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Abstract

Background: The ultimate aim of systems biology is to understand and describe how molecular
components interact to manifest collective behaviour that is the sum of the single parts. Building a
network of molecular interactions is the basic step in modelling a complex entity such as the cell.
Even if gene-gene interactions only partially describe real networks because of post-transcriptional
modifications and protein regulation, using microarray technology it is possible to combine
measurements for thousands of genes into a single analysis step that provides a picture of the cell's
gene expression. Several databases provide information about known molecular interactions and
various methods have been developed to infer gene networks from expression data. However,
network topology alone is not enough to perform simulations and predictions of how a molecular
system will respond to perturbations. Rules for interactions among the single parts are needed for
a complete definition of the network behaviour. Another interesting question is how to integrate
information carried by the network topology, which can be derived from the literature, with large-
scale experimental data.

Results: Here we propose an algorithm, called inference of regulatory interaction schema (IRIS),
that uses an iterative approach to map gene expression profile values (both steady-state and time-
course) into discrete states and a simple probabilistic method to infer the regulatory functions of
the network. These interaction rules are integrated into a factor graph model. We test IRIS on two
synthetic networks to determine its accuracy and compare it to other methods. We also apply IRIS
to gene expression microarray data for the Saccharomyces cerevisiae cell cycle and for human B-cells
and compare the results to literature findings.

Conclusions: IRIS is a rapid and efficient tool for the inference of regulatory relations in gene
networks. A topological description of the network and a matrix of gene expression profiles are
required as input to the algorithm. IRIS maps gene expression data onto discrete values and then
computes regulatory functions as conditional probability tables. The suitability of the method is
demonstrated for synthetic data and microarray data. The resulting network can also be embedded
in a factor graph model.
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Background

Although all cells of an organism contain the same DNA,
each cell only transcribes and translates a fraction of that
DNA. Each cell has a particular interaction pattern that
involves genes, proteins and molecules; these complex
schema are known as gene regulatory networks. Full
understanding of gene interactions can be used to identify
methods to control the behaviour of genes directly
involved in disease processes. Methods used to infer pat-
terns of interaction among molecular components from
observed data are called reverse engineering algorithms.
Even if gene-gene interactions only partially describe real
networks because of post-transcriptional modifications
and protein regulation, using microarray technology it is
possible to combine measurements for thousands of
genes into a single analysis step that provides a picture of
cell gene expression. Therefore, many reverse engineering
algorithms rely on gene expression data [1]. These meth-
ods differ in the type of expression profiles used, so there
are algorithms for time-series data [2], algorithms for
steady-state data [3,4] and algorithms that work on both
types of data [5]. A graphical representation of the gene
regulatory network is often used, with Bayesian networks
probably the most popular graphical models used in this
scenario [1,5-8]. The major limitation of Bayesian net-
works is that they cannot represent cyclic structures. To
overcome this limitation, methods based on dynamic
Bayesian networks have been proposed [9-13].

However, the network topology alone is not enough to
perform simulations and predictions of how a molecular
system will respond to perturbations. The rules for inter-
actions among the single parts are needed for a complete
definition of the network behaviour. Another interesting
question is how to integrate the information carried by
the network topology, which can be derived from the lit-
erature, with large-scale experimental data. Much atten-
tion has recently been focused on the modelling [14] and
inference [15] of activation rules between molecular com-
ponents in the cell. Although this can be considered a sim-
pler problem than inference of the network topology, it is
important to point out the following:

¢ Many interaction patterns between molecular com-
ponents can be obtained from the literature (using, for
example, databases such as Ingenuity Pathway Analy-
sis) and integrated in the inference algorithm.

¢ Owing to the limited amount of experimental data,
it can be convenient to solve a simplified problem and
exploit as much as possible prior knowledge about the
phenomenon being investigated.

¢ Modelling of the interaction pattern between molec-
ular components can be useful when performing
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large-scale simulations and deriving hypotheses about
the behaviour of biological systems under different
conditions [14].

In the present study we follow this research direction.
However, instead of considering continuous expression
levels, as in [15], we use a discrete representation of gene
activation. Indeed, methods based on graphical models
often work on discrete data obtained from real-valued
gene expression profiles. The discretisation step is of funda-
mental importance for good accuracy of subsequent com-
putational steps. Slezak and Wréblewski proposed a
discretisation approach based on rough set theory in
which quality functions are used for roughly discretised
data, with inexact dependence between attribute rankings
[16]. Friedman et al. considered two different approaches
to discretise real-valued data [1]. In the first approach they
discretised expression levels to several discrete states
according to a fixed discretisation rule and demonstrated
that this approach is sensitive to the discretisation proce-
dure. In the second method they combined a linear regres-
sion model with the model dependence and
measurements, but this approach was strongly affected by
the linear dependence. Pe'er et al. proposed a new discre-
tisation procedure for each gene in which gene-specific
variation is used to estimate the normal distribution mix-
ture by standard k-means clustering [8]. A probabilistic
approach is used to identify interactions between genes,
such as activation and inhibition, so this method provides
a description of the gene network with the interaction fea-
tures, but many of these interactions are undirected.
Moreover, the discretisation step is sensitive to the choice
of the number of states that a gene may attain. In this
paper we propose a new discretisation approach that
depends on the expression profile data (both time-course
and steady-state values) for each gene, so that different
genes with different expression profiles lead to different
discretisation rules. Indeed, we also use this approach to
reduce the effect of noise.

