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Abstract

Background: Predicting the function of a protein from its sequence is a long-standing challenge of
bioinformatic research, typically addressed using either sequence-similarity or sequence-motifs.
We employ the novel motif method that consists of Specific Peptides (SPs) that are unique to
specific branches of the Enzyme Commission (EC) functional classification. We devise the Data
Mining of Enzymes (DME) methodology that allows for searching SPs on arbitrary proteins,
determining from its sequence whether a protein is an enzyme and what the enzyme's EC
classification is.

Results: We extract novel SP sets from Swiss-Prot enzyme data. Using a training set of July 2006,
and test sets of July 2008, we find that the predictive power of SPs, both for true-positives
(enzymes) and true-negatives (non-enzymes), depends on the coverage length of all SP matches
(the number of amino-acids matched on the protein sequence). DME is quite different from BLAST.
Comparing the two on an enzyme test set of July 2008, we find that DME has lower recall. On the
other hand, DME can provide predictions for proteins regarded by BLAST as having low
homologies with known enzymes, thus supplying complementary information. We test our method
on a set of proteins belonging to 10 bacteria, dated July 2008, establishing the usefulness of the
coverage-length cutoff to determine true-negatives. Moreover, sifting through our predictions we
find that some of them have been substantiated by Swiss-Prot annotations by July 2009. Finally we
extract, for production purposes, a novel SP set trained on all Swiss-Prot enzymes as of July 2009.
This new set increases considerably the recall of DME. The new SP set is being applied to three
metagenomes: Sargasso Sea with over 1,000,000 proteins, producing predictions of over 220,000
enzymes, and two human gut metagenomes. The outcome of these analyses can be characterized
by the enzymatic profile of the metagenomes, describing the relative numbers of enzymes observed
for different EC categories.

Conclusions: Employing SPs for predicting enzymatic activity of proteins works well once one
utilizes coverage-length criteria. In our analysis, L > 7 has led to highly accurate results.

Background tal shotgun sequencing to study diverse microbial systems
Recently there has been a rapid growth in the number of = has made metagenomics a vastly growing field leading to
putative proteins derivable from new genomic and  a flux of data, calling for development and application of
metagenomic data [1]. The extended use of environmen-  new tools that allow its investigation [2]. Conventional
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tools for predicting the function of a protein from its
sequence are based on sequence-similarity [3] or
sequence-motifs [4,5]. Here we outline a relatively simple
and straight-forward method that is applicable to large
numbers of sequences. Its purpose is finding whether each
protein in the data is an enzyme and, if so, what its EC
classification is. This Data Mining of Enzymes (DME) is
based on the Specific Peptide (SP) method of [6], and is
carried out by comparing the sequences of all proteins
with a list of all SPs and looking for matches of the latter
in the data.

SPs are strings of amino-acids, extracted from enzyme
sequences using the motif extraction algorithm MEX [7].
They are selected for their specificity to levels of the
Enzyme Commission (EC) 4-level functional hierarchy.
We have updated the SP set of [6] by extracting it from all
Swiss-Prot enzymes of July 1st, 2006. More details are pro-
vided in Methods.

Using SPs for prediction of enzymatic function needs
some further decisions as to what to do if various SP hits
on the same protein have EC assignments that are not
consistent with one another. Moreover, one should
decide when a single SP hit is sufficient to make a predic-
tion. The methodology developed here relies on coverage
length (overall number of amino-acids) of consistent SP
hits. This is further described below, when testing per-
formance on an enzyme test set, and when discussing a
ten-organism test-set that contains non-enzymatic as well
as enzymatic proteins. We develop a random model for
the latter to assess the effect of accidental SP matches. The
resulting methodology, which we call Data Mining of
Enzymes (DME), is being applied to analyze several
metagenomes.

