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Abstract

Background: Analysis of microarray and other high-throughput data on the basis of gene sets,
rather than individual genes, is becoming more important in genomic studies. Correspondingly, a
large number of statistical approaches for detecting gene set enrichment have been proposed, but
both the interrelations and the relative performance of the various methods are still very much
unclear.

Results: We conduct an extensive survey of statistical approaches for gene set analysis and identify
a common modular structure underlying most published methods. Based on this finding we
propose a general framework for detecting gene set enrichment. This framework provides a meta-
theory of gene set analysis that not only helps to gain a better understanding of the relative merits
of each embedded approach but also facilitates a principled comparison and offers insights into the
relative interplay of the methods.

Conclusion: We use this framework to conduct a computer simulation comparing 261 different
variants of gene set enrichment procedures and to analyze two experimental data sets. Based on
the results we offer recommendations for best practices regarding the choice of effective
procedures for gene set enrichment analysis.

Background

The analysis of "enrichment" of gene sets is a natural
extension of the study of differential expression of indi-
vidual genes. Focusing on sets of genes rather than on
individual genes has several benefits. From a statistical
point of view the analysis of groups instead of individual
genes is advantageous as this typically increases power
and reduces the dimensionality of the underlying statisti-
cal problem. From the biological perspective gene set
enrichment analysis allows one to ask (and answer!)
questions that are of direct interest to the understanding
of the functional mechanism in a cell: is a certain pathway
activated in a given tissue under some treatment X? Is the

pathway more active than other pathways? These ques-
tions directly relate to various null models for gene sets.

Therefore, for good reason a substantial number of statis-
tical procedures to assess gene set enrichment have been
introduced in the last few years - see Table 1 and refer-
ences [1-36] for an overview. Given this extensive litera-
ture, biologists are now confronted with the difficult
choice of a gene set method that is best suited to analyze
their data at hand. So far, a "taxonomy" of enrichment
analysis approaches and a systematic comparison is lack-
ing.
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Table I: Overview over statistical algorithms for the analysis of gene set enrichment.

Method References

overrepresentation analysis
gene set enrichment analysis
average of single gene statistics
parametric methods
random-set methods
FDR-based method
globaltest

GlobalAncova

Hotelling's T2-test

further procedures

reviews

Newton et al. [20]
Efron [21]
Goeman et al. [22]

Kong et al. [25], Dinu et al. [19]

The objective of the present work is three-fold. First, we
present a meta-theory of gene set enrichment analysis in
the form of a general modular framework (Fig. 1). This
modular scheme encompasses most if not all published
approaches for gene set analysis, and hence allows to
study the interplay among the various methods. Second,
based on this framework we conduct a principled compar-
ison investigating 261 variants of gene set enrichment
procedures. From extensive computer simulations and the
analysis of two experimental data sets, we offer specific
recommendations for conducting an effective gene set
analysis. Third, we present an extensive survey of existing
statistical methods for detecting enriched gene sets. This is
found in the Appendix and forms the basis of the proposed
modular framework.

Methods

In this section we describe the key result from our studies:
a modular framework that provides a taxonomy for gene
set analysis. In the Appendix we have compiled a very com-
prehensive overview of the respective approaches that
underlie our proposed meta-theory of gene set enrich-
ment.

Modular structure underlying procedures for gene set
enrichment analysis

Our suggestion for a common modular framework for
gene set enrichment analysis methods is depicted in Fig. 1.
The scheme consists of five distinct modules: the calcula-
tion of a gene-level statistic, an optional transformation of
these statistics, the choice of a null hypothesis, the com-
putation of a gene set statistic and the significance assess-
ment. The first two modules correspond to an analysis of
differential expression on the individual gene level. The
remaining three modules process these results further to
obtain an assessment of gene set enrichment. A separate
track in this diagram is provided for a module for con-
ducting global tests.

Draghici et al. [1], Hosack et al. [2], Zhang et al. [3], Kathri and Draghici [4], Véncio and Shmulevich [6]

Mootha et al. [7], Subramanian et al. [8], Barry et al. [9], Zahn et al. [10], Efron and Tibshirani [1 1], Keller et al. [12]
Pavlidis et al. [13], Tian et al. [14], Smyth [15], Jiang and Gentleman [ 6], Gentleman [17]

Kim and Volsky [18], Dinu et al. [19]

Mansmann und Meister [23], Hummel et al. [24]

Rahnenfiihrer et al. [26], Edelman et al. [27], Lewin et al. [28], Nacu et al. [29], Adewale et al. [30], Lauter et al. [31]
Goeman and Biihimann [5], Liu et al. [32], Chen et al. [33], Nam and Kim [34], Song and Black [35], Dopazo [36]

We will now describe each module in more detail. Note
that the scheme presented in Fig. 1 is both descriptive as
well as generative: by selecting a method in each box one
arrives at some specific approach for detecting gene set
enrichment. To our knowledge, all enrichment
approaches published so far fit into this scheme. In addi-
tion, there are also many combinations of modules that
will lead to a "novel" method (i.e. one that has not yet
been explicitly described in the literature). However, note
that some modules are tightly interconnected, e.g., the
choice of null hypothesis and of significance assessment.
These dependencies need to be kept in mind when setting
up a gene set analysis.

Description of individual modules

Gene-level statistics

In all the univariate approaches (cf. Appendix), the first
step in conducting a gene set enrichment analysis is to
assess the amount of differential expression of the individ-
ual genes. Choosing a suitable test statistic for this pur-
pose has been discussed extensively in the literature, for
an overview we refer, e.g., to [37] and references therein.

Typically, the gene-level statistic will be selected from the
following list:

e fold change,

¢ signal-to-noise ratio,

o (regularized) t-statistics,

e (shrinkage) correlation coefficient,

¢ coefficient of ANOVA or linear/logistic regression, and

¢ (penalized) log-likelihood ratio.
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Schematic overview of the modular structure underlying procedures for gene set enrichment analysis.
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Due to the small sample size found in genomic data in
most instances the regularized versions of these test statis-
tics (via penalization of likelihood, suitable Bayes priors,
Stein shrinkage, etc.) are preferable.

Transformation of gene-level statistics

The second step of univariate procedures for detecting
gene set enrichment consists of the transformation of the
local gene statistic. Suitable options suggested in the liter-
ature include:

® no transformation,

e absolute values,

e squared values,

¢ binary transformation,

o ranks,

e p-values or Bayesian posterior probabilities, and
¢ (local) false discovery rates.

There are many instances when a transformation is benefi-
cial, for example in order to improve robustness, or to
account for both up- and down-regulation. The binary
transformation is an extreme case of ranking considering
only two classes (e.g., "differentially expressed" versus "non-
differentially expressed"). Many of the adhoc procedures
used by biologists to declare differential expression (such as
based on fold change and some kind of arbitrary rules) fall
into this category. Also note that binary transformation
combined with testing gene set membership is equivalent to
the contingency table approach (cf. Appendix).