After discretisation, the problem faced is how to infer the
rules, and not just the pattern, by which the various
molecular components interact with each other. We call
this problem the inference of regulatory relations given a
well-specified gene regulatory network. Gat-Viks et al. pro-
posed an approach to learn improved regulatory func-
tions from high-throughput data using a discrepancy
score in which discretisation is carried out as a preprocess-
ing step [17], but the discretisation rules must be deter-
mined and tuned rather arbitrarily and each variable is
discretised using the same rule. Gat-Viks et al. also pro-
posed a more flexible approach to learn the regulatory
functions in a gene network [18], which is represented as
a factor graph [19] to model cyclic structures. In this
approach discretisation is carried out according to an
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expectation maximisation (EM) algorithm that, com-
bined with the factor graph model, provides a very flexible
discretisation scheme. However, in practice this flexibility
can lead to over fitting and may decrease learnability, so
the authors suggested to use the same or a few discretisa-
tion schemes for all the variables. Chuang et al. proposed
an approach to infer gene relations from time-course
expression profiles in which first and second derivatives
are used to detect time-lagged correlated gene pairs [20].
The basic assumption is that pairs of correlated genes
exhibit either a complementary pattern (that represents a
repressor relation) or a similar pattern (that represents an
activator relation). In our approach we propose a simple
regulatory function inference that is particularly fast and
yields rather good accuracy, even if the network is cyclic.
In this step we use an observation similar to that of
Chuang et al. [20] for expression profile patterns, but here
we use discrete data. Finally, we merge the inferred regu-
latory functions into a factor graph representation as
reported by Gat-Viks et al. [18].

Implementation

Biological Model

We first define a simple model for biological networks
[17]. A biological network can be modelled through a
direct graph G(V, E), where each node v € V represents a
gene that can be in a discrete state D = {0,1}, representing
an inactive and an active state, respectively. If a genev € V
has at least one parent then it is called a regulated gene and
we define as R, the set of parents (regulators) of v. If a gene
v € V has no parents, then it is a stimulator and we define
as V. the set all stimulators of the network. In addition, we
represent the expression data using an n x m matrix M,
where n is the number of genes in the network and m is
the number of experiments performed or samples. For
each 1 <i<nand1<j<mthevalueofM i, j] is the expres-
sion level of gene i in sample j.

IRIS Algorithm

In this section we describe our approach to infer the regu-
latory relations in gene networks from high-throughput
data. IRIS needs an input network topology N, an expres-
sion profile data matrix M. The method consists of two
main steps: (i) Dicretisation and (ii) Regulation Functions
Learning. The details are reported in the following subsec-
tions.

Discretisation

This steps is aimed at computing a binary matrix from the
observed gene activation levels. The discretisation step
uses a matrix of local variation of the gene expression,
defined as M.[i, j] = Mi, j] - M{[i,j-1],j=2,.. m LetS
be the matrix of discrete states, i.e. S [i, j|] contains the dis-
crete state relative to the value M, [i, j]. The discretisation
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procedure is iterative. It first tries to fix the lower values to
zero and the upper values to one on the basis of two

i

thresholds 75, and Tup /

they are computed in order

that the interval [z}, , T;p |, for each row i, contains a

given percentage, ¢, of the second and third quartiles of
the data. The other values are then fixed on the basis of
their nearby values.

We extensively tested various values of « for various data-
sets, and the results showed that it can be arbitrarily cho-
sen in the range 5%-35% without significantly affecting
the results. In all the experiments reported below we
choose « as the minimum of this range.

We compute the first discretisation step using the rule:

0 if M[i, j] <0 AND M([i, jl€ (=0, T spm]

Sli,jl=4 1 if Mi,jl= 0 AND M[i, jl € [t},, +e)
NaN Otherwise
(1)
with 2 <j<m. And for j = 1 we use:
0 if M[i, 1] € (—oo, Tziiown]
Sli,1l=3 1 ifMli,1]e [t} +eo) (2)
NaN Otherwise

Figure 1 shows an example of matrix S for three genes A,
B and C. The values of S computed as above are used to
compute neighbouring values. In particular, the uncertain
values (NaN) are recovered as follows:

i 0 Sl =11 =0 AND Sli j+1]= 0 AND M, < 5,
"IEV1 ifSli, j-1]=1 AND S[i, j + 1] = 1 AND M[i, j| > &,