Methods

The new SP sets

A novel method based on sequence motifs has been pro-
posed by [6], who have studied enzymes in the Swiss-Prot
database. They have demonstrated that enzyme functions,
as represented by the four-level EC hierarchy, can be
deduced from the appearance of deterministic short
strings of amino-acids, denoted as Specific Peptides (SPs),
on these enzymes. The SPs were derived from enzyme
sequence data using an unsupervised motif extraction
algorithm MEX [7], and filtered by the EC so that each SP
is specific to a particular EC branch, specifying the EC
function that the enzyme performs. Thus, if an extracted
motif is found to occur on enzymes belonging to only one
EC number (i.e., 4th level of the EC hierarchy), this pep-
tide will be declared to be an SP labeled with this EC
number. If, however, the motif occurs on several EC num-
bers, all of which share the same 3rd-level hierarchy (i.e.
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the first three digits of their EC numbers are the same), the
motif is declared as an SP with labeling at the third level
of EC hierarchy, etc. The SPs of [6] comprise on average
8.4 amino-acids (SD 4.5), and were shown to compete
favorably with a Smith-Waterman based SVM classifier.
Usage of the SP methodology is demonstrated by our
web-tool http://adios.tau.ac.il/DME. Given the sequence
of an enzyme, this tool searches through the set of all SPs
and finds which of them coincide with substrings of the
sequence, indicating where they lie, what is the EC assign-
ment associated with each SP, and provides the EC pre-
dicted by the DME method for the protein that is being
queried.

Kunik et al [6] have investigated 50,698 enzyme
sequences of the 48.3 Swiss-Prot release of October 2005.
We have used the same methodology and applied it to all
enzymes in the Swiss-Prot/Enzyme records of July 1st,
2006. The number of enzymes that have a single EC
assignment is 89,854. Applying MEX and filtering it by EC
levels in the same way as [6], we have obtained 87,017
SPs. This new 1stlist of SPs serves as the basis for develop-
ing and analyzing our methodology.

In making the prediction of an EC number (i.e. 4thlevel of
the EC hierarchy) based on one SP match, or several SP
matches that have the same EC number assignment, we
require that the total number of amino-acids of the pro-
tein matched with these SPs be at least seven. We refer to
this number as the coverage-length L. If L at level 4, L4, is
less than 7, we check for SP hits that are consistent at level
3 of the EC hierarchy, i.e. have identical first three digits
in their assignments. Once again, a prediction is made if L
at level 3, L3, is at least 7. In principle, the threshold of L
at every EC level can be viewed as a parameter of our
method. Reducing L increases recall at the expense of low-
ering precision, as will be discussed below.

Test data were downloaded from Swiss-Prot Release 56 on
July 1st, 2008. We consider two types of test sets. The
"Enzyme Test Set" consists of all enzymes integrated into
Swiss-Prot between July 1st of 2006 and 2008. The "10
Organisms Test Set" consists of proteins of E. coli and 9
other bacteria (see Additional file 1, Table S1 for details)
containing enzymes from the same period of 2006 to
2008, and all other proteins incorporated into Swiss-Prot
by July 1st, 2008. A summary of all the relevant data is dis-
played in Table 1. It includes also information about pre-
cision and recall (for definitions see below) that will be
further discussed in the first Results section. These values
are obtained by determining 3rd level EC assignments,
using coverage-length of L3 > 7. Precision values of 100%
on the training sets are of course trivial results of specifi-
city.
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Table I: Compilation of training and test datasets.
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Dataset Selection Criteria from Swiss-Prot Number of Proteins (and SPs) Precision Recall
Training set #1 Single EC annotation and Date-Integrated before 7/1/2006 89,854 100% 85%
(#SPs = 87,017)

"Enzyme Test Set" EC annotation and Date-Integrated between 7/1/2006 and 7/ 24,443 98% 70%
1/2008

"Ten Organism Test-Set" EC annotation and Date-Integrated between 7/1/2006 and 7/ 4,509 98% 76%
1/2008 and all non-enzymes before 7/1/2008

Training set #2 Single EC annotation and Date-Integrated before 7/27/2009 201,169 100% 94%

(#SPs = 312,465)

54% of the proteins in the 1st training set carry Swiss-Prot
annotations of 'active site', 'binding site' or 'metal binding
site' at specific locations of single amino-acids. SPs cover
these functionally important sites significantly more than
other loci on proteins, thus indicating biological signifi-
cance of SPs (for an extensive discussion see [8], in partic-
ular Table 1 there). SP matches that overlap such sites are
compiled, and the corresponding SPs are denoted as
Annotated SPs (ASPs). We have thus compiled a list of
6,078 ASPs. All appear at least four times in the training
set, and the location of the annotation is consistent in the
different appearances. Most ASPs carry single annotations
(1,900 active sites, 1932 binding sites and 1,819 metal
binding sites), 418 ASPs carry two annotations and 3 ASPs
carry all three annotations.