The influence of the transformation of the gene-level sta-
tistics on the results of gene set enrichment procedures is
shown by Newton et al. [20]. These authors compare the
power properties of averaging and selection test statistics,
i.e. methods based on the mean of local statistics like the
t-statistic and methods where the mean over the binary
indicator of differential expression is used. Newton et al.
[20] find that selection methods work better when the
gene set enrichment is characterized through a small
number of highly differentially expressed genes, whereas
averaging is able to detect enriched sets consisting of a
large number of genes with subtle increase or decrease of
the expression levels.

Null hypotheses

A factor that strongly influences the general setup of an
enrichment procedure is the choice of the null hypothesis.
The two most common choices are termed Q, and Q, [14].

http://www.biomedcentral.com/1471-2105/10/47

Q) is called the "competitive null hypothesis" and corre-
sponds to the case where the association between the
genes in the set and the phenotype is compared with the
association of the remainder of the genes and the pheno-
type. Note that this implies a model where the genes are
the sampling units and the association between the sam-
ples and the phenotypes is fixed. Thus, testing this
hypothesis is conditional on the gene-level scores. The
"complete null hypothesis" [16] that all the gene sets
under consideration have the same differential expression
can be seen as a special case of Q.

In contrast, Q, is the "self-contained null hypothesis" that
focuses on the given gene set without considering genes
outside of this group. It compares the association of the
gene set and the phenotype with that of random pheno-
types. Under Q, the sampling units are the phenotypes
while the gene set membership is fixed. A special case of
the self-contained null hypothesis is the "global hypothe-
sis" that there are no differentially expressed genes at all.

A third possible null model, here called Qj, is the "nested
null hypothesis", where differential expression of the
genes in the gene set is compared to the differential
expression of all genes under consideration (both inside
and outside the gene set). This model is motivated by the
FDR-based approach described in Efron [21], where FDR
and conditional FDR values are compared.

For understanding gene set enrichment procedures it is
absolutely essential to understand the implications of the
various null models [5]. For instance, if there are many
differentially expressed genes in all gene sets, testing
under the self-contained model Q, is quite likely to indi-
cate enrichment, even though the particular gene set
under investigation might not show any special "enrich-
ment" compared to other gene sets.

Furthermore, as Goeman and Biithlmann [5] point out,
the aim of a gene expression experiment is to assess
whether the transcript levels of the genes differ between
the different phenotypes. Thus, it is based on a model
where the phenotypes are the sampling units. Conse-
quently, one would repeat the experiment with different
samples and not with different genes to verify the results.
In contrast, the competitive hypothesis Q; assumes that
the genes are the sampling units, turning the experimental
design upside down. Therefore, some authors [38,33]
consider Q, only to be "of limited utility" for statistical
analysis.

Gene set statistics
A further step in an enrichment analysis is the computa-
tion of a gene set statistic. Examples include:
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e the sum or the mean of the (transformed) single gene
statistics,

¢ the median of the (transformed) single gene statistics,
¢ the (modified) Kolmogorov-Smirnov statistic,

e the maxmean statistic,

e the Wilcoxon rank sum test statistic,

e the sign test statistic, and

¢ the conditional local FDR.

The question of which gene set statistic is optimal in a
given setting is subject to ongoing discussion. For exam-
ple, Efron and Tibshirani [11] show that their maxmean
statistic is more powerful than a Kolmogorov-Smirnov
test or an average of local statistics. Jiang and Gentleman
[16] call attention to the problem of robustness against
outliers and advocate summaries such as the median or
the sign test statistic.

Significance assessment

The last step of both the univariate and the global and
multivariate procedures (cf. Appendix) for enrichment
analysis is the assessment of significance of the observed
gene set statistics. The calculation of the p-value can be
done in three different ways:

1. gene sampling: A large number of random gene sets of
the same size as the set under investigation is drawn from
all the genes and the global statistic is recomputed for
every random set. The p-value is calculated as the fraction
of resampled gene set statistics that exceed (or fall below)
the observed value.

2. sample label permutation: The phenotypes of the sub-
jects are permuted a large number of times and the local
and global statistics are recomputed. The p-value is the
fraction of permutation gene set statistics that exceed (or
fall below) the observed value.

3. restandardization: Both gene sampling and sample
label permutation are conducted. Then each permutation
statistic is standardized with the mean and standard devi-
ation of all permutation statistics. To obtain the restand-
ardized value, the standardized permutation statistic is
multiplied with the standard deviation of the gene sam-
pling statistics and the mean of the gene sampling statis-
tics is added. The p-value is the fraction of restandardized
gene set statistics that exceed (or fall below) the observed
value.

http://www.biomedcentral.com/1471-2105/10/47

Note that the choice of the null hypothesis and the pur-
sued sampling strategy are interconnected: Q; implies
gene sampling, and Q, sample label permutation. Further-
more, gene resampling implicitly assumes independent
genes in the group, a prerequisite that is unlikely to hold,
e.g., for genes within a pathway. The restandardization
strategy put forward in [11] combines the two very differ-
ent sampling schemes into a single procedure. Therefore,
this approach mixes the two null hypotheses Q, and Q,
which may lead to difficulties in the interpretation of the
resulting p-values. Interestingly, note that the GSEA algo-
rithm [7,8] implicitly also considers both permutation
approaches. While the GSEA null distribution itself is
found by permuting sample labels, the Kolmorogov-Smir-
nov-type test statistic equally carries information on the
whole set of genes (at least if the set S is small compared
to the number of all genes). Thus, GSEA implements
something in effect related to restandardization, albeit not
in the extent of the method by [11]. Finally, a computa-
tional consideration is whether the chosen null distribu-
tion may be approximated by a parametric distribution.
This is fundamentally tied to the choices made earlier, and
is possible only in very rare circumstances, e.g., in the
method of Kim and Volsky [18].

Global and multivariate approaches

Enrichment approaches that do not follow the structure
introduced above are the global and multivariate proce-
dures. These directly define one model for the whole gene
set. Nevertheless, the globaltest of [22] and the GlobalAn-
cova of [23] also allow to obtain a score for every gene as
well, since the gene set models can be written as a combi-
nation of the models for each gene. For the T2-based tests
this is only possible when the covariance matrix is diago-
nal.

In a simulation study, [23] showed that the globaltest and
their GlobalAncova perform equally well for independent
genes but that the GlobalAncova outperforms the
approach of [22] when there are strong gene-gene
dependencies. Kong et al. [25] show that their combina-
tion of PCA and Hotelling's T2-test detects more gene sets
than the globaltest. They explain this finding with the
multivariate nature of their test. However, the assumption
is only made on the basis of the evaluation of one data set
and further analyzes are needed to show the superiority of
this procedure.