3)
€] €2 €3 €3 €4 €5
Al 1l 0 0 | NaN | 1 0
B | O | NaN | 1 0 1 1
C |1 0| NaN [ 1 | NaN | 1 0
Figure |
Example of the discrete state matrix S.
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ifS[i, j —1] =1 AND S[i, j + 1] = NaN AND MTi, j] <0
if S[i, j — 1] = NaN AND §[i, j +1] =1 AND MTi, j] =2 0
if S[i, j—1] = 0 AND Si, j + 1] = NaN AND Mi, j]< 0
if S[i, j —1] = NaN AND SJi, j+1] =0 AND Mi, j]< 0

4)

with 2 <j <m - 1 and where ¥; is the median value for the

Sl jl =

o O = =

expression of gene i. To apply these rules we use an itera-
tive approach that runs until either all values are assigned
to a valid active/inactive state or no recovery action is per-
formed in the last iteration. Figure 2 shows an example of
recovery computation.

Regulation Functions Learning

In this step we use the matrix S to compute the PTs and
TTs. To infer the PTs we use relative frequencies. Consider
a gene v and the set of its regulators R,. Then the matrix S
contains several state assignments for the genes in R, and
vitself. Let I', be the set of all possible state assignments of
the variables in R,.

Then we have:

freq({r, v =0}) =|{r, v =0} |
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where |{r,, v = s}| are the occurrence numbers of state
assignment {r,U v =s} in S. Let

PT({v =s}|{r,}) be the conditional probability that gene
v is in state s given the state assignment r, € I',. Then we
compute the conditional probabilities for v as follows:

freq({ry,v=0})
freq({ry,v=0})+ freq({ry,v=1})

PT({v=0}|{r,}) =

Vr,el',in$S
freq({ry,v=1})

P =B ) = =0} )+ freq( iy w=1))

(6)

Using (6) we compute the TT for each gene as:

0 if PT({v="0}[{r,})>PT ({r=1}[{r,})

TI({r,}) =y 1 ifPT({v=13|{r,}) >PT ({v =0} [{r,})
-1 Otherwise

(7)

V r, € I',and where TT({r,}) represents the state response

of regulated gene v to the state assignment r, of its regula-
tors. Note that if

P({v =0} [{r,}) = P({v =1} | {r,}) = 0.50

withr,e T,  (5) 4 W N 4
_ N _ we cannot distinguish between the active and inactive
Jreq(ry, v =13) =H{r,,v =1} state, so we have an undefined response of regulated gene
| 1 I NalN NalN | 1 | 0 I NalN NaN I NalN | 0 |
Mli,jl > @; | M[i,j] > 2 Mli,jl > @; | Mi,j]| < &; | M[i,j] > &;
ﬂf'[i,j] <0 ﬂ[’[‘i,j] >0 E\I’[i,j] <0 M"[i,j] >0 f\[’[‘i,j] <0
(a)
[T] NaN J1]1]0]0] NaN 0] 0]
Mli, j| > @; Mli, j| < @;
M'[i,j] <0 M'i, 5] >0
(b)
[LftfrJifojJojofojo]
(c)
Figure 2

Recovery step example. (a) Data obtained by the discretisation rule defined in (1). (b) Data obtained after one iteration of
the rules defined in (3) and (4). (c) Final data for which all uncertain values were recovered.
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v to the state assignment {r,}. This situation is indicated
as -1 in the TTs.

Integration with Factor Graph

A factor graph is a class of probabilistic models that were
originally applied to coding/decoding problems. Using a
factor graph we can model complex domain knowledge in
which feedback loops play a fundamental role. One of the
important advantages of factor graphs is their combina-
tion with the sum-product algorithm [19], which is a mes-
sage-passing algorithm for efficiently computing marginal
distributions, even in the presence of cycles.

In our approach the factor graph model is used to com-
bine structural information (network topology) with the
inferred regulatory functions. A factor graph contains two
types of nodes: factor and variable nodes. We have a varia-
ble node for each gene and a factor node linking two var-
iable nodes if and only if a relationship between these two
nodes exists. Consider the gene regulatory network
depicted in Figure 3(a) containing four genes: A and B are
regulators of C, C is a regulator of D, and D is regulator of
B. Note that gene A is a stimulator of the network. Since
there are three regulated genes, we have three PTs repre-
senting P(C|A, B), P(D|C) and P(B|D). To translate this
gene network into an equivalent factor graph network, we
perform the following steps:

¢ Each gene node becomes a variable node of the fac-
tor graph;

e For each regulatory function a factor node must be
inserted to link the genes involved;

e Each stimulator must be linked to a specific factor
node.

Applying these rules, we obtain the factor graph in Figure
3(b). This model can answer questions such as: "What is
the probability that gene C is active given that genes A and
B are inactive?" and "What is the likelihood that genes B
and A are inactive given that gene C is active?". For this
purpose, we set the state of the observed genes and use the
sum-product algorithm to compute the posterior distribu-
tion of hidden genes. Here we follow the propagation of
belief in directed graphs for Forney-style factor graphs
[21]. If a stimulator is not fixed, then its factor node will
be set with a uniform distribution.

