differences in  apoptosis [1-5]. It has been reported that more than one-
one or two nucleotides in the 3' terminus. In eukaryotes,  third of human genes can be targeted by miRNA and miR-
miRNA affects the stability and/or translation of mRNAs  NAs have been linked to conditions such as lymphoma,
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leukemia, and lung adenocarcinoma [6,7]. Stage-specific,
tissue-specific and relatively low expression results in con-
siderable miRNA complexity. Thus, identification of the
functions of miRNA is an important and challenging
problem.

Although bioprocesses involving miRNA-mRNA interac-
tions, such as cleavage and translational repression of tar-
get mRNA, depending on the degree of base pairing
between the miRNA and the mRNA sequence, are under-
stood, actual correlation and the mechanism of these
interactions are still unclear. Since miRNA [in-4 and let-7
were discovered in Caenorhabditis elegans, there has been a
huge focus on this field and a large number of miRNAs
have been identified in various species [8-11]. There are
6211 mature miRNA sequences in the current miRBase
sequence database (release 11.0) [12]. Despite this large
number of miRNAs identified, only a few miRNA targets
are known. According to TarBase 4.0, there are only 763
experimentally validated target sites, which is much less
than the number of miRNA sequences [13], so target iden-
tification is important in understanding the mechanism
and biological functions of miRNA-mRNA interactions.

Since the first miRNA target prediction algorithm was
published [14], an increasing number of computational
algorithms have been developed for this purpose. Three
main types of features have been successfully applied in
these algorithms: the complementarity of the seed region
in the 5' terminus, thermodynamic stability, and cross-
species conservation [15-18]. However, researchers had to
designate a few arbitrary kilobases downstream from the
stop codon when an experimentally validated 3' untrans-
lated region (UTR) was lacking for certain species [19].
The thermodynamic stability is useful for secondary struc-
ture prediction since miRNA binds to the RNA-induced
silencing complex to form a large protein complex. More-
over, experiments have revealed that approximately 30%
of miRNAs do not exhibit cross-species conservation
[20,21].

Hence, machine learning algorithms were developed and
shed light on the prediction of miRNA targets. Based on
sequence information, TargetBoost refined some signifi-
cant features to improve the performance of model and
was capable of predicting more actual target genes [22]. By
extracting similar features from experimental data,
miTarget and NBmiRTar were developed using a support
vector machine and a naive bayes approach, respectively
[23,24]; both yielded satisfactory prediction results when
artificial negative data were used for model training.

An ensemble prediction algorithm for human miRNA tar-
gets developed using absolute experimentally validated
data yielded a cross-validation (CV) accuracy of 82.95%
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[25]. However, through rigorous selection, only 48 posi-
tive and 16 negative samples were used for training.
Another algorithm, MiRTif, was released with 195 positive
and 38 negative experimentally validated target sites, for
which a duplex binding picture for prediction by RNAhy-
brid was available for 17 new negative samples. The algo-
rithm achieved sensitivity of 83.59% and specificity of
73.68% [26]. However, the current set of experimentally
validated negative samples is insufficient to represent the
negative class and therefore more negative data are
required. Hence, two negative data sets were generated in
our study.

Microarrays can also provide many experimental data for
training models. Recently, several studies reported on
miRNA target prediction from microarray data analysis
[27,28]. MirTarget2, which was developed based on
microarray data, is considered to have great potential for
high-throughout target validation by transcriptional pro-
filing and improved miRNA target prediction, with a
result of 0.79 for the area under the receiver operating
characteristic curve (AUC) [29].

In the present study, systematic analysis of feature impor-
tance was performed based on permutation importance
and conditional variable importance strategies. A random
forest (RF) approach was applied for prediction of
miRNA-target interactions. Three types of features were
considered, sequence, structural, and positional features.
These features were extracted from binding pictures of
miRNA-target duplexes and regarded as a unit (Figure 1)
instead of being artificially divided into two segments.
This approach might well preserve the actual biological
properties. For each single feature set and the whole
hybrid feature set, model training was repeated 100 times.
The models yielded high sensitivity and specificity and the
feature importance scores were then calculated. Only sta-
tistically significant features were used to refine the mod-
els, which yielded similar accuracy to that obtained in
previous studies. Our results indicate that these features
significantly contribute to the performance of the model
and will help in reducing the number of experimental
procedures required in research into miRNA-target inter-
actions.