Results and discussion

Employing the developed taxonomy and modular frame-
work we now compare the various gene set enrichment
approaches by a principled simulation study and exem-
plary data analysis.
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Simulation study

General set-up

All necessary programming and calculations were imple-
mented using the free software environment R [39]. We
simulated data in a fashion to represent stylized yet typical
constellations of gene set structures found in real gene
expression data. We considered gene sets with different
levels of differential expression (Ax = 0, 0.75, 1, -1) and
with varying levels of intra-group correlation (p = 0, 0.6, -
0.6). Furthermore, we also constructed mixed sets, i.e.
gene sets that included both differentially expressed and
non-differentially expressed genes, and also sets contain-
ing both up and down-regulated genes.

Each generated data set consisted of p = 600 genes with n
=20 samples (10 in each of two "treatment" groups). The
data were generated from a 600-dimensional multivariate
normal distribution, with variances set to 1 and means
and correlations specified as follows:

e background (noninformative genes): 520 genes were
simulated with #=0and p=0.

e set 1 (differential expression + correlation): 20 genes
with Ay = 0.75 and pairwise correlation p = 0.6 between
the genes in the set.

e set 2 (differential expression + no correlation): same as
set 1 but with zero correlation among genes.

e set 3 (no differential expression, no correlation): 20
genes selected randomly from the 520 background genes.

¢ set 4 (differential expression + correlation, mixed with
background): 10 genes with Ay = 0.75 and p = 0.6 from
set 1, the other 10 randomly selected from the back-
ground set.

e set 5 (differential expression + no correlation, mixed
with background): same as set 4, but with zero correlation
among genes (i.e. 10 genes from set 2 and 10 genes from
the background set).

¢ set 6: (differential expression, correlation, both up and
down regulation): 10 genes with Az =1 and 10 genes with
Ayt = -1, the pairwise correlation between the genes with
the same direction of differential expression is p = 0.6,
between the up- and down-regulated genes it is p = -0.6.

e set 7 (differential expression, no correlation, both up
and down regulation): same as set 6, but without any cor-
relation among genes.

e set 8 (differential expression, correlation, both up and
down regulation, mixed with background): 10 genes from

http://www.biomedcentral.com/1471-2105/10/47

set 6 (5 up-regulated and 5 down-regulated), mixed with
10 genes from the background set.

¢ set 9 (differential expression, no correlation, mixed with
background, both up and down regulation): same as set 8,
but without any correlation among genes (i.e. 10 genes
from set 7 and 10 genes from background set).

Thus, the 600 simulated genes are constituted by the back-
ground set, set 1, set 2, set 6 and set 7. Any well working
procedure for gene set enrichment analysis should be able
to detect at least the pure sets 1, 2, 6 and 7, but ideally also
the sets 4, 5, 8, 9 where only half of the genes are differen-
tially expressed. Gene set 3 serves as a negative control.

Using this data we conducted gene set enrichment analy-
sis by considering combinations of the following module
methods:

¢ gene-level statistics: two-sample ¢-statistic, moderated ¢-
statistic, Pearson correlation coefficient.

¢ transformation of gene-level statistics: none, squared
values, ranks, binary transformations, local FDR.

¢ gene set statistics: mean, median, maxmean statistic, ES
(weighted by absolute value of gene level statistics), con-
ditional FDR (linear logistic regression of probability of
gene set membership depending on the value of the gene-
level statistic), Wilcoxon rank sum test.

¢ significance assessment: resampling, permutation,
restandardization (1000 iterations each); parametric
(only in combination with mean and Wilcoxon rank sum
test).

The gene set statistic ES was not combined with a binary
transformation since the latter does not allow a sensible
ranking of the genes. Hence, in total 3 x 5 x 6 x 3 - 9 =
261 variants of gene set analysis were considered. For each
combination of modules we simulated 100 data sets, and
determined the false positive rate for set 3 and the true
positive rates for the remaining sets.

Gene-level statistics and their transformations

First, we studied the effect of the choice of a specific gene
level statistic and the corresponding transformation. Spe-
cifically, we varied the gene level statistic and the transfor-
mation and fixed the gene set statistic to the mean and
computed p-values by resampling. The results are summa-
rized in Table 2.

In general, the choice of the gene-level statistic does not
seem to have a great impact on the results of the enrich-
ment analysis. In our simulation setting we obtained
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Table 2: The effect of choice of gene level statistic and of a corresponding transformation on the detection rate.

no transformation squared rank squared
t mod.t corr t mod.t corr t mod.t corr
set | 0.94 0.94 0.94 0.63 0.67 0.74 0.84 0.84 0.84
set 2 1.00 1.00 1.00 0.90 0.92 0.95 1.00 1.00 1.00
set 3 0.00 0.00 0.00 0.00 0.0l 0.0l 0.0l 0.0l 0.0l
set 4 0.79 0.8l 0.83 0.40 0.44 0.50 0.54 0.54 0.54
set 5 0.95 0.96 0.95 0.34 0.41 0.44 0.38 0.41 0.38
set 6 0.00 0.00 0.00 0.86 0.85 0.88 0.95 0.96 0.95
set 7 0.0l 0.0l 0.00 0.99 1.00 1.00 1.00 1.00 1.00
set 8 0.00 0.00 0.00 0.70 0.70 0.75 0.74 0.75 0.74
set 9 0.00 0.0l 0.00 0.81 0.90 0.89 0.80 0.82 0.80
binary local fdr

t mod.t corr t mod.t corr

set | 0.62 0.61 0.55 0.49 0.48 0.46

set 2 0.81 0.87 0.73 0.77 0.78 0.71

set 3 0.0l 0.00 0.0l 0.00 0.00 0.00

set 4 0.38 0.44 0.34 0.32 0.36 0.32

set 5 0.27 0.33 0.20 0.23 0.26 0.20

set 6 0.83 0.85 0.76 0.71 0.66 0.69

set 7 1.00 1.00 0.99 0.99 0.99 0.95

set 8 0.63 0.66 0.58 0.61 0.60 0.55

set 9 0.71 0.73 0.65 0.74 0.75 0.66

The values indicated are the proportion of significantly enriched gene sets (p-values < 0.05) for various combinations of test statistics and their
transformations, with fixed global statistic (= mean) and the use of resampling for computing the significance.

roughly the same results, regardless whether the conven-
tional or the moderated ¢-statistic or the correlation was
used. We note that the small differences might be
explained with the rather large number of samples per
group (10) which is already sufficient to properly estimate
the variance of each gene without using a regularization
approach. For smaller sample sizes, the merits of regular-
ization or borrowing information across genes is likely to
be more pronounced. In contrast, we find that the choice
of a transformation has quite a substantial effect on the
detection rates. It is striking that all three investigated gene
level statistics fail to find sets containing both up- and
down-regulated genes. In this situation applying an
appropriate transformation instead of using the original
scores is indispensable. In this regard, a very useful trans-
formation is the calculation of squared values. Although
in Table 2 it can be seen that this results in slightly lower
true positive rates for sets 1, 2, 4 and 5 compared to
untransformed gene-level scores, it enables the detection
of the sets 6, 7, 8, and 9, which are not recognized using
the untransformed gene level statistics. Interestingly, if the
squared transformation is combined with the rank trans-
formation, this further improves the true positive rates
and offers the best overall performance of all transforma-
tions under study (see Table 2). Furthermore, the (rank)
quadratic transformations outperform the binary and the

FDR transformations, which are two approaches that also
detect sets containing both up and down-regulated genes.

