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Abstract

Background: The study of biological networks has led to the development of increasingly large
and detailed models. Computer tools are essential for the simulation of the dynamical behavior of
the networks from the model. However, as the size of the models grows, it becomes infeasible to
manually verify the predictions against experimental data or identify interesting features in a large
number of simulation traces. Formal verification based on temporal logic and model checking
provides promising methods to automate and scale the analysis of the models. However, a
framework that tightly integrates modeling and simulation tools with model checkers is currently
missing, on both the conceptual and the implementational level.

Results: We have developed a generic and modular web service, based on a service-oriented
architecture, for integrating the modeling and formal verification of genetic regulatory networks.
The architecture has been implemented in the context of the qualitative modeling and simulation
tool GNA and the model checkers NUSMV and CADP. GNA has been extended with a verification
module for the specification and checking of biological properties. The verification module also
allows the display and visual inspection of the verification results.

Conclusions: The practical use of the proposed web service is illustrated by means of a scenario
involving the analysis of a qualitative model of the carbon starvation response in E. coli. The service-
oriented architecture allows modelers to define the model and proceed with the specification and
formal verification of the biological properties by means of a unified graphical user interface. This
guarantees a transparent access to formal verification technology for modelers of genetic
regulatory networks.

Background consist of dozens or even hundreds of variables describing
The study of genetic regulatory networks, as well as other ~ the molecular species involved in a variety of intracellular
biological networks, has led to the development of  processes [2-7]. Computer tools are essential for the sim-
increasingly large and detailed models [1]. The models  ulation of the dynamical behavior of the networks from
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the models, for instance when predicting the response of
the system to an external perturbation. However, as the
size of the models grows, it becomes infeasible to manu-
ally verify the predictions against experimental data or
identify interesting features in dozens of simulation
traces. This calls for the use of automated and scalable
methods that help the modeler with the identification
and verification of interesting dynamical properties of the
network. The field of formal verification provides promis-
ing methods to prove or disprove specified properties of a
system. These methods proceed by an exploration of all
possible behaviors of the system, following two main
approaches: logic inference, based on the use of axioms
and proof rules [8], and model checking, based on an
automatic and exhaustive search of the state space [9]. In
this paper, we focus on the model checking approach. The
basic idea underlying model checking is to specify dynam-
ical properties of interest as statements in temporal logic,
and to use model-checking algorithms to automatically
and efficiently verify whether the properties are satisfied
or not by the model [9]. In recent years, several examples
of the application of model checking to the analysis of
biological regulatory networks have been published in the
literature (e.g., [10-21]).

According to our experience, there are currently two major
obstacles that prevent modelers in systems biology from
drawing maximal benefit from formal verification tools.
First, the formulation of biological questions in temporal
logic and the interpretation of the verification results is far
from obvious, especially for non-expert users who are not
used to this kind of reasoning. Second, most of the exist-
ing modeling and simulation tools are not capable of
applying model-checking techniques in a transparent
way. In particular, they do not hide from the user the tech-
nical details of the installation of the model checker, the
export in a suitable format of the model and the query, the
call of the model checker, and the import of the results
produced by the model checker (the true/false verdict and
witnesses/counterexamples). In other words, what is
missing is a framework that tightly integrates modeling
and simulation tools with formal verification tools, on
both the conceptual and the implementational level.

In order to address these issues, we propose a service-ori-
ented architecture (SOA) [22] for the integrated modeling
and formal verification of genetic regulatory networks,
which reuses existing technology as much as possible. The
architecture connects modeling and simulation clients to
a formal verification server, via an intermediate request
manager. In particular, the client can perform verification
requests through the web, which the request manager dis-
patches to an appropriate formal verification server. When
the formal verification server has answered the request,
the results are sent back to the modeling and simulation
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client for display and further analysis in the graphical user
interface of the tool. The interactions of the client with the
remote web server are handled by a verification module
assisting the specification of biological queries through a
property editor, either by directly choosing the appropri-
ate temporal logic operators or by using a tailored set of
query patterns [23].