Target

mrna - CUAGU- UAAUUACCAUUUUCUACCUCA

R N RENNEEA
miRNA  UGAU-AUGU - - - UGGAU - - - GAUGGAGU

Figure |
Simplified picture of miRNA-target interactions.
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Results and Discussion

Feature extraction

All features were classified as sequence, structural or posi-
tional features. Studies have demonstrated that thermody-
namic stability plays an important role in miRNA target
prediction and machine learning algorithms have con-
firmed this [30,31]. In our feature extraction procedure,
several features relate to thermodynamic feature indi-
rectly, because the RNA secondary structure prediction
was based on thermodynamic properties. Target sites for
seed and non-seed segments were treated artificially in
previous studies, which destroy the integrity of the target
site and leads to underinvestigation of relevant biological
properties. Here, a miRNA-target duplex was treated as a
unit, which overcomes the disadvantage of previous
methods, and feature extraction was parsed using Perl.

Sequence features (SEQ, Table 1) mainly include base fre-
quencies and compositions. Background frequencies (p, =
0.34, pc= 0.19, pe = 0.18, p; = 0.29) have typically been
used to produce artificial negative samples [22,32]. In
microarray data analysis, researchers discovered that the
four base frequencies were significantly different for can-
didate downregulated and normal genes. Furthermore,
many dinucleotide sequences are statistically significant
in miRNA target prediction [27,29].

Structural features (STRU, Table 2), including folding
information for miRNA-target duplexes, should have the
necessary information and should be crucial for recogni-
tion of miRNA-target interactions. Three main types of
structural features, stems, loops and bulges, were used to
represent RNA secondary structure. A well-known perfect
or near-perfect pairing seed region is fairly important for
these interactions (G:U wobble base-pairing is allowed).
In addition, various types of loops and bulges in both
seed and non-seed regions also affect the interactions
[33].

Positional features (POSI, Table 3) reflect the mechanism
of miRNA-target interactions. Saunders et al. investigated
polymorphism of miRNA-target duplexes using single
nucleotide polymorphism data, which revealed that a
base mutation in the target sequence affects the regulation

Table I: Sequence features
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function of miRNA [34]. These studies suggest that posi-
tion-specific states (whether matching or not) may be
important for miRNA target identification. Here only 21
nucleotides from the 5' terminus were considered. Four
binary numbers were used to represent a position. If the
sequence length is < 21 nt, the RF algorithm can automat-
ically set the missing positions as missing values and
replace them with the most frequent non-missing value
(see the Methods section).

Prediction performance with RF

We used the RF algorithm and optimized the parameters.
Two parameters, number of trees to grow ntree and
number of variables randomly sampled as candidates at
each split mtry were optimized using a grid search
approach. During the grid search, the values of ntree =
{500, 2000, 500} and mtry = {0, mdim, 1} were opti-
mized based on 10-fold cross-validation (where the first
number indicates the initial value, the second indicates is
the final value, and the third is the increment used to gen-
erate values; mdim is number of features), which is parti-
tions the original sample into 10 subsamples, 9
subsamples are to train model and the remainder one to
test model and this process repeats 10 times. We then
selected the value for the best-performing parameters to
estimate the performance of the training model. It has
been reported that an out-of-bag (OOB) error is very sim-
ilar to the classification error for cross-validation (see
Methods), which is a built-in measure of performance
[35]. Table S1 lists the predictor performance comparison
between based on cross-validation and OOB estimate (see
Additional file 1).

RF models were constructed using SEQ, STRU, POSI, and
the total feature set for two difference negative data sets;
200 samples from each class were randomly selected and
used for training. This procedure was repeated 100 times
and the average fraction of true positive (sensitivity) and
true negative (specificity) predictions were used to deter-
mine the accuracy (The 200 negative samples always con-
tain 35 experimental data in every randomly selection).
The average prediction results for the models are listed in
Table 4. Models based on the negative data set Neg 1
yielded higher accuracy than those based on Neg 2,

Feature Description

N_frac Four features, percentage of A U C G nucleotides in the target sequence
GC_frac Percentage of GC content in the target sequence

nt_match Percentage of matching bases in the target sequence

nt_GUmatch Percentage of GU matching bases in the target sequence

nt_mismatch
Dinucleotides
Trinucleotides

Percentage of mismatch bases in the target sequence
16 features, number of dinucleotide counts in the target sequence
64 features, number of trinucleotide counts in the target sequence
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Table 2: Structural features
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Feature Description