A second set of SPs is extracted from Swiss-Prot data dated
July 27th, 2009. This training set, consisting of all singly
annotated enzymes, contains 201,169 proteins. It has led
to 312,465 SPs. Their length distribution is presented in
Additional file 2, Figure S1. This set includes 285,485 SPs
with labels corresponding to EC levels 3 and 4 (contain-
ing 257,598 SPs of length > 7). Only SPs with EC labels at
levels 3 and 4 are relevant for the assignment of EC level-
3 annotations to proteins, and hence for the calculation of
recall included in Table 1. It should be emphasized that
only 191,275 of the Swiss-Prot annotated enzymes in the
training set carry EC annotations at levels 3 and 4. They
are the ones on which the EC predictions at level 3 are
tested, leading to the recall result of 94%. The 2nd SP set
is being used for the analysis of metagenomic data and is
incorporated in our web-tool at http://adios.tau.ac.il/
DME.

Estimate of accidental SP matches

Proteins that do not possess enzymatic functions may still
have a substring that matches an SP. Such SP matches will
be called 'accidentals'. Their occurrences can be modeled
by SP hits on random protein sequences. Such random
sequences are generated from real data by scrambling the
order of the amino-acids in every protein, conserving only
first-order statistics. 3 such sets were produced in order to
measure the expected random hits. Estimates of the prob-

abilities of accidental occurrences of SPs are derived below
for the 10 organism test-set and for Sargasso Sea data.

Recall-precision analysis of EC annotations in enzymes
Comparing the results of our method with an expert-
method (such as Swiss-Prot) we face three possible situa-
tions when dealing with a collection of enzymes: P|P
where the model prediction coincides with that of the
expert, P|DP where the expert provides a different EC
assignment, and NP|P where the model provides no pre-
diction for enzymes whose EC assignments are given by
the expert. Accordingly we define the following measures
in terms of number of occurrences:

PRECISION = —NPIPL___
N[P|P]+N[P|DP]
RECALL = NIPIP]
NI[P|P]+N[P|DP]+N[NP|P]

This is a generalization of the common terms used in
binary classification problems where P|P, P|DP and NP|P
are replaced by true-positive, false-positive and false-neg-
ative correspondingly.

Recall-precision analysis of EC annotations in proteins
Extending the previous analysis to a collection of proteins
we have to add two more possibilities: P|NP, where the
new method has an EC prediction whereas the expert does
not have one, and NP|NP where both do not have any EC
assignment. Whereas the latter corresponds to true-nega-
tive in a binary classifier, the former, P|NP could be added
to P|DP as 'false-positive'. Since, however, there are many
cases where the absence of an EC assignment does not
imply that the protein in question is not an enzyme, we
opt to define a new measure, putative novelty ratio, as the
fraction of such P|NP out of all the predictions of the
model:

PUTATIVE _ NOVELTY = N[P|NP]
N[P|P]+N|P|DPJ+N|[P|NP]
Other measures one can define are
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SPECIFICITY = N[NP|NP]
N[NP|NPJ+N[P|DP}+N[P|NP]
ACCURACY = N[P|P]+N[NP|NP]

N[P|P]+N[P|DP]+N[P|NP]+N[NP|P]+ N[NP|NP]

They are the analogs of

TRUE _ NEGATIVE
TRUE _ NEGATIVE+FALSE _ POSITIVE

SPECIFICITY =

and

TRUE _ POSITIVE+TRUE _ NEGATIVE
TRUE _ POSITIVE+TRUE _ NEGATIVE+FALSE _ POSITIVE+FALSE _ NEGATIVE

ACCURACY =

in conventional binary classifications.

Results

Analysis of the Methodology

Analysis of the Enzyme Test Set using the st SP set

In making the prediction of an EC number (i.e. 4th level
of the EC hierarchy) based on one SP match, or several SP
matches that have the same EC number assignments, we
require that the total number of amino-acids of the pro-
tein matched with these SPs be at least seven. We refer to
this number as the coverage-length L. In principle, the
threshold of L at every EC level can be viewed as a param-
eter of our method. Reducing L increases recall at the
expense of lowering precision. This is exemplified in Table
2, where we analyze our enzyme test set and show preci-
sion and recall at 3rd EC level as function of the L3 thresh-
old.