The architecture is generic and modular, but we develop it
here in the context of one particular modeling and simu-
lation tool (GNA [24]) and two different model checkers
(NuSMV [25] and CaDP [26]). A first generalization of the
work presented here would be to integrate other formal
verification tools into the architecture. This possibility is
anticipated through the use of a plugin system, where
each plugin contains all data transformations and opera-
tions specific to a particular formal verification tool. This
simplifies the integration of a new tool to the creation of
the corresponding plugin. A second generalization would
be to extend the service-oriented architecture to other
modeling and simulation tools. A variety of tools have
been used in combination with model checkers, such as
GINSIM [27], INA [28], BIOCHAM [29], GNA [24] or
ROVERGENE [14], based on formalisms like Boolean and
other logical models [30-32], Petri nets [21,33,34] or ordi-
nary differential equations [35,36]. In order to integrate
new modeling and simulation tools into the architecture,
they each have to be equipped with a verification module
that interacts with the request manager, sending verifica-
tion requests and receiving answers and diagnostics, as
well as a plugin system to define the contents of the mes-
sages.

In the next section, we describe the service-oriented archi-
tecture and its components in detail and we motivate the
most important implementation choices. The practical
use of the architecture is then illustrated by means of a sce-
nario involving the analysis of a qualitative model of the
carbon starvation response in E. coli. The model describes
a network of key global regulators of the bacterium,
responsible for the control of the expression of a large
number of stress response genes [37,38]. We trace the dif-
ferent steps from the formulation of a temporal logic
query to the visualization and interpretation of the verifi-
cation results. The discussion summarizes our contribu-
tions and places it in the context of related work.

Implementation

In this section, we describe the overall architecture of the
system (Figure 1), with a step-by-step description of its
components: the modeling and simulation tool with its
verification module, the request manager, and the formal
verification server. These three components have been
implemented in Java 1.5 and their web-service interface is

based on Apache Axis 1.3 http://ws.apache.org/axis/.
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Service-oriented architecture. Service-oriented architecture for the integration of tools for the modeling and simulation of
genetic regulatory networks with formal verification (FV) tools. In particular, the architecture has been implemented for the
connection of GNA with the model checkers NUSMV and CADP. GNA is extended with a verification module responsible for
the transformation of the model and properties into a format specific to a formal verification tool, and for the communication

with the other components of the service-oriented architecture.

The implementation followed two main principles: a serv-
ice-oriented architecture and the use of plugins. A service-
oriented architecture is particularly well suited for our
purpose. The formal verification service is remotely exe-
cuted through the web and is implemented using stand-
ard protocols and languages like TCP/IP, SOAP and XML.
A GNA user wishing to perform a verification request does
not need to install a model checker or other formal verifi-
cation tool locally on his or her machine. The use of plu-
gins provides a flexible and extensible way to abstract a
particular formal verification tool. It allows one to apply
the tool without worrying about the details of its imple-
mentation.

Modeling and simulation tool

The service-oriented architecture is accessible for users of
version 7.0 of the qualitative modeling and simulation
tool Genetic Network Analyzer (GNA), available as
described at the end of the paper. GNA uses a class of
piecewise-linear (PL) differential equations, providing a
coarse-grained picture of the dynamics of genetic regula-
tory networks [39]. The models associate a protein con-
centration variable to each of the genes in the network,
and capture the switch-like character of gene regulation by

means of step functions that change their value at thresh-
old concentrations of regulatory proteins. The advantage
of using PL models is that the qualitative dynamics of the
high-dimensional systems are relatively simple to analyze,
using inequality constraints on the parameters rather than
exact numerical values [13,40]. This makes the PL models
a valuable tool for the analysis of genetic regulatory net-
works in the absence of quantitative information on the
parameter values. The graphical user interface of GNA sup-
ports the modeler in building step-by-step a PL model of
the network under study (see the tutorial available from
the GNA web site for details and examples).

GNA computes discrete abstractions of the continuous
dynamics of the PL models, resulting in a finite-state tran-
sition system (Fsts) defined as a quintuple T = ( S, S,, AP,
L, T) [9]. S is a set of states, where each state corresponds
to a hyperrectangular region in the concentration space,
defined by the thresholds of the concentration variables.
Sy S is the set of initial states. AP is a set of atomic prop-
ositions, related to the states by means of a labeling func-
tion L: S — 24P, The labeling function determines which
atomic propositions are satisfied in a particular state s € S.
The atomic propositions concern among other things, the

Page 3 of 12

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:450

thresholds bounding the concentration variables, the
signs of the derivatives of the concentration variables, and
indicate if the state is a steady state. T represents the set of
transitions between the states, where each transition cor-
responds to a solution trajectory entering one region from
another [40]. GNA allows the user to visualize the FSTs, i.e.
to display the corresponding state transition graph, and
analyze the atomic propositions characterizing the states.
For large graphs visual inspection quickly becomes infea-
sible and formal verification tools are needed. Previous
versions of GNA supported the export of the FsSTS to text
files accepted by several model checkers [13,41]. Version
7.0 extends GNA with a verification module that integrates
the tool into the service-oriented architecture.

