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Abstract

Background: The increasing number of gene expression microarray studies represents an
important resource in biomedical research. As a result, gene expression based diagnosis has
entered clinical practice for patient stratification in breast cancer. However, the integration and
combined analysis of microarray studies remains still a challenge. We assessed the potential benefit
of data integration on the classification accuracy and systematically evaluated the generalization
performance of selected methods on four breast cancer studies comprising almost 1000
independent samples. To this end, we introduced an evaluation framework which aims to establish
good statistical practice and a graphical way to monitor differences. The classification goal was to
correctly predict estrogen receptor status (negative/positive) and histological grade (low/high) of
each tumor sample in an independent study which was not used for the training. For the
classification we chose support vector machines (SVM), predictive analysis of microarrays (PAM),
random forest (RF) and k-top scoring pairs (kTSP). Guided by considerations relevant for
classification across studies we developed a generalization of kTSP which we evaluated in addition.
Our derived version (DV) aims to improve the robustness of the intrinsic invariance of kTSP with
respect to technologies and preprocessing.

Results: For each individual study the generalization error was benchmarked via complete cross-
validation and was found to be similar for all classification methods. The misclassification rates were
substantially higher in classification across studies, when each single study was used as an
independent test set while all remaining studies were combined for the training of the classifier.
However, with increasing number of independent microarray studies used in the training, the
overall classification performance improved. DV performed better than the average and showed
slightly less variance. In particular, the better predictive results of DV in across platform
classification indicate higher robustness of the classifier when trained on single channel data and
applied to gene expression ratios.

Conclusions: We present a systematic evaluation of strategies for the integration of independent
microarray studies in a classification task. Our findings in across studies classification may guide
further research aiming on the construction of more robust and reliable methods for stratification
and diagnosis in clinical practice.
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Background

Transcriptional profiling studies of human diseases aim to
identify causal molecular mechanisms as well as to
improve diagnosis. For example, in breast cancer several
prognostic gene signatures have been proposed [1-4]. To
this date, one has been approved for clinical diagnosis.
Despite this success, molecular signatures based on micro-
array gene expression data may be unstable and thus still
need to be considered with caution [5]. Similarly, the lack
of agreement between different signatures raises doubts
about the reliability and robustness of reported predictive
gene lists [6]. Insufficient sample sizes, heterogeneity of
tumor samples and patient characteristics are common
obstacles concerning microarray data analysis. The inte-
gration of multiple studies may overcome this limitation.
However, different protocols and technologies hamper
such attempts and the translation to clinical practice. This
particularly affects predictive signatures derived from gene
expression microarray data. For example, a drop in predic-
tive accuracy across two different technology platforms
measuring a common set of samples has been found [7].
The misclassification rate raised from 2 to 19.5% in this
study. On the other hand promising classification results
for the integration of studies were reported [8] as well as a
high level of concordance between several microarray-
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based and alternative technology platforms measuring
gene expression [9].

Here, we establish a systematic approach to assess the per-
formance of the integration of independent gene expres-
sion microarray data sets for classification across studies
(Figure 1), propose a tailored classification method for
this purpose and evaluate several methods on four inde-
pendent human breast cancer studies comprising almost
1000 tumor samples.

Preliminaries

Data integration and classification

The limited sample size in microarray studies always
raises the question whether the sample under investiga-
tion is representative of the population. This is a major
concern for any prediction task, and therefore it is highly
desireable to consider all available data from related stud-
ies. Still then, it is unclear whether a meta-analysis
increases the performance of a classifier, since technical
and experimental settings vary between studies and intro-
duce an additional layer of variation which might undo
the benefits of a larger sample size. Therefore, any arbi-
trary integration of available data may not be the best
choice. Nonetheless, an adequate strategy for the integra-
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Schematic overview of the systematic approach to assess the classification performance across independent
data sets. The role of each data set is exhaustively alternated between training and testing. N equals 4 in case of the estrogen
receptor status and equals 3 in case of the histological grade, see Table .
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tion of heterogenous data sets may ideally help to identify
those signals or genes which are not only most relevant for
the classification task but also least variable with respect
to the underlying experimental and technical differences.
This helps to construct more robust gene signatures and
ultimately leads to classifiers of increased predictive
power.