Although precision turns out to be quite high, even for
low L3 values, recall is low when compared to what BLAST
[9] can achieve on this test-set. Using the most significant
outcome of a BLAST search against the 1st training set as
its prediction, and limiting the most significant e-value to

Table 2: Variation of precision and recall of DME (based on the
Ist SP set) on the enzyme test-set as function of the L3
threshold.

L3 threshold precision Recall
5 95.1% 72.4%
6 95.8% 72.3%
7 98.4% 70.0%
8 99.4% 67.1%
9 99.5% 66.2%
10 99.5% 65.4%
I 99.5% 65.0%
12 99.6% 64.8%
13 99.6% 63.9%
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stay below e-05, we find BLAST precision of 98% and
recall of 95%, to be compared with DME values of 98.4%
and 70% when setting L3 > 7. Thus while precision is sim-
ilar, DME loses on recall. There is no direct relation
between DME and BLAST, although high coverage-length
L values of DME go usually hand in hand with very low e-
values of BLAST. Differences may occur for low L values of
DME, and relatively high e-values in BLAST. We refer to
Kunik et al. [6] for a discussion of such examples (see
Table four there). The advantages of SPs in resolving clas-
sification problems in situations of remote homology
have been discussed and exemplified by [8].

It is worthwhile pointing out that the fact that one can
abide by such a small threshold value of L > 7 is strongly
connected to our requirement that the SP matches on the
protein's sequence be exact. If one were to allow for inser-
tions or deletions or replacements, such as the
BLOSUMG62 matrix [10], this would not work. Based on
various trials we may state that, whereas reliance on BLO-
SUM works well for BLAST searches over large sequences,
it ruins predictivity and specificity of SP searches even if
only single amino-acid changes are allowed.

Analysis of the ten organism test-set

The ten organism test-set contains 4,509 proteins of E. coli
and 9 other bacteria listed in Additional file 1, Table S1.
Proteins for this dataset were downloaded from Swiss-
Prot on July 15t2008 and include all proteins that had no
EC annotation in Swiss-Prot prior to July 15t 2006. The
intersection between the 10 organism test-set and 15ttrain-
ing set used to build the SPs is void and allows us to
develop and test the SP methodology on general pro-
teomic data rather than on enzymes only. SP search on
this dataset, using our 15tset of 87,017 SPs (see Methods),
leads to the results shown in Figure 1, sorted according to
the number n of SP matches.

1,079 proteins have at least one SP match (or 'hit'). Some
of them may be due to random hits and our task is to
resolve which of the hit proteins should be recognized as
enzymes and what their EC assignments should be. As
before, we propose to rely on coverage length. We judge
the prediction not by how many SP hits (with consistent
annotations) are observed, but by L3, the number of
amino-acids matched by all SP hits whose EC assignment
is identical within the first three digits of the EC number.
In order to have some intuition about the expected noise
level, we compare in Table 3 SP hits on real data with ran-
dom model results for different values of L3. Entries of L3
= 0 refer to either no SP hits, or hits by SPs that have labels
with EC levels 2 and 1 but none at EC levels 3 and 4. The
columns random and stdev refer to the average and stand-
ard deviation of three random sets. Noise is the ratio of
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SP hits on the ten-organism test-set. The numbers of
proteins in the ten organism test-set carrying n SP matches,
for n =0 to 10. The inset shows the same data on a semi-log
scale, emphasizing the sharp exponential decrease for low n,
partially reflecting the existence of erroneous SP hits.

random/real. All 4509 proteins of the ten-organism test-
set were included in this search.

We will use L3 > 7 as our threshold criterion, as in the
enzyme data-set discussed in the previous section. We
note that predictions based on L3 = 7 may still have a large
uncertainty, however from L3 = 8 onwards random hits
become very small. Our threshold criterion leads to the
results displayed in Table 4, with precision = 98.4%, recall
=75.9%, accuracy = 95.1% and putative novelty = 35.2%.

The interest in this exercise is twofold: to see how well our
method performs on unassigned proteins, i.e. true-nega-
tives, and how good our predictions are for putative nov-
elties. Indeed, our accuracy turns out to be high, 95.1%,
which proves that we have correct negative assignments.