Some considerations about the presence of cycles are use-
ful, indeed this is one of the most important problems in
the field of Probabilistic Graphical Models (PGM). The
inference in PGM consists in the computation of marginal
probabilities of complex probability distributions defined
over many variables. Many exact and approximate algo-
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Figure 3

Modelling the gene regulatory network as a factor
graph. (a) Gene regulatory network modelled as a direct
graph. (b) Equivalent factor graph representation of the net-
work in (a).
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rithms have been proposed for this task [22] from Monte
Carlo methods to variational methods, mean field meth-
ods and belief propagation (BP). The sum-product algo-
rithm, adopted in this paper, is a special case of belief
propagation. It is well-known that belief propagation
yields exact results if the graphical model does not contain
cycles. If the graphical model contains loops, the sum-
product algorithm can still yield accurate results using lit-
tle computational effort [21]. However, if the influence of
loops is large, the approximate marginals calculated by BP
can have large errors and the quality of the BP results may
not be satisfactory. Many recent research efforts in statisti-
cal machine learning are devoted to the development of
efficient approximate inference algorithms for cyclic
graphical models (see for example [23]). For the purposes
of this paper we could have to deal with cycles in the case
of inference, when we use PTs, and computation of steady
states, when using TTs. We adopt the belief propagation
algorithm for the former and the algorithm of Gat-Viks et
al. [17] for the latter. In any case the IRIS method, pro-
posed here, is by no way influenced by the presence of
cycles. In particular IRIS takes as input the description of
the network and the expression profiles giving in output a
map of the regulatory relations between sets of regulators
and regulated genes, this means that all the information
used by IRIS are based on "local" relationships between a
gene and the set of its regulators. The influence of cycles
appears in the successive phases for the use of these rela-
tionships in inference tasks. However, the inference in
cyclic PGMs is still a very important research question in
the field of statistical machine learning and its solution is,
of course, outside the scopes of this paper.

Results

In this section we report IRIS results for both synthetic
networks and microarray expression profiles. IRIS needs a
well-defined gene network as input. We say that a gene
network is well defined if each of its interactions allows us
to distinguish between regulator genes and regulated genes.
Given a well-defined network, we have genes with zero
regulators (called stimulators representing environmental
conditions), genes with one regulator, genes with two reg-
ulators, and so on. If a gene has at least one regulator then
it has a regulatory function that describes its response to a
particular stimulus by its regulator(s). In our approach we
suppose, without loss of generality, that a gene can be in
one of two states: inactive and active, represented as 0 and
1, respectively. This assumption is commonly used in the
literature to distinguish the response of a gene to a given
experimental condition.

Given a well-defined gene regulatory network, IRIS com-
putes the regulatory functions, providing two different
descriptions: a description in which each interaction is
described as a conditional probability table, which we
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refer to as a potential table (PT), and a description where
each regulatory relation is a truth table, which, by analogy
to neural logic networks, we refer as a truth table (TT).
These two different descriptions allow different analyses.
Using the PTs we can execute an inference step to compute
the a posteriori probability of hidden genes given observed
genes, so that, for example, it is possible to understand
how to control a gene using particular environmental con-
ditions. Using the TTs we can compute the steady states of
a gene regulatory network. In this scenario, we deal with
the problem of the cyclic structure of gene networks, so we
use an approach based on the factor graph model [19] as
an inference engine and the idea of feedback sets [17] to
compute the steady states of the networks.

Results for Synthetic Networks

The synthetic networks used to test IRIS were generated
using SynTReN [24], it creates synthetic transcriptional
regulatory networks and produces simulated gene expres-
sion data that approximate experimental data. Network
topologies are generated by selecting sub-networks from
previously described regulatory networks. Several param-
eters can be used to adjust the complexity of the data set
generated. All gene expression values are normalized
between 0 (no transcription) and 1 (maximum level of
transcription). In addition, the data generated can be
altered by a specified level of biological and experimental
noise. Using SynTReN, we generated two synthetic net-
works representing a sub-pathway of the E. coli regulatory-
network (Figure 4) and a sub-pathway of the S. cerevisiae
regulatory network (Figure 5). For both synthetic net-
works we generated a data set 150 samples for each bio-
logical noise level in the set
{0.10,0.15,0.20,0.25,0.30,0.35,0.40, 0.45,0.50}, using
experimental noise levels of 0.18 and 0.25 for E. coli and
S. cerevisiae, respectively.

Most of the rules governing the activation of genes in
these networks have already been investigated in several
studies. In particular, for the E. coli network we use con-
clusions from references [25-28] to obtain the regulatory
relations for glcD, focA and lacZ. For S. cerevisiae we use the
results of Wilcox et al. [29] to obtain the regulatory rela-

Figure 4
Synthetic network for E. coli.
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Figure 5
Synthetic network for S. cerevisiae.

tion for FIT2. Since all the regulators of A2 have an inhib-
itory function, the gene will be in an active state if and
only if both regulators are inactive. For more details on
true descriptions, see Additional file 1:
regulation_true_descriptions.pdf.