Verification module

The verification module consists of three components: a
pattern-based property editor, a property translator, and a
formal verification client (Figure 1).

Pattern-based property editor and translator

The problem of posing relevant and interesting questions
is critical in modeling in general, but even more so in the
context of applying formal verification methods, due to
the fact that is not easy for non-experts to formulate que-
ries in temporal logic. The pattern-based property editor is
a user interface that allows the specification of biologi-
cally-relevant properties in the form of temporal logic for-
mulas. The specification of properties can be achieved in
two distinct ways: for common biological properties
through the use of a pattern system, and for more specific
or complex properties through the use of a text editor of
temporal logic formulas.

Patterns are high-level query templates that formulate
recurring questions in the analysis of regulatory networks
using a domain-specific language [42] rather than tempo-
ral logic. They were originally introduced in the formal
verification field [43] and recently adapted for use in sys-
tems biology [23]. From a study of the literature on the
modeling of biological regulatory networks, it was found
that most of the questions asked by experts can be reduced
to a set of four patterns concerning the: occurrence/exclu-
sion, consequence, sequence and invariance of events. Notice
that these patterns are classes of properties sufficiently
generic to be applicable in a variety of systems biology
models, and that the aim of these patterns is not to cover
all possible questions the modeler can think of, but rather
to simplify the formulation of the most frequent or other-
wise important ones.

Figure 2 shows the pattern-based property editor of GNA.
It presents the four different types of patterns as templates
to be completed by the user. The completion of the tem-
plates requires the modeler to have previously defined
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atomic propositions, each of which describes characteris-
tics of a state of the network, such as an increasing or
decreasing protein concentration, a steady state, or a pro-
tein concentration above a certain threshold. When a pat-
tern has been specified, it is automatically translated into
Computation Tree Logic (CrL) [9]. The pattern-based
property editor and translator are also available as a stand-
alone Java application (see Availability and requirements
below). An application programming interface (API) is
provided, so that the patterns can be integrated into other
modeling tools that wish to implement the encoding of
biological properties into temporal logic formulas (CrL,
CrtRL and p-calculus are currently supported).

More complex biological properties can be directly speci-
fied in the Computation Tree Regular Logic (CrRrL) lan-
guage [44]. CTrL extends CTL with regular expressions and
fairness operators, which favors the expression of proper-
ties like multistability or oscillations, and endows the
logic with a user-friendly syntax. The text editor allows the
modeler to specify any temporal logic formula by freely
combining the set of CTL and CTRL operators with propo-
sitional logic operators and the user-defined atomic prop-
ositions. The temporal logic properties can be stored for
later use with the GNA model in a single project file.

Formal verification client and client-side plugins

The formal verification client is the component that ena-
bles GNA to communicate with the request manager. It
thus gives the user an easy access to the formal verification
technology without having to locally install a tool or wor-
rying about how to get it to work. To perform a verifica-
tion request, the modeler needs to choose which tool to
use, which property to verify, etc. These choices may be
guided by the estimation of the model size (e.g., for large
regulatory networks containing dozens of genes, symbolic
model checking is likely to scale up better than explicit-
state model checking) or by the nature of the properties to
be verified (e.g., linear-time or branching-time, with/with-
out regular expressions, etc.). The FsTs on which the prop-
erty is to be verified can be defined explicitly or implicitly.
In the former case, the Fsts is completely generated by the
simulation module of GNA, while in the latter case it is
given by the set of initial states and a function that com-
putes the successors of any given state. The formal verifi-
cation client performs a request by sending the implicit or
explicit description of the Fsts through the web and wait-
ing for the result. The implicit definition has the advan-
tage of considerably reducing the size of the specification
of the Fsts, and thus limiting the size of the files transmit-
ted and the response delays. This may be critical for large
Fstss. The verification result is composed of a true (false)
verdict supported by a witness (counterexample). The wit-
ness or counterexample consists of a sequence of states in
the Fsts, displayed in the graphical user interface of GNA.
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Figure 2

Pattern-based property editor. Graphical user interface for the specification of biological properties. The modeler can use
a pattern-based property editor for frequently-asked questions, and a text editor for the specification of more complex biolog-

ical properties (expert mode).