Gene set statistics

Next, we considered in our simulations the impact of the
choice of the gene set statistic. To facilitate comparison,
we used as underlying gene level statistic the moderated t-
statistic and employed a quadratic transformation. For
significance assessment we applied the resampling. Table
3 shows the results.

Overall, the gene set statistics all behave as expected for
the nine sets. They assign high p-values to the uninterest-
ing set 3 and relatively low p-values to the other sets. All
approaches have some difficulty to reliably detect gene
sets 4 and 5, where there is relatively weak differential
expression and half of the genes belong to the uninforma-
tive background.

Performance-wise, the test statistics may be grouped as
follows. The mean and the maxmean statistic produce
rather similar and overall very good results. The median
and the Wilcoxon rank sum test, which are coarsened and
more robust location estimators for the change in tran-
script level, perform markedly better than the mean or
maxmean for the correlated sets. However, if phenotype
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Table 3: Impact of choice of gene set statistics on detecting gene set enrichment.

mean maxmean median ES cond. FDR Wilcoxon
set | 0.67 0.67 0.82 0.56 0.68 0.84
set 2 0.92 0.93 0.98 0.65 0.94 1.00
set 3 0.0l 0.0l 0.00 0.00 0.0l 0.0l
set 4 0.44 0.45 0.57 0.35 0.45 0.54
set 5 0.41 0.41 0.32 0.22 0.42 0.41
set 6 0.85 0.86 0.94 0.80 0.85 0.96
set 7 1.00 1.00 1.00 0.99 1.00 1.00
set 8 0.70 0.71 0.78 0.65 0.84 0.74
set 9 0.90 0.86 0.81 0.69 0.99 0.80

The indicated values correspond to the proportion of p-values < 0.05 for squared moderated t and resampling.

permutation instead of resampling is used, this effect van-
ishes and the performance of the median and the Wil-
coxon test deteriorates (data not shown, cf. [40] for more
information). Thus, the usage of the median and the Wil-
coxon test is primarily advantageous if the competitive
null hypothesis is tested, or if there are many outliers in
the data. The conditional FDR procedure compares well to
the mean and maxmean procedures in the simulations.
However, we find that the results of this approach vary
strongly with the choice of the gene-level statistic, trans-
formation and permutation approach. Since it is not
markedly better than the other approaches for any gene
set and it is computationally expensive, it might not be the
best overall choice for an enrichment analysis. Perhaps
surprising is the comparatively weak performance of the
popular ES score, which yields results that are worse than
that of the sum or the mean.

Significance assessment

In a further simulation experiment, we compared four
approaches for obtaining significance values (see Table 4).
In this study we used moderated t as the gene level statis-
tic, employed a quadratic transformation, and used the
mean as the gene set statistic.

First, the parametric approximation of the null distribu-
tion yields the best results. However, the assumption of
independence of the individual genes is clearly violated

Table 4: Comparison of methods for assigning significance.

for sets 1, 4, 6 and 8. Thus, the corresponding p-values are
over-optimistic.

The resampling procedure that investigates the competi-
tive null hypothesis Q, also performs quite well. Sets 3
and 7 are correctly categorized for almost all the 100 rep-
etitions of the simulation. For sets 2 and 9 this is achieved
in more than 90% of the cases. The correlated sets 1, 6 and
8 achieve lower true positive rates. Resampling performs
worst for the difficult sets 4 and 5, where only half of the
genes are differentially expressed.

Testing the self-contained null hypothesis Q, using sam-
ple label permutation appears to be slightly easier than
testing Q, (see third column of Table 4), especially for the
uncorrelated gene sets. Note that permutation preserves
the correlation structure among genes. Since the effective
gene set size is smaller in a correlated set compared to a set
where the genes are independent, it is more difficult to
detect enrichment in these situations. For this reason it is
surprising that in most of the cases the permutation works
still better for the correlated sets than resampling.

The restandardization procedure performs very similar to
resampling. This was the case in almost all of the combi-
nations of enrichment methods that were investigated in
this work, so the benefits of restandardization are likely to
be small in general. However, we note that [11] showed in

parametric resampling

permutation restandardization

set | 0.82 0.67
set 2 1.00 0.92
set 3 0.03 0.0l
set 4 0.60 0.44
set5 0.85 0.41
set 6 0.96 0.85
set 7 1.00 1.00
set 8 0.90 0.70
set 9 0.99 0.90

0.59 0.66
1.00 0.92
0.06 0.01
0.51 0.43
0.90 0.41
0.83 0.84
1.00 1.00
0.79 0.68
1.00 0.87

The values indicated are the proportion of p-values < 0.05 using the gene set statistic mean of the individual squared moderated t-statistics.
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their paper that there might be some special situations
where restandardization is advantageous.

Comparison with global and multivariate approaches

In order to compare the modular univariate approaches
with the global and multivariate procedures, we addition-
ally analyzed the simulated data using the globaltest and
Hotelling's T2-test with a shrinkage covariance matrix
[41].

The results for the globaltest under different significance
assessment approaches are summarized in Table 5.
Clearly, the performance of this procedure is not better
than that of the less sophisticated univariate methods,
especially the sum or mean of the squared gene-level sta-
tistics. Indeed, the results are very close to these two
approaches. Hence, using the globaltest does not improve
the results, but it is computationally a little bit faster, espe-
cially when the parametric approximation of the null dis-
tribution is used. Since it leads to comparable results, it
might be a useful alternative when a large number of sets
is to be investigated.

The corresponding results for the Hotelling T2-test can be
found in Table 6. Using this approach the uncorrelated
sets are found with the same reliability as with univariate
approaches. However, in stark contrast, the sets with cor-
relation (sets 1, 4, 6, and 8) are hardly detected. The rea-
son is clear from a statistical perspective: the Hotelling test
statistic penalizes correlation (i.e. the test statistic is largest
for zero correlation). Specifically, it is much more likely
that genes in a set are all simultaneously differentially
expressed if there is correlation. While the Hotelling statis-
tic corrects for this bias accordingly, this implicit penaliza-
tion is clearly not desired from a biological point of view.
A clear advantage of the Hotelling T2-test is its improved
performance with sample label permutation as opposed
to gene sampling. Since the approach does by definition
test the self-contained null hypothesis, this is a positive
result. Nevertheless, the overall very poor performance of

Table 5: Performance of the globaltest.

http://www.biomedcentral.com/1471-2105/10/47

this multivariate approach raises the question whether
taking into account the dependence structure between the
genes is at all useful in the context of enrichment analysis.