Table 3: Comparison of results for the ten organism test-set with
those of a random model as function of coverage-length at level
3 of the EC hierarchy.
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Seven out of the 139 putative novelties (category C in
Table 4) have been annotated by Swiss-Prot since July
2008, six out of which are at levels 3 or 4. All observations
are consistent with the predictions, as shown in Table 5.
Quoted here are also all coverage lengths on which the
predictions were based. Note that also the one based on
coverage length 7 has been validated. All this may be
viewed as an indication (although not a proof) of the
validity of DME predictions. The first six entries in Table 5
belong to E. coli, and the last protein belongs to Bacillus
cereus.

Classification based on Annotated SPs

It has been noted by [6] and [8] that some of the SPs can
be demonstrated to play important biological roles since
they carry crucial amino-acids known to serve as active
sites, binding sites or metal binding sites. Such annota-
tions are available for 54% of the enzymes in the 15t Swiss-
Prot training set. Selecting only SPs that carry these anno-
tations we obtain a set of 6,078 Annotated SPs (ASPs), a
mere 7% of all SPs. We have tested it on the enzyme test
set. Using annotation predictions at the third level of EC
we find precision 99.6% and recall 25.4%. The limited
recall is due to the fact that ASPs have been derived from
only 54% of the training set. Nonetheless they possess the
advantage of being selected due to their demonstrated
operational importance to the catalytic function. Because
of their limited recall we have not used the ASPs as the pri-
mary tool for large scale analysis; however we list their
properties in our web tool http://adios.tau.ac.il/DME.
Any queried protein can be analyzed by this tool for SP
hits and the expected DME prediction. The appearance of
ASPs may serve as providing additional credence to the
prediction, as well as specifying the positions of expected
active or binding sites.

Metagenomic Analysis

Analysis of Sargasso-Sea data

After verifying DME on the two test-sets we turn to an
analysis of the 1,001,986 records in the Sargasso Sea pro-
tein data [11]. The average length of these proteins is 194
amino-acids, with SD = 109. For this analysis we employ
our 2nd set of SPs, updated on July 2009. In order to

L3 Real Random stdev Noise reduce random hits, we have further limited our SP set to
include only peptides of length 7 amino-acids or more.
0 3768 4150.33 18.8
4 0 1.00 0 Table 4: DME predictions vs. Swiss-Prot EC (level 3) annotations
5 41 41.67 1.53 1.02 for the 10 organism Test Set.
6 305 256.00 19.1 0.84
7 106 54.33 1.15 051 DME Swiss-Prot # proteins
8 13 3.67 2.89 0.28
9 5 0.00 0 0 A P P 252
10 2 0.00 0 0 B P DP 4
I I 0.00 0 0 C P NP 139
12-15 25 2.00 1.73 0.08 D NP P 76
>15 243 0 0 0 E NP NP 4,038
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Using a random set of 5,000 proteins selected from these
data, we generated three randomized protein sets from
which we calculated the probabilities of accidental
matches. The results are displayed as function of L3 in
Table 6. The columns random and stdev refer to the aver-
age and standard deviation of three random sets. Noise is
the ratio of random/real.

Similar results are obtained for L4. The results of Table 6
are slightly better than Table 3. The reason is that we have
limited ourselves here to SPs of individual length 7 or
more. Once again we choose L = 7 as our threshold for
DME predictions. Applying DME with this threshold we
obtain EC assignments at levels 3 and 4 for 220,278 pro-
teins. All assignments are provided in Additional file 1,
Tables S2-54.