Stem Number of stems

Overhang Number of overhangs

Stem_max Length of the maximal stem in the target sequence

Loop_mismatch Number of loops that only contain two mismatch bases

Loop_symm Number of symmetric loops that contain more than two bases

Loop_asym Number of asymmetric loops that contain more than two bases

Stems? 8 features, number of stems of length 6-0 and those with length < 6 and > 10
LoopsP 8 features, the number of loops with length of 1-7 and those with length > 7
Bulgesc 8 features, number of bulges with length of 1-7 and those with length > 7

2 A stem is defined as a set of consecutive pairs separated by unpaired bases.

b A loop is defined as a set of unpaired bases between two strands.
¢ A bulge is defined as a set of unpaired bases only in one strand

except for specificity for SEQ and POSI, probably because
of the different data sources. The performance using
sequence or structural features was worse than that for
positional features. Our models achieved sensitivity of
0.947 and specificity of 0.916 for Neg_1 and sensitivity of
0.917 and specificity of 0.949 for Neg 2 using positional
features. These results indicate that positional features
yield a low number of false positive predictions and good
model performance. Several studies have clearly shown an
increase in the accuracy of prediction on combining
numerous features. However, the hybrid of different fea-
ture types did not yield the highest accuracy (sensitivity
0.870 and specificity 0.922) for Neg_2. This indicates that
negative correlation occurs in hybrids of different features.
Hence, we examined the interactions among different fea-
tures in each set using correlation analysis (see Additional
file 2).

Feature importance measures

Current classification tasks need a measure of feature
importance rather than only predicting the response using
"black-box" models. Here, two different strategies were
applied to measure feature importance in the prediction
of miRNA-target interactions.

Permutation importance analysis of RF

RF is a classification method that also provides feature
importance measures. It can distinguish significant pre-
dictor features from uninformative features and reduces
interactions among features as much as possible. Three

Table 3: Positional features

measures of feature importance, the selection frequency,
Gini importance and permutation importance, are availa-
ble. In the present study, permutation importance was
used as to measure feature importance in miRNA-target
interactions separately for three feature sets to distinguish
significant functional predictor features. The process was
repeated 100 times with random resampling of con-
structed models and the feature measure scores were cal-
culated. The distributions of these scores are shown in
Figures 2, 3 and 4.

For sequence features (Figure 2), the percentage of match
bases greatly contributes to recognition of interactions for
both Neg 1 and Neg 2. The results are consistent with
those of previous studies [27,29,36]. In addition, several
dinucleotide and trinucleotide sequences were also statis-
tically significant, such as UC, GG, CUC, and AGG. How-
ever, probably because of the negative data sources, base
frequencies for A, G, and U in Neg_ 2 were ranked in the
top 10. The results indicate that sequence-based feature
importance depends on the data source.

The most informative structural feature was the stem,
which indicated matching conditions for both seed and
non-seed regions. Bulges provide more insight into
miRNA-target interactions than loops do because more
informative features are relate to bulges than to loops
(Figure 3). The overhang also has a significant effect on
classification, which depends on the nature of the
miRNA-target duplex. Features related to stems revealed

First two binary numbers Meaning Last two binary numbers Meaning
00 A 00 Mismatch
I U I GU match
10 G 10 Match
ol C
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Table 4: RF prediction results
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Feature set Neg | Neg 2
Optimal parameters Se Sp Optimal parameters Se Sp
SEQ ntree2 = 2000, mtryb = 16 0.873 0.828 ntree = 1000, mtry = 66 0.821 0.885
STUR ntree = 1500, mtry = 16 0.852 0.826 ntree = 1500, mtry =7 0.807 0.808
POSI ntree = 1000, mtry = 5 0.947 0916 ntree = 1000, mtry = 4 0917 0.949
Total ntree = 2000, mtry = 6 0.971 0918 ntree = 500, mtry = 37 0.870 0.922

Cross-validation was used to estimate the predictor performance of SEQ, STRU, POSI sets and the total feature set for two differet negative data
sets. Neg_| comprises all experimental samples and inferred negative samples and Neg_2 comprises all experimental samples and artificial negative
samples from miRanda. Sensitivity (Se) was calculated as TP/(TP+FN) and specificity (Sp) as TN/(TN+FP), where TP is the number of true positives,
TN is the number of true negatives, FP is the number of false positives and FN is the number of false negatives.

anumber of trees to grow.

b number of variables randomly sampled as candidates at each split.
that a length of 8 nt may be a more suitable definition of
the seed region, although false miRNA targets usually had
a match of < 6 nt in the seed region. Moreover, 1-nt bulges
and 2-nt loops were ranked top and thus might greatly
affect miRNA-target interactions.