In order to make the verification module of the modeling
tool independent of a specific formal verification tool, we
have developed a plugin system. Currently, a plugin for
the model checker NUSMV is available, while a beta ver-
sion for CADP has been completed. All data transforma-
tions specific to a particular model checker are taken in
charge by the corresponding plugin, thus leaving the serv-
ice-oriented architecture free to manage generic verifica-
tion requests. Each plugin has a client-side and a server-
side (Figure 1). The client-side plugin has the responsibil-
ity of translating the Fsts and the property into a format
accepted by the corresponding formal verification tool,
while the server-side plugin is in charge of receiving the
translated FsTS and property, feeding them into the formal
verification tool executable, and parsing the results
returned by the tool.

At the present time, the model checkers integrated in the
architecture are invoked using the default parameters.

More elaborate choices could be partially automated by
incorporating into the plugin some knowledge of the ver-
ification method and the underlying algorithms.

Request manager

The request manager is a component of the service-ori-
ented architecture with a public address http://javal.inri
alpes.fr, acting as an intermediary service that ensures the
communication between all the modeling tools and for-
mal verification servers.

Queue and authentication manager

In order to keep track of the state of all verification
requests and the available formal verification servers, a
queue and authentication manager has been imple-
mented. Upon each verification request the authentica-
tion manager, together with the server-side plugin, checks
for the credentials of the request. If successful, the queue
manager registers the request in the queue, checks for an
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available formal verification server, and hands over the
request. The queue manager will continue to poll the for-
mal verification server for a response until one of three
events happens: the verification has completed, the user
has aborted the verification request, or a timeout has
occurred. The verification result (verdict and counterex-
ample) is then returned to the user.

To ensure the service security, each authenticated request
registered in the queue, generates an Universally Unique
Identifier (UUID) that is returned to the client, so that
only this client is able to retrieve the verification result.
Furthermore, when the result is retrieved, both the request
manager and the formal verification server that handled
the request delete the model and temporal logic formula,
leaving no traces of the request in the server.

Load balancer

The service-oriented architecture has been designed to
support several formal verification servers. The address of
every server, as well as all the model checkers and other
formal verification tools types locally installed on each of
the servers, are registered in the request manager. Upon a
verification request, the load balancer chooses an idle for-
mal verification server with the required tool and server-
side plugin installed. When all formal verification servers
are busy, the load balancer waits until one becomes idle.

Formal verification server

A formal verification server has the responsibility of veri-
fying properties submitted by the request manager. One
or several formal verification tools can be installed on a
server provided that the corresponding server-side plugins
are also installed on this server.

Formal verification server and server-side plugins

The formal verification server contains the web-service
interface, which is responsible for receiving the requests
from the request manager, the choice of the correspond-
ing server-side plugin, and the construction of the verifica-
tion result to be returned.

Each plugin specific to a formal verification tool has an
authentication module which responds to the authentica-
tion requests made by the request manager. In addition,
upon a verification request, the plugin pre-processes the
model description and the property in order to transform
them into the format accepted by the formal verification
tool, and calls the latter with the appropriate parameters.
When the formal verification tool finishes the verification
of the request, it produces the verdict as well as the corre-
sponding witness (or counterexample).

Since this witness has a format specific to a particular for-
mal verification tool, it is up to the plugin to parse the
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results and perform the necessary data transformations to
a common format that is sent back to the modeling tool.
The required transformations depend on whether the
request involves a Fsts of an implicit or explicit type. In
the explicit case, the witness is simply a subgraph of the
Fsts sent to the formal verification tool, whereas in the
implicit case the state information needs to be recon-
structed from the output of the tool.