In Figure 2 we display a histogram of the 30 largest EC sub-
subclasses (level 3) that emerge from our DME analysis.
The category with the largest number of different proteins
is 6.1.1, corresponding to aminoacyl-tRNA synthetases
(aaRs). Since there are about 20 aaRS enzymes expected for
each organism, this allows us to estimate the content of the
metagenome to be of order of 800 species or so. Looking at
level 4 annotations, i.e. at specific aaRS enzymes, we find
that their numbers vary from 116 to 1326. These differ-
ences may be due both to different occurrences of aaRS
sequences in the sample, and to different efficiencies of the
SP methodology for different aaRSs. The order of magni-
tude of 1000 different species remains a reasonable esti-
mate. The same order of magnitude can be derived from
another source. Venter et al. [11] have provided some infor-
mation about single copy proteins (Table two there) in try-
ing to arrive at estimates of the number of species involved.
One such protein is the gyrase subunit B enzyme, GyrB. The
same enzyme has also been proposed by Watanabe et al.
[12] for the purpose of spanning a database for identifica-
tion and classification of bacteria. GyrB is one of several
protein families belonging to EC 5.99.1.3 (DNA gyrase).
Checking through the SPs belonging to this EC we have
found a subset that is specific to GyrB only. Using this sub-
set we estimate the number of GyrB copies in the Sargasso-
Sea data to be 1344, which is close to the number of maxi-
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mal fragment depth of 924 quoted in Table 2 of [11], and
is in the same ball-park as the aaRS estimate.

In addition to 6.1.1 (aaRS) enzymes we observe the fol-
lowing leading categories: 3.6.3 (Hydrolases catalyzing
transmembrane movement of substances involving
ATPases), 2.7.7 (Nucleotidyl transferases), 1.1.1 (Oxi-
doreductases acting on the CH-OH group of donors), and
4.2.1 (Carbon-oxygen lyases).

There are several EC numbers (i.e. level 4 of the hierarchy)
that are particularly abundant. They are presented in Table
7, where we list all cases that appear more than 2000 times
in the data. Some of them have already been mentioned
above: the DNA gyrase, and its role in estimating the
number of species, and the two ECs belonging to the
susubclass of 2.7.7 (Nucleotidyl transferases), playing
important roles in RNA and DNA polymerases.

All our predictions for the enzymatic annotations of the
Sargasso-Sea data are presented in Additional file 1, Tables
S2-S4. We wish to point out that some of the enzymes
contain two or more EC assignments. Table 8 reports
some of these occurrences. Included here are the most
abundant observations of dual EC assignments, sorted by
the numbers of proteins exhibiting the two annotations.

The first and the last entries in Table 8 have many analogs
in currently known doubly-annotated enzymes in Swiss-
Prot. Checking all proteins we find that the SP hits that
belong to the two different EC numbers do not overlap on
the protein sequences, thus falling comfortably into the
categorization of two different catalytic domains. It is
interesting to note that finding multiple domains is easier
with SPs than it is with BLAST: we will not miss out on a
small domain of a protein that may be overshadowed by
sequence similarities with a larger protein domain, and
we can immediately check whether the different catalytic
regions lie on disjoint sections of the protein. A full list of
the doubly annotated Sargasso-Sea enzymes is presented
in Additional file 1, Table S3. A further list of triple-enzy-
matic annotations is presented in Additional file 1, Table
S4.

Table 5: DME predictions for the ten-organism test-set are compared with recent Swiss-Prot EC assignments.

id DME Prediction (15t SP set) LI L2 L3 L4 Current Swiss-Prot EC annotation
P06610 11 25 22 22 0 |

P07821 363 25 25 25 0 3.6.3.34

POA9VI 3.63 7 7 7 0 3.63

P33360 363 13 13 13 0 3.63

P76469 4.12 9 9 9 0 4.1.2.n3

P77257 3.6.3.17 14 8 8 8 3.63

Q8IIT9 3.6.1 58 58 58 0 3.6.1

LI to L4 are the coverage-lengths at EC levels | to 4 respectively
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Table 6: Numbers of sequences with consistent SP hits (same
category at level 3 of the EC hierarchy) are compared between
5000 proteins randomly chosen from Sargasso-Sea data, and a
corresponding random model, as function of coverage-length.

L3 Real Random stdev Noise
0 3,910 4,868 5.1

7 235 127 5.5 0.54

8 71 6 2.1 0.08

9 40 0 0

10 27 0 0

>0 717 0 0

Human Gut Metagenome

Gill et al. [13] have analyzed the DNA sequences obtained
from fecal DNA of two healthy adults - 'subject 7' a female
aged 28 and 'subject 8' a male aged 37. We have analyzed
the resulting proteins (downloaded from http://
img.jgi.doe.gov/m/) with our DME method. The two pro-
teomes of subjects 7 and 8 consist of 20,523 and 25,980
proteins correspondingly. We predict enzymatic annota-
tions for 3,428 proteins of subject 7 and 4,102 proteins of
subject 8. These numbers are relatively lower than the

18,000
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enzymatic content of Sargasso-Sea. Numbers of 6.1.1
enzymes are predicted to be 260 and 264 for subjects 7
and 8 respectively. Thus the number of different species
contained in these samples is scaled down by two-orders
of magnitude compared to the Sargasso-Sea data, which is
quite reasonable given the size of the databases. Further
comparisons between the three metagenomes are offered
in the next section.