Positional features suggested that non-seed regions also
play an important role in miRNA-target interactions as
shown by Figure 4, in which matching/mismatching serve
as the positive/negative class, respectively. It has been
shown in many studies that perfect or near-perfect base
pairing in the seed region greatly contributes to the per-
formance of models. Our results confirm that most of the
dominant functional positional features are in the seed
region.

A new feature importance measure strategy using hybrid models

A further investigation was implemented for a combina-
tion of the three feature sets. In this section, a novel con-
ditional feature importance strategy was used to evaluate
the total features. This strategy was implemented using the
cforest function of the party package in R language, which
can generate additional information on feature interac-
tions [37-39].

A combination of three feature sets was considered to
evaluate the feature importance using conditional varia-
ble importance strategy. Training data were randomly
sampled and the procedure was repeated 100 times as
above. Some of the significant features are shown in Fig-
ure 5. The measure strongly indicates that positional fea-
tures greatly contribute to miRNA-target interactions
because most statistically significant features are posi-
tional features in Neg 1. However, sequence features are
dominant in the statistically significant features in Neg_2.
These results are in agreement with the RF permutation
importance. In addition, this strategy based on condi-
tional inference trees seems to produce less noise than a
permutation importance strategy.

Prediction performance of using only statistically significant features
To demonstrate the statistically significant features for
predicting miRNA-target interactions, we compared the
performance of different feature sets using only the signif-
icant features for two different negative data sets. The pro-
cedure is summarized below.

(1) Calculate the feature importance score for each
feature and rank the features according to these scores.

(2) Eliminate the last feature and use the remaining
features to construct a model.

(3) Repeat step 2 until a remarkable decrease in accu-
racy occurs.

(4) The remaining features are considered statistically
significant and are used to construct a model. Receiver
operating characteristic (ROC) are used to evaluate the
prediction sensitivity and specificity.

We used this procedure to analyze the contribution of sta-
tistically significant features to the prediction accuracy
(see Additional file 3). Finally, the top 10, 11, 5, and 10
statistically significant features were used to construct
models for SEQ, STRU, POSI and total feature sets, which
yielded AUC values of 0.919, 0.922, 0.969, and 0.978 for
Neg 1 and 0.926, 0.874, 0.954, and 0.970 for Neg 2,
respectively. Figure 6 shows ROC curves for each feature
set for the two data sets. The highest accuracy was
obtained by combining three types of feature sets. It is
clear that the positional feature set exhibits higher accu-
racy than the other two feature types. The positional fea-
tures were first investigated using miTarget, in which there
are five position-based features ranked in the top 10, all
belonging to the seed region. However, our positional fea-
tures include two pieces of information: the type of nucle-
otide and whether it matches or not.

Page 5 of 13

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:427 http://www.biomedcentral.com/1471-2105/10/427