Integration of new formal verification tools

An important advantage of the chosen architecture, which
delegates all operations that are specific to a particular for-
mal verification tool to plugins, is that it allows for the
flexible integration of new tools. Two plugins have been
developed until now: one for NUSMV (released with the
GNA distribution) and one for CADP (beta version com-
pleted). Developers wanting to develop plugins for differ-
ent model checkers or other formal verification tools can
do so through the following main steps: the development
of a client-side plugin, the development of a server-side
plugin, and the installation of the server-side plugin on a
server on which the new tool is running.

The client-side plugin takes a .jar file that must be placed
in the plugins directory of GNA, allowing the modeling
tool to export the FSTS to a file that can be read by the new
formal verification tool. GNA dynamically recognizes the
available client-side plugins, using the Java Plugin Frame-
work technology. The development of a server-side plugin
results in a Java class that needs to be copied in an appro-
priate directory of the wrapper on the formal verification
server. The latter server must register its web service con-
nection parameters in the request manager, so as to enable
the latter to dispatch the requests to the correct formal ver-
ification server. More detailed information on the devel-
opment of plugins can be obtained by contacting the
authors directly.

Results

In order to illustrate the use of the web service, we present
a scenario using a PL model of the network of global reg-
ulators controlling the carbon starvation response in the
enterobacterium Escherichia coli. In order to survive, E. coli
cells constantly have to adapt their functioning to the
availability of carbon sources, essential for growth. The
adaptation involves multiple levels of regulation, from
metabolic fluxes and enzyme activity to gene regulation
[45-47]. In this example, we focus in particular on the role
of the global regulators of transcription, such as CRP, Fis,
DNA supercoiling, and RpoS. These global regulators
form the backbone of the network coordinating the long-
term response of E. coli cells to starvation conditions (Fig-
ure 3). The PL model consists of 9 equations and more
than 50 parameter inequalities that specify the qualitative
dynamics of the system [38]. Below, we illustrate how the
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specification and verification of temporal logic properties
can help the analysis of the role of RpoS in the dynamics
of the system.

Property specification procedure

RpoS or o is a sigma factor that allows cells to adapt to
and survive under harmful conditions by expressing a
variety of stress response genes [48]. Due to its key role in
the cell, the concentration of RpoS is tightly regulated at
the transcriptional, translational, and post-translational
levels. It this section, we focus on the conditions of stabil-
ity of the protein. While cells grow on a carbon source,
RpoS is actively degraded through the protein RssB, which
binds to RpoS and targets the factor to an intracellular
protease (Figure 3). However, the depletion of the carbon
source inactivates RssB, thus allowing RpoS to accumulate
to a high concentration. Given the important role of RpoS
for the survival of the cell, one may ask whether the entry
into stationary phase upon carbon starvation is always
preceded by the accumulation of RpoS in the cell.

The first step in answering this question using the formal
verification module of GNA consists in identifying ele-
ments of the question that refer to the state of the biolog-
ical system and in stating these as atomic propositions.
We represent the entry into stationary phase of the system
by a low level of stable RNAs encoded by the rrn operons.
This is motivated by the fact that stationary-phase cells do
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not need high levels of stable RNAs, contrary to what is
required by the high translational activity in exponential
phase. These characteristics are specified using the prop-
erty editor, where we create an atomic proposition named
low_rrn (Additional file 1), restricting the concentration
values for the variable rrn to those below its (single)
threshold. We also introduce an atomic proposition
high_RpoS, representing the accumulation of RpoS to a
value above its threshold t_RpoS (Additional file 2).

The second step is the formulation of the biological prop-
erty using the pattern-based property editor and transla-
tor. We choose the sequence pattern to account for the
temporal ordering of the two states: stationary phase and
high expression of RpoS. The sequence pattern is instanti-
ated by selecting the previously defined atomic proposi-
tions (Figure 2):

"A state | low_rrn | is reachable and is | necessarily | pre-
ceded | at some time | by a state | high_RpoS".

Once the pattern is fully instantiated, it is automatically
translated into the corresponding CrL formula: EF
(low_rrn)A=E (=high_RpoS V2 low_rrn).