Enzymatic Profile

Trying to compare different metagenomes with each other
one has obviously to resort to some normalization
method. Normalizing the results of a histogram like Fig-
ure 2 by the total number of enzymes that we find, we
obtain a spectrum characteristic of the genome or metage-
nome we study, which we will refer to as its enzymatic
profile.

Figure 3 depicts such profiles for the examples studied in
this paper, the Sargasso Sea one, and the two gut metage-
nomes, all based on DME predictions. Since all three are
bacterial metagenomes the leading EC categories are quite

16,000

14.000

12,000

10.000

8.000

6.000

4.000 -

2.000

1
1.21
1.6.99
1

Figure 2

3.4.24
3.6.1
3.6

3.4.21

Numbers of enzymes predicted in Sargasso-Sea data. Numbers of enzymes predicted by DME in the Sargasso-Sea data.

Shown are the thirty leading level 3 EC categories.
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Table 7: Leading occurrences of EC-numbers in Sargasso-Sea data
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EC # proteins Enzymatic activity

2.7.7.6 5,993 DNA-directed RNA polymerase

1.6.99.5 2,999 NADH dehydrogenase (quinone)

5.99.1.3 2,610 DNA topoisomerase (ATP-hydrolysing). DNA gyrase.
6.3.5.5 2,198 carbamoyl-phosphate synthase (glutamine-hydrolysing)
3.6.3.14 2,169 H*-transporting two-sector ATPase. ATP synthase.
2.7.77 2,083 DNA-directed DNA polymerase

similar. The identities of the leading categories have
already been described in the previous section.

In spite of the obvious similarities, there exist differences
among the three histograms. We use the absolute value of
the difference of any two distributions as the difference
measure (theoretically limited to vary between 0 and 2).
Taking into account all level-3 EC predictions we obtain
the distances between the different distributions pre-
sented in Table 9. As expected, the two gut metagenomes
are the closest pair.

It has been emphasized by [14] and by [15] that the func-
tional characteristics of a metagenome vary with the envi-
ronment in which it is being found. Hence we expect the
genetic enzymatic profiles to vary accordingly. Our exer-
cise shows that the gross features of microbial communi-
ties may be similar, thus more attention will have to be
paid to smaller details, in particular emphasizing the cases
where the relative differences between EC categories are
the largest. This may become a useful tool in the future.

We wish to close this section by emphasizing that the
three metagenomic profiles are different from those
derived from the genome of E. coli, and very different
from human. The comparisons are presented in Addi-
tional file 2, Figure S2, drawn according to the top 20 cat-
egories of E. coli, and Additional file 2, Figure S3,
displaying the top 20 categories of human. It is quite evi-
dent that the weights (or numbers of different genes) of
different EC categories change considerably from human
to E. coli to bacterial metagenomes. This implies that
enzymatic profiles contain information that may be of
value in future studies of novel genetic material.

Table 8: Some examples of doubly annotated enzymes
uncovered by DME in the Sargasso-Sea data.

Prediction a Prediction b # Proteins
3.5.425 4.1.99.12 27

3.6.3.44 2.7.1.130 6

1.1.1.205 1.7.1.7 6

2.7.1.25 2774 6

Discussion

Using SPs it seems quite straightforward to perform data-
mining of enzymes. There are however several provisos: a)
although a majority of enzymes carry SPs, there exists a
minority that does not; hence not all enzymes are
expected to be discovered in a new dataset. b) SPs were
substantiated on a training set, and their generalization
carries with it some error, even on a test set composed of
enzymes only. Errors may be due to a) changes in the offi-
cial EC classification of an enzyme, or b) real biological
changes such as evolutionary loss of an active site in a pro-
tein that resembles a known enzyme but has no catalytic
function, or c) random appearance of SPs on proteins that
have no catalytic activity. Errors due to reclassification of
EC numbers cannot be controlled in any a-priori manner.
The question of functionality loss can be partially checked
through searching for the absence of annotated SPs in
cases where such annotations may be expected for the
enzyme in question. This demonstrates the importance of
detailed corroboration of each individual prediction of
the large-scale method studied here. The third source of
errors, due to random appearance of SPs on proteins other
than enzymes, has been taken into account by limiting
our predictions to consistent SP hits with minimal cover-
age length of 7, and specifying the L values of our predic-
tions as a measure of their confidence.