Gene expression microarrays

Experimental and technical differences of microarray gene
expression studies hamper data integration. Gene expres-
sion microarray platforms are based upon the principle of
hybridization. The most important difference between
platforms are the sequences used to measure the mRNA of
a given gene. Not only the length of the sequence varies
but also the choice of the most representative sequence for
any particular gene. Moreover, the choice of the sequence
itself influences the intensity of the signal independent of
the given mRNA abundance. For example, the number of
physical positions which can bind a fluorescent dye var-
ies. Besides that, the total of all sequences on the microar-
ray as well as the experimental processing influence the
cross-hybridization properties. Thus, it is not only diffi-
cult to decide which measurements respectively sequences
correspond to the same mRNA, but even in the case of
matching sequences the measurement characteristics still
vary. For example, the offset, scale, dynamic range and
behavior as well as the level of noise differs. Another level
of complexity arises from the use of two-channel/two-
color platforms and single channel platforms. The two-
channel platforms mostly quantify all measurements rel-
ative to a common reference sample. As a consequence the
offset of the measurement is completely dependent on the
choice of the reference. Nonetheless, the influence of the
reference approximately cancels out if one focuses on dif-
ferences in mRNA abundance between classes. Here, we
disregard all issues of sequence matching including exons,
introns, splicing variants etc. and rely solely on the gene
annotation of probes or probe sets. The gene symbol
serves as basis for the comparison of annotated probes
across platforms. Note that any analysis will be hampered
by different, technology-specific probe affinities for the
same gene, by measurement failures as well as by wrongly
annotated probes.

Table I: Four breast cancer gene expression profiling studies
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Classification across studies

The major issue when focusing on the experimental and
technical aspect of classification across studies can be
summarized as follows: different gene expression profil-
ing platforms or studies measure the expression of the
same common gene with different precision and on a dif-
ferent scale. Nonetheless, a common way to represent the
gene expression measurements does not only allow to
directly combine microarray data sets, but also to readily
apply the generated classifier on a new data set which is
represented in the same manner. To this end, [10,11] pro-
posed the method TSP (top scoring pair) and [12] the gen-
eralized version KTSP (k-top scoring pairs), classifiers
which directly refer to the relative ranks, i.e. the ordering
of the actual gene expression values within a profile. KTSP
was shown to perform as good as state-of-the-art algo-
rithms while using a relatively small number of genes for
classification. In addition, enhanced types of this
approach have been developed and successfully applied
to integrate gene expression studies for classification
[13,14]. Independently, [8] introduced several variants to
represent microarray data based upon the relative ranks of
the gene expression values. Standard classification tech-
niques were applied to binned or scaled quantile discre-
tized data. Here, we choose the same general approach
based upon the relative ranks and focus on the quantile
transformed gene expression values. This approach
appears to be the most simple and intuitive. In particular,
it is relatively insensitive to preprocessing, e.g. scaling and
normalization.

Results

We systematically evaluated the generalization perform-
ance of five selected methods SVM, PAM, RF, kTSP and DV
on four breast cancer gene expression microarray studies
almost comprising 1000 independent samples (Table 1).
The challenge was to predict estrogen receptor status (neg-
ative/positive) and histological grade (low/high) of a
tumor sample in an independent study which was not
used for the training. The prediction of estrogen receptor
status based on gene expression data can be considered to
be an achievable task. It has already been proposed to be
presumably more accurate than standard clinical proce-
dures [15]. The reliability of histological grade is ques-
tioned when used for the staging of tumors. Attempts to
correlate histological grade with gene expression measure-

Study (Reference) Main Focus Platform Samples ER- ER+ Gl G3
I [ wound-response signature oligo (ratios) 295 69 226 75 119
2 [2] p53 status signature Ul33a/Ul33b 247 34 213 64 54
3 [lé] grade and prognosis Ul33a 104 24 74 29 36
4 [4] metastasis signature Ul33a 286 77 209 - -
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ments suggest to refine the assigned grading status of the
tumor sample [16]. We decided to focus on the two
extreme gradings G1 (low) and G3 (high) while obtaining
the highest contrast which is presumably most reliable
and informative. It should be mentioned that estrogen
receptor status and grading are associated in the complete
data set. Low grade tumors have a strong tendency to be
estrogen receptor status positive or from a different view-
point estrogen receptor status negative tumors have a
strong tendency to be of high grade. However, the predic-
tion of estrogen receptor status itself does not suffice to
predict histological grade since the estrogen status positive
samples are fairly balanced between low and high grade
(66% and 44%, respectively) in contrast to estrogen status
negative samples (8% and 92%, respectively).