Analysis of p53 cancer data

In order to verify our conclusions from the simulations we
reanalyzed the p53 cancer data from Subramanian et al.
[8]. The protein p53 is a tumor suppressor preventing the
development of cancer cells. It regulates genes involved in
the cell cycle and the induction of apoptosis after DNA
damage. Gene set enrichment analysis allows to study
which pathways are involved in these cellular mecha-
nisms.

The p53 data is used as a benchmark data set in a number
of papers [e.g., [19,11]] and contains expression profiles
of 50 cancer cell lines that can be found in the data base
of the International Agency for Research in Cancer
(IARC). The gene expressions were measured with the
Affymetrix HGU95Av2 chip which contains 12, 625 probe
sets. For each cell line, the mutational status of the p53
protein was reported. 17 cell lines were found to have nor-
mal p53 status while the remaining 33 samples showed a
mutation of p53. The analyzes in [8,19] and [11] recov-
ered several gene sets that are differentially expressed
between the mutation and wildtype cell lines. Five func-
tional groups were mentioned in all three publications:

¢ the p53 pathway,

¢ the down-stream targets of p53,

e genes induced by radiation,

e genes induced by hypoxia, and

e the heat-shock protein signaling pathway.

Dinu and co-workers presented 31 additional gene sets
found with the SAM-GS method [19].

parametric resampling

permutation restandardization

set | 0.59 0.66
set 2 1.00 0.94
set 3 0.02 0.00
set 4 0.46 0.44
set5 0.85 0.42
set 6 0.82 0.85
set 7 1.00 1.00
set 8 0.74 0.69
set 9 0.99 0.86

0.6l 0.63
1.00 0.93
0.05 0.00
0.49 0.44
0.91 0.43
0.80 0.84
1.00 1.00
0.76 0.68
1.00 0.89

The indicated values are the proportion of p-values < 0.05.
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Table 6: Performance of the Hotelling approach using a
shrinkage correlation matrix.

resampling permutation restandardization

set | 0.09 0.18 0.08
set 2 0.92 1.00 0.92
set 3 0.01 0.05 0.01
set 4 0.06 0.16 0.05
set 5 0.41 0.91 0.40
set 6 0.25 0.26 0.22
set 7 1.00 1.00 1.00
set 8 0.25 0.51 0.25
set 9 0.89 1.00 0.87

The indicated values are the proportion of p-values < 0.05.

In our preprocessing of the data we filtered out genes that
showed maximum signal intensities of less than 5 on log,
scale and a variation of less than 2-fold over all samples to
reduce the noise in the data. The resulting data set con-
tained 8,768 genes. From the biologically chosen gene
sets of [8] we focused on sets with sizes between 15 and
500 genes. This left 290 gene sets of varying size, each con-
taining between 15 and 321 genes.

In the following we report only our main findings. A
much extended analysis of the p53 data set including
detailed tables of significant gene sets and pathways can
be found in [40].

Gene-level scores and transformations

As in the simulation study, in order to compare the vari-
ous gene level statistics and their transformations we
employed as gene set statistic the mean and use resam-
pling for computing p-values.

Concerning the choice of gene statistics, there was little
difference in the overall ranking of the gene sets. The 25
top ranked gene sets are nearly the same for all three sta-
tistics in combination with a specific transformation. The
significant findings are in broad accordance with the
results published previously [8,19,11]. Specifically, we
also recover the additional sets reported by Dinu et al. [19]
if a squared gene transformation is used (recall that their
SAM-GS approach is based on a squared regularized t-sta-
tistic). For this data set we noted a distinct difference when
positive and negative scores were analyzed separately,
instead of combined. In particular, taking squared values
of the individual gene scores appears to give more weight
to gene sets that are not high scored in a separate analysis
for up- and down-regulated genes. This is probably due to
the fact that summing up the squared values leads to the
detection of gene sets with many subtle expression
changes in both directions instead of sets where some
constituents are either up- or down-regulated.

http://www.biomedcentral.com/1471-2105/10/47

When ranks or the binary transformation are used, fewer
of the Dinu and Subramanian gene sets are detected. Fur-
thermore, the number of significant gene sets is decreased
compared to using the original or squared scores. Thus,
for this data the results based on the rank and binary
transformations appear to suffer substantially due to the
loss of information. In contrast, the transformation to
local FDR values (empirical posterior probabilities) per-
forms much better than in the simulation study.

Gene set statistics and significance assessment

Next, we investigated the impact of the gene set statistic
and the choice of the significance procedure. In this anal-
ysis we used the squared moderated t-statistic as the gene
level statistic.

The results are summarized in Fig. 2. For this data, both
phenotype permutation as well as resampling lead to the
same number of significant gene sets regardless of the p-
value cutoff, the only exception being the Wilcoxon statis-
tic. The Hotelling statistic and the conditional FDR
approach consistently found the largest number of signif-
icant gene sets for any cutoff, followed by the global test
and the mean and maxmean. The ES, median, and Wil-
coxon statistics typically resulted in the least number of
gene sets. Note, however, that we do not know the ground
truth for the p53 data. Therefore, one needs to keep in
mind that the larger power of the mean or the global test
compared, e.g., to the ES score might be due to a higher
specificity of the latter. This is in concordance with our
simulation study (cf. Table 3) where ES and the median
were the only two statistics that never declared the nega-
tive control (set 3) significant. The outcome of the Hotel-
ling T2-test is in very good accordance with the findings of
[19]. Thus, in contrast to the simulated data the Hotelling
approach gives meaningful results for real data. We inves-
tigated this discrepancy more closely by inspecting the
correlations among the genes in a gene set. As can be seen
from Fig. 3 the correlations within a gene set are compar-
atively weak. This explains the good result of the Hotelling
approach, which for vanishing correlation essentially
reduces to the SAM-GS [19].

Analysis of Hedenfalk breast cancer data

To complement the study of gene expression data we ana-
lyzed the breast cancer gene expression data from Heden-
falk et al. [42]. This well-studied data set includes 7 cancer
patients carrying the BRCA1 genetic mutation and 8 other
patients carrying the BRCA2 mutation. Microarray meas-
urements were taken on 3,226 genes.

A peculiar feature of this data set is that on the gene level
there is virtually no signal to distinguish the two groups
(BRCA1 versus BRCA2) - see for example [43].
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Analysis of p53 data set. Left: Number of significant gene sets in dependence of p-value cutoff and choice of gene set statis-
tic. On the gene level, the squared moderated t-statistic was employed. Right: Bar plot for p-value cutoff 0.01.

In our preprocessing for gene set analysis we considered a
subset of 2,200 genes (all that could be uniquely mapped
from clonelDs to a unigene symbol) and a catalog of 89
gene sets from [8] relevant for these genes.