Using IRIS we inferred the regulatory functions for both
synthetic gene networks. To evaluate the accuracy of the
PTs computed by IRIS, we used the Kullback-Leibler diver-
gence (Dg;) [30], which is a measure of the difference

between two probability distributions P and Q, with
Dy (P||Q) = 0 if and only if P = Q. Figure 6 shows mean

Dy (Pl |Piris) values as a function of the noise level

(asterisks). The results in terms of correct TT entries
inferred by the algorithm are reported in Table 1 for a
maximum biological 0.5. The size of each regulation
table, which depends on the number of regulator genes, is
also reported. If |R;| is the number of regulators of the ith

gene, then the regulation TT will have a size of 2R,
assuming that a gene can be in two states. The results show
that all but one activation rule were correctly inferred by
IRIS.

Both networks generated by SynTReN have an acyclic
structure, so we can use the EM-MAP algorithm [31] to
compare the performance of IRIS. We used an EM-MAP
algorithm implementation of the Bayes net toolbox
(BNT) [32] to validate the IRIS discretisation scheme. Fig-
ure 6 shows results for different discretisation methods
such as equal frequency (diamonds), global width
(squares) and equal width (circles). For these methods we
used discretisation into two bins. The EM-MAP results for
IRIS discretisation are reported in Figure 6 (crosses). The
mean values over all levels of biological noise are:

L. Dy, (Pyyel |Prris) = 0.1872 and Dy (Pl |Prps-piar) =
0.2865 for E. coll

2. Dyt (Pyyel IPiris) = 0.1743 and Dy (Pyyel |Ppasmar) =
0.1821 for S. cerevisiae.

Table 2 lists the execution times (taken using a Linux PC
with Intel Core Duo CPU at 1.8 Ghz) for IRIS and EM-
MAP. We report the running times not for an absolute
evaluation, but for a relative comparison, indeed the pro-
posed method yields similar or slightly better results than
EM-MAP and requires less computational resources. Actu-
ally the running time of IRIS depends linearly on the
number of genes, and the number of samples, however it
depends exponentially from the maximum in-degree of
the node network.

Since the IRIS discretisation scheme can be influenced by
the order of the values for expression of each gene in the
data set, it is interesting to investigate how the perform-
ance changes on randomly changing the order of the data.
This is useful for a steady-state data set, for which the
order of the expression profile has no biological meaning.
Actually the difference between the expression levels at
successive points of the profile has been often used to
characterise the behaviour of a gene in different condi-
tions, with particular reference to time course experiments
(see for example [20]), as it can be used as an indicator of
increase/decrease of expression profiles correlated in time.
IRIS makes use of this difference in the discretisation pro-
cedure to fix the values which are not significantly low or
high with respect to the mean expression level in the pro-
file. Actually we found useful to compare differences in
the expression levels over different conditions even for
non time course data. The intuitive reason for the use of
the information carried by the difference of expression
levels is based of the fact that in this way we can observe
if two or more genes have a common or an opposite pat-
tern, which are indicator of activation and inhibition
respectively. For example, suppose that we have a network
where the gene A is a regulator of another gene B and let
E, and E, be two different experimental conditions of a
steady state dataset. Suppose also that a; (b;) and a,(b,)
are the expression levels of A(B) under E, and E, respec-
tively. Now we can distinguish two different situations:

a) a, <a, and b, <b, (or a, >a2 and b, >b,): here we can
state that in the experiment E, both genes have an
expression level greater (lower) then in E;, in other
words, the two genes have a similar behaviour.
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Table I: Percentage of correct entries in the inferred truth tables for synthetic networks for E. coli and S. cerevisiae.

E. Coli
True Table vs IRIS Inferred TT
Regulated Gene Regulator Genes TT Size Correct Incorrect Undefined

gleD glcC arcA 4 4 0 0

focA arcA crp 4 4 0 0

rpoH crp 2 2 0 0

tdc crp 2 2 0 0

lacZ crp lacl 4 4 0 0

Total 16 16 0 0
Percentage 100% 0% 0%

S. cerevisiae

True Table vs IRIS Inferred TT

Regulated Gene Regulator Genes TT Size Correct Incorrect Undefined
CLN2 SSLI 2 2 0 0
CcDC28 SSLI 2 2 0 0
NOT3 SSLI 2 2 0 0
FIT2 SSLI PDRI'I 4 4 0 0
CDC6 PDRI'I 2 2 0 0
CEFI PDRI1 2 | | 0
LEU2 PDRI1 2 2 0 0
CLB6 PDRI'I 2 2 0 0
DAL80_GZF3 PDRI'I 2 2 0 0
A2 PDRI1 IPTI 4 4 0 0
Total 24 23 | 0
Percentage 95.83% 4.17% 0%

Truth tables (TTs) were computed using the data set with the maximum biological noise level (0.50). "TT Size" reports the number of possible state

. . . R; .
assignments for the regulator genes. Note that the value for the i-th regulated gene is 2| il , where |Ri| is the number of regulators and each gene
can be in two states. We distinguish the number of correct/incorrect/undefined inferred states for each regulatory relation and compute these as
percentages of the total number of states.
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Figure 6

Comparison Kullback-Leibler divergence for (a) E. coli and (b) S. cerevisiae synthetic networks. The x-axis shows
the biological noise levels used to generate the data sets. The y-axis represents the Dy, values obtained as the mean for all
tables of a network for the corresponding biological noise level. The Figure reports the Dy, values of EM-MAP obtained using
different discretisation approaches: IRIS (crosses), equal frequency (diamonds), global width (squares) and equal width (circles)
and the Dy, values obtained using IRIS algorithm both in discretisation step and in regulation function learning process (aster-

isks).