First of all, we benchmarked the studies while using a
complete cross-validation approach to estimate the mis-
classification rate. This was done separately for each study,
classification method and task (Figures 2A, 3A). Overall
we found a good prediction accuracy. The average misclas-
sification rate was 9% (14%) for estrogen receptor status
(histological grade). All five classification methods per-
formed comparably well (see Additional File 1). To sys-
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tematically assess classification across studies and
platforms and the potential benefit of data integration we
applied our general approach as outlined in Figure 1. As
major result we obtained a distinct drop of almost 10% in
accuracy for classification across studies compared to the
benchmark result of the cross-validation. The average mis-
classification rate was found to be 18% (22%) for estro-
gen receptor status (histological grade) measured on an
independent study which was not used for the training.
These results refer to the best case in which all remaining
studies were combined for the training of the classifier
(Figures 2B, 3B and Additional File 2). A weak decrease of
the misclassification rate with increasing number of stud-
ies used in the training set was observed. This trend gener-
ally supports the notion to integrate studies for
classification, but the benefit is marginal in this particular
analysis. The misclassification rate found in study 1 was
highly variable in case of the estrogen receptor status (Fig-
ure 2B). This observation coincides with the fact that
study 1 differs in its technology platform from all other
studies. Gene expression ratios instead of intensities were
measured in study 1 (Table 1). Our proposed method DV
shows better prediction accuracy on study 1 than all other
methods in almost all training set compositions (Figures
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The misclassification error for each of the five classification methods and each of the studies (N = 4) is shown
for the estrogen receptor status. The plotted numbers in distinct colors indicate the study as listed in Table | while point-
ing to the corresponding misclassification rate. A: The misclassification rate was estimated with complete cross-validation in
each study separately. B: The misclassification rate is shown for each training set combination subgrouped by the number of
studies used in the training (see Figure |). Dotted lines indicate averages across classification methods.
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The misclassification error for each of the five classification methods and each of the studies (N = 3) is shown
for histological grade. The plotted numbers in distinct colors indicate the study as listed in Table | while pointing to the
corresponding misclassification rate. A: The misclassification rate was estimated with complete cross-validation in each study
separately. B: The misclassification rate is shown for each training set combination subgrouped by the number of studies used
in the training (see Figure 1). Dotted lines indicate averages across classification methods.

2B, 3B). As intended, the method appears to be particu-
larly robust in classification across platforms. This obser-
vations mainly accounts for the better performance than
average (13% and 20% compared to 18% and 22%) and
for comparably less variance in performance (see Addi-
tional File 2). Similar results were obtained for variations
on the parameter F and confirm our findings based on DV
with F=4 (F =2: 14% and 20%, and F optimized between
2 or 6: 15% and 18%; data not shown).

The major classification results are visualized in Figure 4
comprising the outcome of the complete cross-validation
approach applied to each study separately and of the clas-
sification across studies which were obtained when the
training set was maximal. A complete graphical represen-
tation of all classification results can be found in the Addi-
tional Files 3 and 4. The visualization offers a way to
unravel systematic differences. The prediction result is
depicted per individual sample. Correctly and falsely clas-
sified samples can be monitored across the methods. Mis-
classified samples are marked in red. The results are
ordered with respect to class membership, study, classifi-
cation method and approach. This complex representa-
tion allows to identify samples exhibiting characteristic

behaviour. Interestingly to note, there appear to be red
cluster or stripes which relate to samples with a consistent
tendency in failing classification regardless of the method
and approach. Moreover, the border between the two
classes shifts but the affected samples which in turn fail
classification are rather the same across the methods. The
combined results help to identify 'marginal' samples in
each class which are most distant to the core of the class
and are thus prone to misclassification and secondly, to
identify samples which persist any correct classification.