Gene set statistics and significance assessment

The p53 and the Hedenfalk cancer data behave strikingly
different, as can be seen in Fig. 4. For the Hedenfalk data
employing resampling resulted in very few gene sets
detected as significant, regardless of gene set statistic. In
contrast, when phenotype permutation was applied a sub-
stantial number of significant gene sets were found. As for
the p53 data set, the gene set statistics can be divided into
two groups. The Hotelling, mean, maxmean and global
statistics resulted in larger numbers of significant set,
whereas median, ES, Wilcoxon and conditional FDR
detected fewer gene sets. Thus, for this data the condi-
tional FDR approach is as conservative as in the simula-
tions.

The difference between results for permutation and resa-
mpling may be explained as follows. If most of the active
genes show only small expression changes, then the inter-
esting sets do not differ markedly from random sets. Con-
sequently, they cannot be found by the resampling
approach. But still, in the Hedenfalk data the subtle
changes of the interesting genes between the phenotypes
are large enough when they are accumulated over the
active gene set to be detected with sample label permuta-
tion.

Enriched gene sets

Finally, it is also instructive to inspect the list of detected
gene sets. For gene set statistic mean with gene-level statis-
tic moderated ¢, transformation squared values and sam-
ple label permutation all significant (p-value cutoff 0.01)
gene sets are listed in Table 7. Note the enrichment of
many cancer-related sets as a result of the gene set analy-
sis.

It is noteworthy here that using the ES as gene set statistic
does not yield the set Breast_Cancer_Estrogen_Signalling
among the 20 top ranked gene sets, whereas in our Table
7 it is ranked number 1. We remark that this is a biologi-
cally important finding, in concordance with Hedenfalk et
al. [42] who state that tumors with BRCA1 mutations are
generally negative for estrogen receptors, whereas BRCA2
mutations are positive, implying that BRCA1 and BRCA2
genes induce the formation of breast tumors through sep-
arate pathways.

Overall, it appears that the Hedenfalk data is an exem-
plary case where merits of gene set enrichment over ana-
lyzing individual genes can be most prominently seen.

Conclusion

In this work we have investigated statistical procedures for
detecting enrichment of gene sets. By conducting an
extensive survey of corresponding approaches we found
that all procedures in current use may be fit into a simple
modular framework as depicted in Fig. 1.
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Distribution of correlation across the 290 gene sets investigated for the p53 data. Top: histogram of averaged pair-
wise correlations. Bottom: histogram of averaged absolute values.

The identification of this modular structure greatly facili-
tates the systematic comparison of the diverse methods.
Based on simulations and data analysis we arrive at a
number of guidelines for conducting a gene set enrich-
ment analysis. We believe that these will contribute to the
establishment of best practices for gene set enrichment
analysis.

Perhaps the most surprising result from our study is that
the simple univariate procedures appear to work best
under a large variety of conditions. Specifically, using the
mean of the squared (regularized) t-statistics and assess-
ing the significance with one of the two permutation
approaches reliably detects gene sets of diverse types of
expression and correlation structures. This procedure was

proposed, e.g., in [15,14,19,17]. Intriguingly, this simple
approach typically outperforms (by a fairly large margin)
the in biological circles very popular GSEA method [8].
Thus, we strongly disagree with the recommendation put
forward in [34] which was primarily given on grounds of
software availability.

With regard to the choice of the best approach for each
module in Fig. 1, our conclusions can be summarized as
follows:

¢ gene-level score: The choice of the gene-level score is
not crucial. All different kinds of scores lead to very simi-
lar results. However, it is recommended to use a statistic
that is standardized by the variation of the gene expres-
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sion, as this makes the measure of differential expression
comparable across genes. Scores with this characteristic
are t-statistics, correlation coefficients or standardized
regression coefficients. If the sample size is small, using
one of the regularized t-statistics is the best choice since
they are designed to stabilize small variances.

¢ transformation: The choice of transformation has a sub-
stantial impact on the overall results. In our study the
(rank) squared transformation was most accurate. The
application of absolute values instead of squared values
gives comparable results. Note that using the squared val-
ues essentially corresponds to using a modified version of
Hotelling's T2-test with a diagonal covariance matrix.
Binary transformations often lead to satisfying results but
also imply a loss of information. If the focus is put on
gene sets that are concertedly regulated in one direction
the untransformed scores should be used.

e gene set statistics: Overall, the simple approaches such
as the mean or the median work very well. Using the
median instead of the mean was proposed by [16] as an
approach that is less sensitive with regard to outliers.
However, using the median may also lead to a smaller
number of significant findings. Similar arguments apply
to the rank-based Wilcoxon test. The GSEA, or more pre-
cisely the enrichment score, is not as reliable as the other
gene set test statistics. Furthermore, the construction of

the GSEA is rather complicated since it mixes the compet-
itive and the self-contained null hypotheses.

¢ significance assessment: The choice of the permutation
approach for significance assessment is mainly deter-
mined by the null hypothesis that is tested. Hence, it has
to be decided carefully which procedure is used. If a self-
contained test is conducted, the phenotypes have to be
permuted. In this way, the null distribution of the gene set
statistic under the assumption of no difference between
the treatment groups is obtained. If the gene set is to be
compared to other sets, gene sampling is the correct
approach. Then the null model is based on the assump-
tion that the gene set membership is random. Depending
on the data structure, both approaches can yield quite dif-
ferent results.

¢ multivariate procedures: Using a multivariate proce-
dure such as the globaltest or the Hotelling approach not
necessarily yields better results than the best univariate
approaches. However, for the globaltest a parametric
approximation of the null distribution is available, which
might be beneficial if a large number of gene sets are ana-
lyzed. The Hotelling-type approach is not appropriate for
the detection of gene sets containing genes that are highly
correlated. From a statistical perspective this is straightfor-
ward to understand, as it is more unexpected to find a
group of independent genes that are co-regulated than a
group of correlated genes which behave similarly.
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Table 7: Top scoring gene sets resulting from the analysis of the
Hedenfalk data.

Gene set p-value

| breast_cancer_estrogen_signalling 0.000
2 cell_surface_receptor_linked_signal_transduction 0.000
3 insulin_signalling 0.000
4 p53_signalling 0.000
5 pparaPathway 0.000
6 VOXPHOS 0.000
7 RAP_UP 0.000
8 PROLIF_GENES 0.000
9 UPREG_BY_HOXA9 0.000
10 cell_adhesion 0.001
Il CR_CAM 0.001
12 CR_DEATH 0.001
13 il2rbPathway 0.001
14 ST_Tumor_Necrosis_Factor_Pathway 0.001
15 terPathway 0.001
16 HTERT_UP 0.001
17 CBF_LEUKEMIA_DOWNING_AML 0.001
18 CR_SIGNALLING 0.002
19 ghPathway 0.002
20 ST_B_Cell_Antigen_Receptor 0.002
21 tpoPathway 0.002
22 GO_0005739 0.002
23 LEU_UP 0.002
24 Cell_Cycle 0.003
25 GLUT_UP 0.003
26 FRASOR_ER_DOWN 0.003
27 ANDROGEN_UP_GENES 0.003
28 fmlppathway 0.004
29 hivnefPathway 0.004
30 biopeptidesPathway 0.005
31 cell_adhesion_molecule_activity 0.005
32 SIG_InsulinReceptorPathwaylnCardiacMyocytes 0.005
33 ST_Integrin_Signaling_Pathway 0.005
34 drug_resistance_and_metabolism 0.006
35 ST_Differentiation_Pathway_in_PCI2_Cells 0.007
36 gleevecPathway 0.008
37 DNA_DAMAGE_SIGNALLING 0.009
38 ST_ERKI_ERK2_MAPK_Pathway 0.009
39 mRNA_splicing 0.010
40 nfatPathway 0.010
41 HUMAN_CD34_ENRICHED_TF_JP 0.010

As gene set statistic we used the mean combined with the squared
moderated t-statistic on the gene level and sample label permutation.