Permutation importance Permutation importance
o o o o o o o o o o o o o
o -—h N [98) S (&2} (<2} ~ o Ll N w S
| | | | | | | ] ] ] ] ] ]
_frac — ~[1- -wo HO—
rac — oHHO
—frac /| +I[I1] - -0® HI -0
rac /| +HO-O oI
GG frac — - {1 ]- - 400 ®@O Ha -
giymafcRfrac > - = - - T3 - -
nt GUmaich_frac —| +~[CO —0O - -~
nt_mismatch_trag — - LT3 - - -~ HI-0
AA 4| H© O - -0
All H o o
AG - HI-@ - -C- ~
A — +[IOJ- -ao O Ho
Uy 4 swm@o - -0
A | B - O -0
— @ - - = - -
:» —| +H0O - O M~
A o f® R
=g - - - ®
— o ok
— F---[C—I3----+ 00 D
A — @eoco -m =
J 4 =03 wo o o @0
A% ] @3 Wlo
A 48 B
AAG 4 HO - a® —-m —
ANG - & [ ] -
AUR — am» ' Q
AUl — o HH- 3
AUG 1 o Fup
Al — HO-co o+ o
AGA — W -0 o
AGll < Hi-am o
A — ® W 3
Al — @ []
AGA 1 B ) T
ik ¥ 9
A — -{T }t---4 0® o ® ?D
‘gJ D-—I:I:I—uoo a
- " Kadl¢))
7 e ol m
-1 [ - oo -
U - @oo oo o0
=8 £ S
Uq® HI-00 8
e HIFD
-1 bo ) o
1 % e T
U 4 o HIH
— @0 'h n
— HI-co & -
A - e 0 >
AC — @ 13 n
—E-m =. @
U Ha HO—
U — oD :t - O -0
U o oo
A — ® [}
Uqo ®
38 %
N H[-O
Al 4 © (0 -0
AL — T© o [
—-nooo = |.|}| >
) — @mo [ 3
—ml:%l--ﬁ (o] 8 .’..m.@ 8
- -
:h | on{omw |
-1 HO0-® O N ) -l
2 — & ®
A { r -o® ©
_1'%'50 o D
3 ¥- « wo o &

Figure 2

Feature importance measure for sequence features. The discriminatory power of each feature was determined by cal-
culating the importance value, with larger values indicating more relevant properties. The importance distribution is shown for
each sequence feature as a box plot in which the middle bar is the median, the outer edges are the 10 and 90 percentiles and

the edges of the box are the 25 and 75 percentiles. Outliers are shown as circles. Neg_| (all experimental samples and inferred
negative samples) and Neg_2 (all experimental samples and artificial negative samples from miRanda) were analyzed separately.
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Figure 3
Feature importance measure for structural features. The three rectangles denote features related to stems, bulges and
loops.
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Figure 5
Comprehensive evaluation results. The plot displays the distribution for conditional feature importance using the cforest
function for median importance values > 0.005. Sample without replacement and return unscaled measurement.
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ROC curves for miRNA-target interactions identified using Neg_| and Neg_2. Models were developed using only
10, 11, 5 and 10 statistically significant sequences, structural and positional features and total features, respectively. ROC
curves are used to evaluate and compare the performance of miRNA-target interactions identified for four different feature

sets.

In NBmiRTar, most statistically significant features were
associated with loops and bulges, similar to the structural
features of our method. Its motif features correspond to
dinucleotide and trinucleotide sequences in our method.
Our results prove that stems greatly contribute to recogni-
tion of miRNA-target interactions. More systematic analy-
sis of dinucleotide and trinucleotide sequences was
carried out in this study. MiRTif uses various k-gram fre-
quencies as features for a triplet SVM classifier to predict
pre-miRNA [40,41]. It is thought that these features repre-
sent the real environment for miRNA-target interactions.
However, they might not be suitable for guiding experi-
mental procedures.

Conclusions

MiRNA investigation not only sheds new light on RNA
function, but can also reveal the mechanism involved in
cell function and regulation. The actual correlation and
mechanism for miRNA-target interactions are still
unclear. However, the best solution might involve a com-
bination of experimental and computational approaches.
Our results demonstrate that this method yields good pre-
diction and is robust. Moreover, the results will be useful
in designing experimental procedures. As more experi-
mental and unbiased data become available, our

approach could be improved and used to identify more
reliable predictor features reflecting real miRNA-target
interactions.

Methods

Machine learning, a broad subfield of artificial intelli-
gence, can be used to automatically extract general rules
from data sets through experience. Random forest is one
of the most accurate prediction tools currently available
for classification and regression. It is briefly described in
this section.