Gene signatures

The final classifier for estrogen receptor status which we
obtained when integrating all four independent studies
comprises 50 genes for the methods DV and KTSP (see
Additional File 5). This gene list includes the three genes
FOXA1, GATA3 and SLC39A6 which have been previously
reported in a ten gene signature [15]. The ten gene signa-
ture was found to be highly predictive for estrogen recep-
tor status. Our final classifier of PAM is based upon 115
genes (see Additional File 5). Again three genes FOXA1,
GATA3 and ESR1 overlap with the ten gene signature. All
three final classifiers contain several genes which are well
known to be estrogen responders like AGR2, STC2, TFF1
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The figure summarizes the main classification results while detailing class, data set and sample specific predic-
tion performance (A: estrogen receptor status in four studies; B: histological grade in three studies). Samples
correspond to rows and methods to columns. The estimates of the cross-validation approach are shown on the left separated
by a vertical line from the results of the classification across studies on the right where the number of training sets was maxi-
mal (A:3, B:2). The graphical representation is similar to a heatmap. The area corresponding to a misclassified sample is labelled
in red and in light yellow for a correctly classified sample. The error estimates of the repeated cross-validation have been
mapped to the range from red to light yellow for each individual sample. The cross-validation approach was run separately for
each study. For the classification across studies the results are shown in which all studies except the one used for assessment
formed the training set (see Additional File 3 and 4 for the results of all training set combinations). Samples are ordered by
study, class, their average misclassification rate in the cross-validation and classification across studies. The color code at the
left indicates the study (green = |, blue = 2, red = 3, orange = 4), at the right the class (A: green = ER-, orange = ER+; B: green

= GlI, orange = G3).

or XBP1 . These findings confirm the relevance and predic-
tivity of the gene signatures. The classifiers obtained by
the methods SVM and RV contain 1000 genes since no
further feature selection was applied. The final classifier
for histological grade upon the DV and kTSP method was
derived after the integration of three studies which con-
tain grading annotation (Table 1). This classifier is based
on the following 20 genes: APOC1, CENPA, CKS2,
CXCL10, FST, GJAl, H2AFZ, HMGB3, HNI1, KIF13B,
KIF2C, NAT1, NOVA1, PCM1, PNRC2, QDPR, SCUBE?2,
SEC61G, STC2, UBE2C . This signature contains genes
which are strongly linked to breast cancer progression in
previous studies. APOCI has been identified in a multi-
protein index upon postoperative serum proteomic pro-
files which is associated to metastatic relapse in high-risk
breast cancer patients receiving adjuvant chemotherapy
[17]. Protein expression of STC2 correlates with longer

disease free survival [18]. KIF2C is overexpressed in breast
cancer cells and functional analysis suggest a link between
overexpression and carcinogenesis [19]. RNAi based inhi-
bition of KIF2C expression inhibits growth in breast can-
cer cell lines. Furthermore, reactivation of the potential
tumor suppressor connexin GJA1 (Cx43) leads to reduced
cell migration and regulated various angiogenesis linked
proteins in breast cancer cell lines [20]. These findings
indicate that the signature is not only predictive for histo-
logical grade of breast cancer specimen, but can also be
linked to tumor progression. Thus, the signature may con-
tain further important candidate genes even though pre-
dictive signatures must not be related to any causal
molecular mechanism in general. The 60 genes of PAM
classifier strongly overlap with the previous list of 20
genes (see Additional File 5). 10 genes are common to
both lists: CENPA, GJA1, HMGB3, KIF13B, KIF2C, NAT1,
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QDPR, SCUBE2, STC2, UBE2C. This concordance
between the signatures for histological grade across differ-
ent methods confirms their relevance. Moreover, the
observed partial overlap of the predictive signatures
derived for estrogen receptor status and grade may relate
to the aforementioned association of estrogen receptor
status negative tumors and high grade. For example, in
case of DV and kTSP the intersection of the corresponding
signatures comprises the three genes NATI, STC2 and
SCUBE2 .