In conclusion, we find that despite the large variety of
available gene set enrichment procedures there is a com-
mon core among all procedures. In order to reliably detect
enriched gene sets it is in general sufficient to use a univar-
iate approach, in combination with either resampling or
sample label permutation, depending on the desired
underlying null model.

In the present study, we have focused on methods for
detecting enrichment of a single prespecified gene set. A
topic not investigated here is the issue of multiple testing
of gene sets. In this context, standard corrections for mul-

http://www.biomedcentral.com/1471-2105/10/47

tiplicity need to be refined in order to account for depend-
encies among gene sets, which may be due to the
underlying gene ontology graph structure or because
genes may belong to several gene sets at once [44,28].
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Appendix

In this section we provide an overview of various currently
employed statistical methodologies for detecting enrich-
ment of gene sets. We distinguish between univariate and
multivariate approaches. The univariate procedures first
calculate a score for differential expression for each single
gene. Subsequently, a gene set summary statistic is com-
puted and its significance is assessed by different paramet-
ric and permutation approaches. In contrast to the
univariate approaches, the global and multivariate proce-
dures directly infer the enrichment of the gene set without
referring back to the gene-level. The multivariate
approaches are distinguished from the global procedures
by explicitly taking the correlation matrix of the genes into
account when calculating the test statistic

Univariate procedures

Overrepresentation analysis

One of the simplest methods to investigate enrichment of
predefined gene sets is based on testing a 2 x 2 contin-
gency table. Correspondingly, this approach has been
employed by many authors, e.g. [1,4]. In this setting, each
gene is classified according to both membership in a gene
set S and whether it is differentially expressed (cf. Table
8). Subsequently, one investigates overrepresentation of
genes belonging to S in the group of the differentially
expressed genes. This is done by testing for the independ-
ence of the two criteria "differential expression" and "gene
set membership". For instance, one can use the test statis-
tic

N2
N(|”11”22‘"12"21|‘)
2 2
X - ’
nynpn.qn.y

which for sufficiently large N follows a j2-distribution
with one degree of freedom. Alternatively, one may com-
pute Fisher's exact test [45] for the hypergeometric distri-
bution [2,3]. It is also possible to determine the
distribution of the test statistic nonparametrically using
sample label permutation [5], which has the benefit of
respecting the correlation between the genes. Véncio and
Shmulevich [6] introduce an approach to account for cat-
egorization uncertainty, employing the Goodman-
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Table 8: Contingency table for testing gene set enrichment.
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differentially expressed non-differentially expressed total
in gene set ny, ni, n.
not in gene set Ny, Nyy ny.
total n., n., N

Kruskal [46] measure of statistical association between the
two margins of the contingency table.

GSEA algorithm and related methods

One of the most popular methods for detecting enrich-
ment is the "Gene Set Enrichment Analysis" (GSEA) intro-
duced in [7] and improved by the same group only a short
time later [8].

This method starts with a list L of N genes ranked by their
correlation with the phenotype of interest, e.g., using the
t-score or the signal-to-noise ratio. In order to test the null
hypothesis that the m genes in a set S are randomly spread
in the list L a so-called enrichment score (ES) is computed.
This equals the maximum deviation from zero of a run-
ning sum (running down the list of genes L) that increases
every time a gene in the list L is in S and decreases every
time a gene is not in S (j = 1, ..., N). Additionally, every
gene set member is weighted by its absolute value of cor-
relation with the phenotype. As a result, genes with very
low correlations do not contribute to the enrichment
score of the set. The running sums for the genes in the set

S and the complementary set S (including all the genes
from the list which are not in S) are calculated separately
as follows:

ri?
ESs(D) =Y I\JI—S

g;€s

j<I
1

8,28
j<i

where N = 2| ri P,
gj€s

r;is a measure for the correlation of the individual gene g;

with the phenotype, for example a t-statistic. The ES is
defined as the maximum deviation of ESg (I) - ESg(I)

from zero (I =1, ..., N). This test statistic is similar to a Kol-
mogorov-Smirnov statistic in that it compares the devia-
tion between two cumulative distribution functions. But
contrary to the Kolmogorov-Smirnov statistic, the ES is
signed and uses weights.

The choice of the exponent p in the above formula deter-
mines the influence of the single genes on the score. For p
= 0 an unweighted statistic is obtained. When p = 1 the
genes in S are weighted by their absolute value of correla-
tion with the phenotype according to the chosen correla-
tion measure. Other values of p can also be used (see [8],
supplementary material). The authors suggest p <1 if one
wishes to penalize a lack of coherence in a set or p > 1 if
correlation of a small subset of S with the phenotype is
sufficient to call a set enriched. Additionally, the sum-
mands are normalized by the sum of all test statistics in S.

The summands for the genes in S are constant.

Other authors presented similar statistics, see for example
[12] who use X; = N - m and X; = -m as the contribution of

the genes in S and S to the running sum respectively. All
the choices result in a score that assumes the value 0 when
the running sum reaches the end of the list L.

Significance of the test statistics is assessed by permuting
the class labels and recalculating the ES for every gene set
in every permutation. This necessitates correction for mul-
tiplicity when a larger number of sets is tested.

An approach related to GSEA but more general is "Signif-
icance Analysis of Function and Expression" (SAFE) as
described by [9]. This is a two-step procedure, where in
the first step a local test statistic is computed for each gene
(e.g. a t-score) and in the second the statistics of the genes
in the gene set S are combined to give a global statistic.
This is done in order to compare the distribution of the
local statistics in the gene set with that of the local statis-
tics of the rest of the genes. However, [9] leave it to the
user to decide which global statistic is to be applied. They
propose rank-based statistics as the Wilcoxon rank sum
test or the Kolmogorov-Smirnov test since they do not
require any assumptions about the joint distribution of
the local statistics. Significance in the SAFE algorithm is
evaluated by permuting the sample labels and recalculat-
ing the local and global statistics. For taking account of
multiplicity when testing for several gene sets at a time [9]
suggest to control the false discovery rate and related cri-
teria.
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Yet another modification of the GSEA method is intro-
duced in [10]. These authors employ regression coeffi-
cients of the interesting outcome (in their case the age of
the patient) to rank the genes. Instead of taking a Kol-
mogorov-Smirnov statistic as the gene set statistic, [10]
use a van der Waerden statistic

YZE@_I[N?H J

g;€s

where ®-1is the quantile function of the standard normal
distribution N (0, 1) and r;is the rank of gene g; in the list
of all genes. Under the null hypothesis the test statistic Y
is approximately normally distributed with mean zero.
[10] employ a bootstrap sampling approach to estimate

the variance of the null distribution.