Property verification procedure
After the specification of the property, one passes to the
verification stage. For this step, the verification request

IS
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Figure 3

Carbon starvation response network in E. coli. Network of key genes, proteins and regulatory interactions involved in

the carbon starvation response network in E. coli [37,38].
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must be configured in the verification window (Addi-
tional file 3). First, we choose the name and version of the
model checker plugin to be used (version 1.0 of the
NUuSMV implicit plugin was used in the example). Second,
we specify the initial conditions. The resulting implicit
Fsts represents the transition from exponential phase to
stationary phase, starting from initial conditions corre-
sponding to carbon depletion. We then run the verifica-
tion request, which is treated by the service-oriented
architecture as described in the previous section.

In response to the query the model checker returns false
after 4 seconds. It means that the entry into stationary
phase is not always preceded by the accumulation of RpoS
in the cell. The counterexample is presented to the user as
shown in the left panel of Figure 4. It consists of a sub-
graph of the initial FSTs, starting from the specified initial
state and ending in a state where the property fails. By
selecting a path in this subgraph, GNa allows the qualita-
tive changes in the concentration of all the variables to be
displayed (right panel of Figure 4). Looking at the evolu-
tion of the variables we immediately observe that there is
(at least) one sequence of states leading to a low expres-
sion level of the rrn operons without having previously
passed through a state with a high concentration of RpoS.
This illustrates the negative verification result, and wit-
nesses that the downregulation of the stable RNAs does
not require the previous accumulation of RpoS.

Another verification example

Continuing with the previous analysis, one may want to
look into the role of RpoS in the control of DNA super-
coiling during growth-phase transitions. The DNA super-
coiling level is regulated by the gyrase GyrAB, which
supercoils the DNA structure, and by the topoisomerase
TopA, which relaxes it.

In order to know whether topA is expressed in response to
the carbon source availability, we create an atomic propo-
sition named low_topA representing the low expression of
topA, and we choose the following invariance pattern to
check if the absence of topA expression persists indefi-
nitely:

"A state|low_topA|can|persist indefinitely".

The corresponding translation of this pattern is the fol-
lowing CTL formula: EG (low_topA).

Following the previously described verification proce-
dure, the formal verification server returns false after 3 sec-
onds, and the counterexample shows that expression of
topA is stimulated at the entry into stationary phase, under
the influence of RpoS. Indeed, following carbon starva-
tion, the protein RssB is inactivated, which leads to the

http://www.biomedcentral.com/1471-2105/10/450

accumulation of RpoS at high levels. RpoS in turn acti-
vates the topA promoter. Complex properties like the exist-
ence of oscillations can also be verified. If the property
holds, the verification module will present the corre-
sponding lasso-shaped witness (Additional file 4) for vis-
ual inspection.

Discussion

In this paper, we have proposed a generic and modular
service-oriented architecture to integrate the modeling of
genetic regulatory networks with existing formal verifica-
tion tools. Currently, the service-oriented architecture
connects the GNA modeling tool, extended with a formal
verification module, with the NUSMV and CADP model
checkers. We have given a detailed description of the exist-
ing components and motivated our implementation deci-
sions. Additionally, we have illustrated the use of this
architecture with the analysis of the complex network of
global regulators involved in the carbon starvation
response in E. coli. GNA is freely available for non-profit
academic research, while the main component of the for-
mal verification module, the pattern-based property edi-
tor and translator, is also available separately (see
Availability and requirements below).

Formal verification methods have historically been used
for the verification of hardware and software systems.
Some of the existing model checkers, such as PRISM [49]
and NUSMV [25], have recently been applied to the verifi-
cation of biological systems. PRISM verifies properties
specified in Continuous time Stochastic Logic (CSL) and
has been used to perform quantitative analysis [17] of the
ERK intracellular signaling pathway model [50]. NUSMV
has been used for the analysis of biological models like
the carbon starvation response in E. coli [13], the cell-cycle
control in C. crescentus [20], the mucus production in P.
aeruginosa [15], and the mammalian cell-cycle control
[18]. In most cases, the biological models are built using
modeling tools that are not connected to model checkers.
Some modeling tools like GINSIM [27] and previous ver-
sions of GNA [41] are capable of exporting the model in an
implicit or explicit format accepted by the model checker
and the entire analysis is carried out in the model-check-
ing environment, without any feedback to the modeling
tool. An exception is the modeling tool BIOCHAM [29],
which integrates the model checker NUSMV and allows
for a more flexible iterative modeling and verification
approach.