Discussion

The complete cross-validation procedure separately
applied to each microarray study and classification
method gives an unbiased estimate and benchmark for
the misclassification rate. The rather large sample sizes of
the studies tend to control the variance of this estimate.
Thus, the distinct drop of accuracy in classification across
studies (Figures 2 and 3) has to be assigned to methodo-
logical shortcomings, underlying experimental differ-
ences and other factors which distinguish the studies and
sample collectives. We present an approach to systemati-
cally evaluate and quantify the effect of data integration
on the accuracy in across studies classification. A weak,
but consistent decrease of the misclassification rate with
increasing number of studies used in the training set was
observed. At least the potential shortcomings of the com-
putational methods used for the classification across stud-
ies remain a not very well studied area in research to this
date. Our framework allows to assess any computational
method for data integration and classification across stud-
ies and our proposed method DV shows favorable charac-
teristics which together may guide further research.

The drastic increase of the dimensionality when consider-
ing pairs of genes instead of genes adds to the complexity
of the problem. However, the good performance of kTSP
and DV may indicate an interesting characteristic of gene
expression microarray data which account for their suc-
cess despite the dimensionality. Recent results highlight
the importance of the dependence structure in microarray
gene expression data and discuss the advantage of focus-
ing on differences of ordered, non-overlapping pairs of
log-transformed gene expression values [21]. This adds
evidence that a well chosen step into the space of pairs or
possibly even triples of genes does not only increase the
dimensionality and associated difficulties, but may allow
to focus on the relevant structure present in the data.

Our straightforward extension of the kTSP method evalu-
ated in the setting of classification across studies and plat-
forms performed comparably well. Nonetheless, further
improvements of DV can be anticipated. The impact on
the classification rule when failing to measure a single
gene varies for the different genes. The loss of information

http://www.biomedcentral.com/1471-2105/10/453

on a single gene affect all related gene pairs which are not
necessarily equally distributed between the genes. To fur-
ther balance the importance of the genes in the majority
vote across all gene pairs, one may introduce a two stage
voting scheme. For each gene the majority vote of all pairs
which contain the gene is determined and then in a sec-
ond step the majority of all resulting individual gene votes
defines the prediction.

Moreover, it is worthwhile to mention that the simple
counting type nature of the score A; does allow to inte-
grate any further microarray data set easily in an already
existing classifier rule and hence does allow to extend the
sample size. However, the properties of such a classifier
require further validation steps. Moreover, when aiming
to build a reasonable classifier one should recall the
counting nature of the score A; and ensure a minimal
number samples of possibly at least 20 samples in total.
Besides that, the preselection of the genes which is based
upon the kTSP method itself might be replaced by a more
tailored strategy accounting for the interconnected classi-
fication rule of DV. Additionally, faster alternatives like a
feature reduction which preselects all gene pairs with the
highest variance in their relative difference may be evalu-
ated. Moreover, other promising variants of kTSP remain
to be analyzed. For example, instead of building the clas-
sifier upon the relation between pairs of genes, one might
consider relations between features like set of genes, sum-
marized networks or pathways. This can include mixtures
like the matrix of all relations between genes and summa-
rized networks.

The consistent misclassification of a core of samples inde-
pendently of the method and training set composition
indirectly confirms generalization power. These misclassi-
fications might be caused by technical or experimental
issues of the mRNA processing and measurement or by
wrong sample annotations and constraints at the time of
the class assignment in the clinic. Improved methods in
clinical practice which profit from the feedback and find-
ings made by gene expression microarray studies may
overcome such limitations in future. For example, quanti-
tative RT-PCR or robust low-density array platforms may
become a more important alternative to existing clinical
procedures. Moreover, the identification of 'marginal’
samples as well as sample which persistently failed correct
classification may be helpful to rebuild and refine the clas-
sifier which then need to be validated in subsequent stud-
ies.

Normalization or calibration procedures often rely on the
assumption of no change in expression of housekeeping
genes or overall genes. This assumption may be of critical
importance in diagnostic testing which is based on low-
density arrays or quantitative RT-PCR where only a small
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number of genes is measured. Thus, classification meth-
ods solely relying on the relative quantification between
pairs or sets of genes like KTSP and DV appear to be espe-
cially well suited. Despite their simplicity they show com-
petitive performance and may play an important role in
future clinical tests.