Random forest

Random forest (RF) contains a number of unpruned deci-
sion trees. Each tree is trained and gives a classification
using a different bootstrap sample from the original data.
RF does not need a separate test set to obtain an unbiased
estimate of the test set error because when using bootstrap
sample from the original data, approximately one-third of
the samples are left for internal estimation, which is called
OOB data. However, if measures are based on the predic-
tors' performance in the training set, there is no way of
knowing whether the predictors are over-fitted to the
training set. Instead, cross-validation should be used to
test the performance of predictors. The RF algorithm is
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widely used for classification and regression. It has been
applied in complicated interactions and for data sets with
many features, or so-called "small n, large p" problems
[35,42]. Based on a tree structure, it has some advantages,
such as interpretable classification rules and additional
information that measures the importance of features.
The important feature extraction strategy is a difficult issue
owing to the complexity of feature interaction with other
features. However, prediction of the model response can-
not be achieved for many applications. Furthermore, RF
can replace missing values by computing the median of all
values of a variable in class j when the mth variable is not
categorical, then using this value to replace all missing val-
ues for the mth variable in class j. If the mth variable is cat-
egorical, replacement is for the most frequent non-
missing value in class j. These replacement values are
called fills [35].

The rationale for permutation importance is random per-
mutation of the predictor variable X;, so its original asso-
ciation with the response Y disappeared. When the
permutated variable X;, together with the remaining non-
permutated predictor variables, is used to predict the
response, the prediction accuracy (i.e. the number of
observations classified correctly) decreases greatly if the
original variable X; is associated with the response. Thus,
areasonable measure for variable importance is the differ-
ence in prediction accuracy before and after permutation
of X;. As an improvement, conditional importance can be
considered [37,39]. Feature importance was our main
focus, which is suitable for feature selection in many
applications. In this study we used the randomForest and
party packages in R language.

Data sets and performance evaluation

All experimental data were downloaded from TarBase 4.0
[11], which records experimentally validated target data
via manual collection. The criteria for selection of training
data were as follows:

(1) Cleaved target data were eliminated because they
might be different from translation repressed targets.

(2) A miRNA-target duplex binding picture must be
available (Figure 1).

(3) Each target site sequence should not contain any
unknown nucleotide (i.e. N can represent any nucle-
otide).

Consequently, a total of 294 miRNA-target pairs (259
positive and 35 negative) were collected for six species:
Drosophila, Caenorhabditis elegans, human, mouse, rat
and zebrafish. These data contained folding information

http://www.biomedcentral.com/1471-2105/10/427

for duplexes, and truly biologically relevant simulation
adapts to feature importance measures. However, the cur-
rent set of 35 validated negative samples might not be
enough to represent the negative class (Table S2 in Addi-
tional file 4). Therefore, two artificial negative sets were
generated, as described below.

An inferred negative sample set and all negative experi-
mental samples comprised Neg 1. It has been reported
that let-7 miRNA cannot repress expression after deletion
of target sites on lin-41 [23]. In other words, the remaining
regions on the lin-41 3' UTR are not targeted by let-7
miRNA [33]. Thus, if all the actual target sites on lin-41 are
masked, then the other remaining regions with favorable
seed pairings are apposite as negative samples. The same
is true for miR-126* [43]. In practice, we used RNAhybrid
to predict the binding duplex, using only duplexes with a
match > 4 nt and discarding the other pairs to improve the
quality of the data set. Thus, 167 inferred negative sam-
ples were obtained, 65 from let-7 and 102 from miR-126*.

We also generated 1000 artificial mature miRNAs (20-24
nt long) with A, C, G and U frequencies of 0.34, 0.19, 0.18
and 0.29, respectively. These base frequencies are not con-
sistent with those in true miRNA. MiRanda was then used
to predict target sites for the 1000 artificial miRNA from
the 12,102 human 3'UTR sequences [44]. All these target
sites are presumed to be false positive predictions since
the query sequence did not include true miRNA. In prac-
tice, only 50 random artificial miRNA sequences were
used to generate artificial negative samples from the 1000
sequences, because use of all 1000 artificial sequences
yielded a set of predictions that was too large to be man-
ageable. This artificial negative set was produced using the
default MFE and SC value. In this case, MiRanda produced
78,169 false target sites, which together with the experi-
mental negative samples comprised NEG_2. TargetBoost
and NBmiRTar also generated a large negative class with
this method [22,24].

Finally, the sensitivity and specificity were evaluated. The
sensitivity for positive prediction, specificity for negative
prediction and ROC plots of the true positive rate versus
the false positive rate for varying decision cutoffs were
used as measures of the model performance.

Availability and requirements
Source code and binaries freely available for download at
http://cic.scu.edu.cn/bioinformatics/miRNA_code.zi

Programming language: Perl, R language

License: none
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