DME is based on deterministic motifs only, i.e. strings
with specific sequences of amino-acids. Comparing it
with the well-known motif method of Prosite patterns [5],
by using available information in Swiss-Prot, we find that
the latter has precision of 97% and recall of only 47% on
the Enzyme test set, thus falling short of DME predictions.
When comparing DME to BLAST on the enzyme test-set
we found that DME had comparable precision (98.4% vs
98%) while BLAST has much better recall (95% vs
70.0%). Note that this comparison was based on the 15tSP
set of July 2006.

It should be appreciated that the comparative procedure
based on the Enzyme test set has some bias in favor of
BLAST, because the latter serves as one of the inputs to
Swiss-Prot assignments. As a result, cases of remote
homology which may be captured by DME could have
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Figure 3

Enzymatic profiles. Enzymatic profiles of three metagenomes. Compared are the relative numbers of identified enzymes in
the 30 leading sub-subclasses (EC level 3) of the Sargasso-Sea meatagenome with those of the gut microbiomes.

been missed by BLAST-based assignments, as was demon-
strated by [6] and by [8]. The SP-based search has two
other advantages over BLAST: it is conceptually simpler,
relying only on a look-up table, and it points to specific
locations on the queried protein which may be relevant to
the expected catalytic function of that enzyme. Hence it
may have wide practical implications for enzyme research
and development.

In spite of all the precautions outlined in the first para-
graph, our predictions concerning the 10 organism test-
set reported in this paper, do extremely well. Moreover,
note that the recall quality of SPs on their training sets
increased dramatically from 85% in 2006 to 94% in 2009
(see Table 1). This means that the minority of enzymes

Table 9: Absolute values of differences between enzymatic
profiles, based on the DME predicted distributions at level 3 of
EC.

Metagenome Sargasso Subject7 Subject8
Sargasso 0 0.42 0.41
Subject? 0.42 0 0.18
Subject8 0.41 0.18 0

without SP hits diminishes with time. The reason is quite
clear: MEX thrives on redundancy of patterns in the data.
Therefore, the more proteins of the same family there are
in the database, the better MEX will perform. As these lists
fill up in the Swiss-Prot database, they can be better repre-
sented by simple SP motifs. Higher recall on the training
set will undoubtedly reflect itself also as higher recall on
future test sets, thus suggesting that the gap between the
recall of BLAST vs DME will shrink with time. Indeed, car-
rying out a DME analysis, based on the 2nd SP set, of
19,849 enzymes that have been added to Swiss-Prot from
July 28 to Sep 29, 2009, we find on this novel test set pre-
cision of 99.2% and recall of 92.4%. This is a considerable
increase over the recall of 70% of the 15t SP set measured
on the enzyme test set (see Table 1).

A straightforward peptide characterization of protein fam-
ilies seemed hopeless a decade or two ago, and hence
necessitated the development of more sophisticated
approaches such as BLAST, to quantify sequence similari-
ties. Our analysis demonstrates that this has changed with
time (and increasing amounts of data) so that nowadays
the SP approach may be regarded as a useful tool, leading
to valuable information. Such information, for three
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metagenomic data-sets, has been presented here as an
example of the power of our novel methodology.

Conclusions

The requirement that SP occurrences on protein
sequences has some minimal coverage length, e.g. L > 7
amino-acids in our analyses, leads to the novel tool of
DME. It is applicable to large genomic and metagenomic
data, and provides a good indicator for the enzymatic clas-
sification of the queried proteins, based on a look-up
table only. A web tool identifying SP (and ASP) occur-
rences on any queried protein sequence, and providing
the EC prediction of DME, is available online at http://
adios.tau.ac.il/DME.
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