Conclusions

The integration and combined analysis of gene expression
microarray studies remains still a challenge. Mainly, dif-
ferent technologies hamper the integration and transla-
tion to clinical practice. We propose a tailored
classification method and a systematic approach to unbi-
asedly assess the benefit of integration of independent
studies. This approach aims to establish good statistical
practice. We analyzed four human transcriptomic breast
cancer studies on different platforms comprising almost
1000 samples, evaluated five classification methods and
exemplary derived classifiers for the prediction of estrogen
receptor status and histological grade. In summary, our
proposed method performed favorable. Particularly, it
showed superior performance in the across platform clas-
sification setting when trained on single channel data.
Our results will guide further research aiming on more
reliable diagnostic and prognostic gene signatures in clin-
ical practice.

Methods

Data Sets

Four independent and publicly available breast cancer
microarray studies were compiled and prepared for the
analysis as described elsewhere [22]. We restricted our-
selves to those 9765 unique Entrez gene identifiers which
were common to all data sets. In addition, 85 samples in
study [16] already present in study [2] were removed prior
to the analysis and only tumor samples with documented
histological grade (377) or estrogen receptor status (926)
were included in the analysis (Table 1).

Generalization of kTSP

The KTSP (k-top scoring pairs) method is a binary classi-
fier which is composed of k elementary classifiers. Each
elementary classifier is based upon a pair of genes of 'high
predictive power'. This means that gene i has a prevalently
higher expression value than gene j in one class and vice
versa in the other class. An unknown sample is then clas-
sified according to the relative expression values of gene i
and j in that sample. The KTSP method simply collects the
votes from the k best disjoint elementary classifiers and
reports the majority vote as its decision. Each gene is
allowed to participate in only one elementary classifier,
because this makes the decision rule robust against sys-
tematic errors in the measurements of a single gene. On
the other hand, an "indicator" gene that is very high in
one group and very low in the other is very likely to be

http://www.biomedcentral.com/1471-2105/10/453

part of many high performance elementary classifiers. In
our derived version (DV) of kTSP, we tradeoff between
robustness and performance by introducing an upper
bound F that limits the number of classifiers that contain
a common gene. Our derived version selects gene pairs by
starting with the highest scoring gene pair and then suc-
cessively adjoining the next highest scoring gene pair for
which none of its two constituents is already contained in
F previously selected gene pairs. Note that the parameter
choice F = 1 results in the original KTSP method when
only considering all pairs of genes in the set of two times
k genes which have been selected by the KTSP classifier.

More formally, let the measurements be given as a genes
x samples matrix (q,,), where q,, denote the relative rank
of the expression value of gene g in sample s among all
expression values of sample s (i.e. g, is the rank of gene g
in sample s, divided by the number of genes in sample s
for which measurements are avaliable). Let ¢, € {+ 1} be
the class of sample s. Let n,. be the number of samples in
class c. The essential building block compares the expres-

sion values of two genes i, j and is given by the score |A 1-j|,

Cc
— S o
Ay = E " sign(q;; — g ;)
sesamples Cs

If we had to build an elementary classifier for a new sam-
ple s*based on the relative expression of gene i and j only,
the Bayes classifier would be

Cr = sign(Ay).sign(qye — qjs+).

and the Bayes error would be decreasing for increasing
score |A 4], see [12].

The final decision of DV is again made by majority vote.
An extensive and more algorithmic description of DV is
given in the supplements (see Additional File 6).

Analysis

All analysis was done using R [23] and Bioconductor [24].
We selected the following five methods for the analysis:
support vector machines (SVM) with radial basis kernel,
predictive analysis of microarrays (PAM), random forest
(RF), kTSP and our generalization DV [12,25-27]. The
parameter k of KTSP which controls the number of non-
overlapping gene pairs was optimized between the
choices 10, 25 and 50. In case of DV the KTSP method was
used as a feature reduction technique and k was optimized
for the same choices. F of DV was set to 4.