Conclusions

In this paper we carried further the integration of the
modeling and formal verification of biological networks,
by proposing a service-oriented architecture that presents
several advantages. First of all, the proposed connection
between modeling and verification tools is completely
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Figure 4

Verification result. Result of the verification of the biological property specified in Figure 3, consisting of a false verdict and
the corresponding counterexample composed of a subgraph of the FsTs (see left panel). The qualitative evolution of the con-
centration variables of the selected states of the counterexample is visualized (see right panel).

transparent for the modeler and platform-independent. It
requires web access but this is becoming less and less of a
constraint in the current age of pervasive internet use. Sec-
ond, the web-service based integration of the tools com-
ing from different domains makes it possible to exploit
the strong points of each. On the modeling side, the
graphical user interfaces present the properties to be veri-
fied and the verification results in a way accessible to the
modeler. For instance, the specification of biological
properties by means of query patterns [23] does not
require prior knowledge of any specific temporal logic.
On the verification side, the latest developments of state-
of-the-art model checkers can be immediately integrated.
Third, the plugin system provides a modular way to add
new formal verification methods without having to
develop a new version of the modeling tool. The upgrade

to future releases of a formal verification tool can also be
performed through a simple plugin update.

The architecture has been implemented in the context of
GNa, but generalizations to other modeling and simula-
tion tools is obviously possible and facilitated by the
modular structure. The integration of such tools into the
architecture requires them to implement a verification
module responsible for the specification of biological
properties, the call of plugins for specific formal verifica-
tion tools and the exchange of verification requests with
the request manager. However, this implementation work
is facilitated by the availability of the pattern-based prop-
erty editor as a stand-alone Java application. In addition,
the development of new plugins for tools based on model
formalisms that can be mapped to Fstss, explicitly or
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implicitly, are conveniently designed after plugins already
available for GNA.

Formal verification methods are promising tools for
upscaling the analysis of genetic regulatory networks. The
widespread adoption of these approaches has been ham-
pered so far, by the difficulty for non-expert users to for-
mulate appropriate questions in temporal logic,
effectively use formal verification tools, and meaningfully
interpret the results returned by the model checker. The
modular infrastructure that we propose is capable of con-
necting modeling and formal verification tools. In combi-
nation with graphical user interfaces capable of presenting
data in a form accessible to modelers, we expect this to
lower the obstacles to the use of formal verification tech-
nology in biology.

Awvailability and requirements
Project name: Genetic Network Analyzer 7.0 (including

the NUSMV plugin)

Project home page: http://ibis.inrialpes.fr/article122.html

Operating system(s): Platform independent (Windows,
Linux, MacOS)

Programming language: Java 1.5
License: GNA is distributed by Genostar http://
www.genostar.com/. Free license for non-commercial aca-

demic users granted upon request on the GNA home page.

Any restrictions to use by non-academics: contact Genos-
tar at info@genostar.com for conditions.

Project name: Procrustes: Pattern-based property editor

Project home page: http://ibis.inrialpes.fr/article938.html
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License: LGPL
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Additional material

Additional file 1

Definition of the atomic proposition low_rrn. Atomic proposition spec-
ification window, where atomic propositions are defined in terms of
restrictions applied to a state (e.g., restrictions on concentration values,
focal sets, derivatives, and other state descriptors). In this case, the value
of the concentration is restricted to lie below the threshold t_rrn.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-450-S1.PDF]

Additional file 2

Definition of the atomic proposition high_RpoS. Atomic proposition
specification window, where atomic propositions are defined in terms of
restrictions applied to a state (e.g., restrictions on concentration values,
focal sets, derivatives, and other state descriptors). In this case, the value
of the concentration is restricted to lie above the threshold t_RpoS.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-450-S2.PDF]

Additional file 3

Verification options window. Configuration of a verification request by
specifying the model checker plugin to be used and, if the plugin supports
an implicit representation of the Fsts, the initial conditions for the quali-
tative simulation of the network.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-450-S3.PDF]

Additional file 4

Verification result. Results of the verification of a complex biological
property, composed of a verdict (true) and the corresponding witness. The
latter consists of a sequence of states containing a cycle (see left panel).
The value of the concentration of the variables in the selected states is
shown, presenting an oscillation of the concentration of the variable Fis
(see right panel).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-450-S4.PDF]
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