Table 2: Execution time for IRIS and EM-MAP.

E. coli S. cerevisiae

Execution Time IRIS EM-MAP IRIS EM-MAP

Biological Noise Time Time Iter Time Time Iter
0.10 0.929 s 9.447 s 6 1.833 s 14.557 s 5
0.15 0.897 s 9.435s 6 1.892s 14.399 s 5
0.20 0910s 8770 s 5 1.853 s 14510 s 5
0.25 0.905 s 8.642 s 5 1.874 s 14.381 s 5
0.30 0.968 s 8.787 s 5 1.876 s 17.446 s 6
0.35 0.965 s 8.762 s 5 1.790 s 17432 s 6
0.40 1.041 s 8.880 s 5 1.825 s 17.469 s 6
0.45 0.953 s 8.674 s 5 1.839 s 14.600 s 5
0.50 1.005 s 8.741 s 5 1.860 s 14.735 s 5

Each value was obtained as the mean for 10 runs. For EM-MAP we also report the number of iterations to reach convergence.
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Kullback-Leibler divergence for IRIS using ran-
domised data sets. The S. cerevisiae synthetic network and
the data set with biological noise of 0.5 were used in this
test. The x-axis represents the percentage of columns
swapped randomly. The Dy, values reported are the means
for 100 runs.

b) a, >a, and b, <b, (or a, <a, and b, >b,): here we can
state that in E, the gene A has an expression level
greater (lower) then in E,, whereas, the gene B has an
expression level in E; lower (greater) than in E,, in
other words, the two genes have an opposite behav-
iour which can be observed form an opposite sign of
the expression derivative for the genes in the experi-
mental condition E,.

If two genes show the behaviour of the case a) than we can
suppose that these two genes have a relationship of activa-
tion, whereas, in the second case they have a relationship
of inhibition. The fact that for steady state data we have
uncorrelated values, suggests to choose any set of points
to extract second order information. In order to maintain,
a coherence with the case of time course data, without loss
of generality, we use the previous point in the expression
profile matrix. In order to demonstrate that the choice of
the previous point does not significantly affect the results,
we evaluated the results in terms of Kullback-Leibler
divergence with the known solution on a steady state
dataset performing random permutations on the expres-
sion profile of each gene. These results reported in Figure
7 show that for different permutations the Kullback-Lei-
bler divergence is nearly constant, in other words, the
choice of the previous point has the same impact on the
results that could have the choice of any other point for
the computation of the difference. Finally, the use of mul-
tiple points instead of just the previous one did not pro-
duce significant improvements, at the expenses of an
increased computational time.

http://www.biomedcentral.com/1471-2105/10/444

Figure 8
Network for the S. cerevisiae cell cycle.

Results for Microarray Expression Profiles

We also applied the IRIS algorithm to two real data sets
comprising microarray expression profiles for the yeast
mitotic cell cycle and human B-cells.

Yeast Mitotic Cell Cycle

Figure 8 shows the network topology for the yeast mitotic
cell cycle extracted from the study by Noman and Iba [33],
where we consider only known interactions reported in
the literature. In this network the transcriptional factors
SWI4, SWI6 and MBP1 are directly linked to the cyclins
CLN1, CLN2, CLN3, CLB5 and CLB6, which bind to the
cyclin-dependent kinase protein CDC28, whereas SIC1 is
an inhibitor of the cyclin CDC28 complex. Using the liter-
ature [34,35] we obtain a description of the regulatory
relations for this network (for more details see Additional
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Table 3: Percentage of correct entries in inferred truth tables for the S. cerevisiae mitotic cell-cycle network.

True Table vs IRIS Inferred TT

Regulated Gene Regulator Genes TT Size Correct Incorrect Undefined
cDbC28 CLN3 2 2 0 0
MBP| SWI6 2 2 0 0
CLNI CLN3 2 | 0 |
CDCé CLB5 2 2 0 0
CLN2 CLNI SWi6 4 4 0 0
CLB 5 SWI6 MBPI CLB6 8 7 0 |
SWi6 CLN2 CLN3 4 2 2 0
CLBé SICI MBPI CLB5 8 6 | |
SWi4 CLN| CLN2 CLN3 8 6 | |

SicI CLNI CLN2 4 | 2 |
Total 44 33 6 5
Percentage 75% 13.64% 11.36%

This table follows the same schema as for Table I.

file 1: regulation_true_descriptions.pdf). These relation-
ships can be considered the truth tables for this pathway.
To infer the regulatory functions we use the microarray
data from Spellman et al. [36].