To estimate the misclassification rate for each individual
data set via complete cross-validation we used the package
MCRestimate [28]. The whole process of a (outer) 5-fold
cross-validation was repeated ten times. Parameter were
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optimized in a nested (inner) 5-fold cross-validation. The
normalized data sets constrained to the 9765 common
unique Entrez gene identifiers were used without any fur-
ther preprocessing as described elsewhere [22]. A preproc-
essing step was applied in each cross-validation step to
reduce the number of features. The 1000 genes with high-
est variance were selected.

Our approach to evaluate classification across studies is
outlined in Figure 1. Each study is either used as training
or test set in a systematic manner. This covers all possible
combinations and assures an unbiased estimate of the
generalization power. As in the complete cross-validation
approach 1000 genes were selected in a preprocessing
step. Those 1000 genes were chosen which were found to
have the highest variance across all samples in the training
set after quantile normalization to the mean gene expres-
sion of the corresponding pooled quantiles. After gene
selection, PAM, SVM and RF were directly trained and
tested on the original quantiles i.e. on the data for each
sample which resulted from the replacement of the gene
expression value by its quantile prior to the gene selection.
The same preprocessing for gene selection was used for
kTSP and DV but the methods were then applied to the
original normalized gene expression values.
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Additional material

Additional file 1

Average misclassification rate. The average misclassification rate for
each of the five classification methods is shown as bar (A: estrogen recep-
tor status; B: histological grade). The misclassification rate was estimated
with cross-validation in each study separately. The average and the stand-
ard deviation across the four studies is visualized.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-453-S1.PDF]

http://www.biomedcentral.com/1471-2105/10/453

Additional file 2

Average misclassification rate across studies. The figure displays the
average misclassification rate on an independent breast cancer study for
five classification methods. (A: estrogen receptor status; B: histological
grade). The average is calculated across the different studies. The misclas-
sification rate for each study itself is the average rate of all classifiers in
which the study was not used in the training. The results are shown sepa-
rately with respect to the number of contributing studies which formed the
training set. The dotted lines indicate averages across all classification
methods and visualize a tendency of a decreasing error rate with an
increasing number of studies which were used for the training of the clas-
sifier.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-453-S2.PDF]

Additional file 3

Classification results across studies for estrogen receptor status. The
figure summarizes all classification results for estrogen receptor status.
Samples correspond to rows and methods to columns. The estimates of the
cross-validation approach are shown on the left separated by a vertical line
from the results of the classification across studies on the right. For the lat-
ter the samples of the studies used for the training are marked in gray and
the ones not used are shown in white. The cross-validation approach was
run separately for each study. Misclassified samples are labelled in red and
correctly classified ones in light yellow. The error estimates of the repeated
cross-validation have been mapped to the range from red to light yellow.
Samples are ordered by study, class, their average misclassification rate in
the cross-validation and classification across studies. The color code at the
bottom indicates the method (red = DV, blue = kTSP, green = PAM, pur-
ple = RF, orange = SVM), at the left the study (green = 1, blue = 2, red =
3, orange = 4), at the right the class (green = ER-, orange = ER+).
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-453-S3.PDF]

Additional file 4

Classification results across studies for histological grade. The figure
summarizes all classification results for the histological grade. Samples
correspond to rows and methods to columns. The estimates of the cross-val-
idation approach are shown on the left separated by a vertical line from
the results of the classification across studies on the right. For the latter the
samples of the studies used for the training are marked in gray and the
ones not used are shown in white. The cross-validation approach was run
separately for each study. Misclassified samples are labelled in red and cor-
rectly classified ones in light yellow. The error estimates of the repeated
cross-validation have been mapped to the range from red to light yellow.
Samples are ordered by study, class, their average misclassification rate in
the cross-validation and classification across studies. The color code at the
bottom indicates the method (red = DV, blue = kTSP, green = PAM, pur-
ple = RF, orange = SVM), at the left the study (green = 1, blue = 2, red =
3), at the right the histological grade (green = G1, orange = G3). Study
4 is not included since the histological grade of the samples was not avail-
able.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-453-S4.PDF]
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Additional file 5

Gene signatures. Gene signatures for the prediction of estrogen receptor
status and histological grade derived from the complete data set.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-453-S5.PDF]

Additional file 6

Description of DV. Algorithmic description of DV.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-453-S6.PDF]
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