Table 3 compares literature truth tables with those
inferred by IRIS. IRIS properly computes the TTs for the
genes CDC28, MBP1, CLN1, CDC6 and CLN2, with an
overall accuracy of 75%, an error rate of 14% and 11%
undefined activations. One of the main advantages of the
PT representation of the regulatory functions is the possi-
bility of performing Bayesian inference with a belief prop-
agation algorithm to compute the marginal distributions
of hidden genes given observed genes as reported in Table 4.
It is interesting that the marginal distributions in the final
column of the table reflect the biological findings
reported in the literature shown in the first column of the
table.

Finally, the inferred TTs can be used to compute the steady
states of the network using an appropriate algorithm [17].
In this case three steady states are identified (Table 5).
Among them the first and the third one have been
described in literature [35].

Human B-Cells

Recent studies have demonstrated that the organisation of
a gene regulatory network often follows a scale-free nature
[37]. A scale-free network is characterised by an inverse
relationship between the number of nodes and their con-
nectivity. Another feature of gene networks is the presence
of highly connected genes (called hubs). These networks
typically contain short feedback loops. To test the suitabil-
ity of IRIS for scale-free gene regulatory networks, we
inferred the regulatory relations from human B-cell data,
for which we considered the MYC gene as a major hub.
MYC codes for a protein that binds to the DNA sequence
of other genes. When MYC is mutated or over expressed,
the protein does not bind correctly and often causes can-
cer. Both the gene expression profiles and network topol-
ogy were extracted from the results of Basso et al. [3]. The
network topology represents the MYC gene and 55 genes
directly connected to it. To infer the regulatory rules of
this network, we used a subset of 100 expression profiles
(in [3] 336 samples are used). Here we use the MYC target
gene database (MYC-DB) [38].

Because MYC-subnetwork has an acyclic structure (differ-
ently to S. cerevisiae cell cycle) we can use EM-MAP algo-
rithm to infer the PTs for this network. In order to
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Table 4: Inference results. Column "Biological Findings" lists a short description of the features of interest and references.

Biological Findings

Observed Genes

Hidden Genes

Inference Results

Strong relationship between cyclins CLB5 and CLBé [40] and CLB5 CLBé P(CLB6 = 0|CLB5 = 0) = 0.9851
between CLN/[ and CLN2 [41] P(CLB6 = ||CLB5 = 1) = 1.0000
CLBé CLB5 P(CLB5 = 0|CLB6 = 0) = 1.0000
P(CLB5 = 0|CLB6 = 0) = 0.8079
CLNI CLN2 P(CLN2 = O|CLN1 = 0) = 0.95028
P(CLN2 = I|CLNI = 1) = 0.8449
CLN2 CLNI P(CLN1 = 0|CLN2 =0) = 0.6111
P(CLN1 = 1|CLN2 = 1) = 0.6111
Inhibitory activity of SIC/ on cyclins CLB5 and CLB6 [42] sici CLB5 P(CLB5 = 0|SICI = 1) = 0.7367
CLB6 P(CLB6 = 0|SICI = 1) = 0.7367
Inactivation of MBP | and SWI6 causes CLB5 and CLBé6 levels to MBP| CLB5 P(CLB5 = O|JMBPI = 0, SWI6 = 0) = 0.7742
fall [35]
SWI6 CLB6 P(CLB6 = O|[MBP1 = 0, SWI6 = 0) = 0.8483
While CLNI and CLN2 are active, SIC/ is degraded [43] CLNI sicl P(SICI = O|CLNI =1, CLN2 = 1) = 0.6476
CLN2
Inactivation activity of MBP/ and SWI6 on CLN| and CLN2 MBPI CLNI P(CLNI =0O|MBPI = |, SWI6 = 1) = 0.6111
[44] SWI6
CLN2 P(CLN2 = O|MBP2 = |, SWI6 = 1) = 0.6148

To infer the conditional probability reported in the "Inference Results" column, the sum-product algorithm was used, and the state of the
"Observed Genes" is fixed to derive the potential behaviour of "Hidden Genes".

evaluated the method in terms of scalability, Figure 9(a)
reports the Kullback-Leibler divergences obtained by IRIS
(red asterisk line) and EM-MAP (blue crossed line) for dif-
ferent values of m/n (m is the number of samples and n is
the number of genes). As can be seen from the Figure, as
the ratio m/n increases the accuracy gets better. This is also
evident from Figure 9(b) where the percentage of correct
(blue bars), undefined (green bars) and incorrect (red
bars) evaluations of IRIS algorithm are reported.

Table 6 shows the results obtained by IRIS on the com-
plete data set composed by 100 samples. Among the genes
in MYC-DB, we obtained 93% of correct evaluations.
Genes with no specified regulation in MYC-DB such as
EEF1E1, TRAP1 and PAICS resulted up-regulated in IRIS.
In particular for PAICS this up-regulation was confirmed

in [39]. In addition there are 31 genes in the Basso et al.
network with no MYC-DB entries, IRIS identifies 24 regu-
latory relationships that deserve further biological investi-
gation.

Conclusions

This paper described a method to infer regulatory rela-
tions in gene networks from expression data. The basic
features of IRIS are a simple discretisation method to
translate real-valued measurements into two discrete
states (active and inactive) and a regulatory inference rule.
To compare the proposed approach with other methods,
we reported results for synthetic networks. The main con-
clusion is that the proposed method yields similar or
slightly better results than other well-known approaches,
but requires much less computational resources.

Table 5: Steady states for the yeast mitotic cell-cycle network obtained using IRIS

CLN3 MBPI SWié SWi4 CLNI CLN2 CLB5 CLBé6 SICI
0 0 | 0 0 0 0 0
0 0 | 0 0 | | 0
| 0 0 | | 0 0 0
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Figure 9

®)

Results on MYC-subnetwork for different m/n ratio values. The ratio m/n represents the ratio between the number of
samples and the number of genes. In (a) the comparison of the Kullback-Leibler divergences of IRIS (red asterisk line) and EM-
MAP (blue crossed line) obtained for different values of the ratio m/n (x-axis). In (b) the percentage of correct (blue bars),
undefined (green bars) and incorrect (red bars) evaluations of IRIS for different m/n ratio values.

We also tested IRIS on two real data sets to infer interac-
tion rules for the yeast mitotic cell cycle and the human
MYC sub-network. IRIS exhibited good accuracy for these
networks compared to literature-derived rules. IRIS relies
on knowledge of the network topology, which can be
extracted from on-line databases (e.g. KEGG) or can be
obtained from network reverse engineering algorithms. In
other words regulatory network parameter estimation and
model selection are treated and performed as two differ-
ent tasks. This approach could be useful in studying gene
regulatory networks with hundreds of genes as a set of
smaller sub-networks, as reported for MYC expression
profiles.

IRIS is useful for extracting the main rules within a gene
network with a well-defined topology. This information
can then be used in subsequent analysis steps, such as
probabilistic inference or as a preliminary step for build-
ing models of complex biological systems [14].
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Table 6: IRIS results for the MYC subnetwork including 55 genes directly connected to MYC.

Gene IRIS Inferred Regulation MYC-DB Regulation
HSPCI 11 Upregulation Upregulation
PPAT Upregulation Upregulation
POLD2 Upregulation Upregulation
NOL5A Upregulation Upregulation
ZRPI Downregulation Upregulation
NMEI Undefined Upregulation
EBNAIBP2 Upregulation Upregulation
APEX | Upregulation Upregulation
NDUFB5 Undefined Not Specified
PSPH Upregulation Upregulation
EEFIEI Upregulation Not Specified
CTPS Upregulation Upregulation
CclQBp Upregulation Upregulation
SRM Undefined Upregulation
CCT3 Upregulation Upregulation
NOLCI Upregulation Upregulation
JTvi Upregulation Upregulation
TRAP| Upregulation Not Specified
BOPI Undefined Upregulation
IARS Upregulation Upregulation
EIF3S9 Upregulation Upregulation
PAICS Upregulation Not Specified
RRSI Upregulation Upregulation
RCL Undefined Upregulation
POLRIC Upregulation Not Present
DKFZP564M 182 Downregulation Not Present
HPRTI Upregulation Not Present
C4orf9 Upregulation Not Present
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Table 6: IRIS results for the MYC subnetwork including 55 genes directly connected to MYC. (Continued)

http://www.biomedcentral.com/1471-2105/10/444

MRPL9 Upregulation Not Present
LOC283537 Downregulation Not Present
STAT3 Downregulation Not Present
TUFM Undefined Not Present
SUPV3LI Upregulation Not Present
MRPL3 Upregulation Not Present
LIMK2 Upregulation Not Present
ATP6VOD | Downregulation Not Present
MXI Upregulation Not Present
TOMM40 Upregulation Not Present
cycl Upregulation Not Present
NOLA2 Upregulation Not Present
MRPLI2 Upregulation Not Present
TIP-1 Undefined Not Present
BYSL Upregulation Not Present
PFAS Upregulation Not Present
ZT86 Undefined Not Present
TRA@ Undefined Not Present
PRMT3 Upregulation Not Present
MGC27165 Undefined Not Present
ATIC Upregulation Not Present
HSD17B8 Upregulation Not Present
SSRPI Undefined Not Present
TEGT Downregulation Not Present
TCPI Upregulation Not Present

Cdna_flj30991

Undefined

Not Present

IDH3A

Upregulation

Not Present

Note: Not Specified indicates a gene for which an entry exists in MYC-DB but for which no information on regulation is available; Not Present
indicates a gene for which no entry in MYC-DB exists; Undefined indicates a situation for which IRIS cannot distinguish between up- and down-
regulation.
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