Averaging methods

Another natural approach of combining information of a
group of genes pursued by many authors is to simply aver-
age over the test statistics of the individual genes. Specifi-
cally, let g, j =1, ..., N, be the association measure of gene
g with the phenotype. Furthermore define G as the
binary indicator of whether gene g; belongs to gene set S,
(Gyj= 1) or not (Gy; = 0). Then the test statistic is given by

1 N
Wy =— 2 Gt js
mp 45

N
where m;, = 2 G, is the number of genes in set S,
=

A crucial point noted by [14] is that one needs to distin-
guish between two types of null hypotheses, which in turn
necessitates different ways of assigning significance. The
two hypotheses are:

1.Q,: "The genes in a gene set show the same pattern of
association with the phenotype compared with the rest of
the genes."

2. Q,: "The gene set does not contain any genes whose
expression levels are associated with the phenotype of
interest."

These correspond to the "competitive" and "self-con-
tained" hypotheses discussed in [5]. Note that the first
hypothesis compares the genes in the set with the remain-
ing genes, thus implying that in a permutation test the
genes are the sampling units. Q, tests the association
between the genes in the set and the phenotype regardless
of the genes that are not in the set. Therefore, here the phe-
notype labels are the sampling units. When testing Q, [14]
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employ a permutation approach whereas for testing Q
they apply a normal approximation to compute p-values.

An averaging approach based on the moderated t-statistic
is described in the documentation of [15]. Further discus-
sion regarding the averaging of gene-level statistics can be
found in [20,33] and [18]. The "category" software of [17]
also implements a general form of the averaging
approach.

The maxmean statistic and restandardization

[11] propose several improvements of the averaging
approach and GSEA. First, they introduce a new test statis-
tic called the "maxmean" statistic which leads to more
effcient tests. It is defined as

T,

maxmean = maX( ES(+)’§S(7) )’
where ?S(+) = % Z 55” and Es(_) = % 2 55_) are the
g;€S g;€S

averages of the positive and negative parts of the scores in
the set S containing m genes. The separation of positive
and negative scores facilitates the detection of gene sets
containing both up- and down-regulated genes. Further-
more, the form of the test statistic prevents that sets with
only very few unusually large z-values are called signifi-
cant, yet it allows to detect sets with both moderately large
positive and negative z-values.

Second, [11] show the necessity not only to incorporate
sample label permutation as in the GSEA method but also
gene sampling into the analysis. This idea is implemented
in a procedure called "restandardization” which com-
bines gene sampling and phenotype permutation.

Let 4t and of be the mean and standard deviation of the
distribution obtained by gene label permutation and g*
and o* the corresponding parameters of the sample label
permutation distribution. For a general test statistic T, for
example the ES used in GSEA, the restandardization can
be written as

T = ,uT +0'7].L7T*—y* .

T
It corrects the phenotype permutation statistics for the
estimated distribution of the individual genes in the data
set. The corresponding p-value can then be calculated in
the usual way as the fraction of a large number of restand-

ardized test statistics exceeding the observed test statistic.

When the gene set score is simply the average of the indi-
vidual gene scores in the set, the restandardization for-
mula can be simplified to
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sk ave
Tave =Hs T O ®
o

Here T

've denotes the gene set statistic obtained by an aver-

aging approach, g, and o, are the mean and standard devi-
ation of the scores s; of all N genes and x* and o* are the
mean and standard deviation of the gene set test statistics

T, obtained by sample label permutation. In this spe-
cial case, it is not necessary to conduct gene sampling
before doing the restandardization since the mean of the
gene sampling distribution is the same as the overall

mean of the single genes and the standard deviations only

: 1

differ by the factor T

Extensions to GSEA and averaging methods

Some further variations to the GSEA and methods using
the average of gene-level statistics are reported in Jiang
and Gentleman [16]. They propose using the median or a
sign test for robustly averaging over the scores in a gene
set. [16] also suggest an alternative test statistic for the
individual genes when there are other covariates such as
gender or age which might influence the expression levels.
In essence, this test statistic is based on fitting a linear
model where the gene expression is the response and the
phenotype and other covariates are the independent vari-
ables.

A similar approach was proposed by [13] who addition-
ally incorporate a measure for co-expression in the gene
sets, the mean of the pairwise correlation coefficients, and
a measure for the distinctiveness of the sets based on a
nearest neighbors classifier.

In their paper, [16] also propose a Bayes approach for the
investigation of gene set enrichment. The procedure is
somewhat similar to the two groups empirical Bayes
model described in [21]. Another issue addressed by [16]
is the potential overlap of gene sets. They also investigate
dimension reduction (i.e. principle components analysis)
to find gene sets with co-regulated genes.

Parametric method

Another very simple approach to detecting gene set
enrichment is PAGE (Parametric Analysis of Gene Set
Enrichment) suggested by [18]. Essentially, this approach
proceeds by averaging over fold changes or other gene-
level statistics and comparing this test statistic with the
standard normal distribution. Since the approach is fully
parametric and because no permutation is required this
procedure is very time saving and computationally effi-
cient. Using the normal approximation is justified by [18]
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via asymptotic arguments. In a similar fashion, the "cate-
gory" averaging approach [17] also employs (among
other options) a normal approximation for significance
assessment.

Random-set method

Newton et al. [20] aggregate some ideas from the averag-
ing methods, the parametric models, and the 2 x 2 table
methods. Instead of only counting the number of differ-
entially expressed genes present in the gene set, as done
when applying 2 x 2 table methods, they allow for more
general test statistics similar to the ES introduced by [7].
However, they do not apply sample label permutation to
assess significance but consider the genes to be the sam-
pling units.

Starting with the measures of differential expression s; j =
1, ..., N for each gene, an unstandardized score for a gene
set S consisting of m genes is calculated as the average of
the gene scores of these genes

= 1
XZ*ZS"
m j

8j€S

As the method aims to compare the enrichment in a gene
. . N ..
set S with the enrichment of all other ( } distinct ran-
m

domly drawn gene sets of size m, a so called random-set
model is introduced. That means that the gene set S is now
considered as a random collection of m genes whose

scores s; are fixed. For most choices of the gene-level statis-

tic, the exact distribution of X becomes intractable. [20]
propose to approximate it with the normal distribution
with mean and variance as follows:

N
-1
/.L—E(X)—NZSJ»
<

N
2 = 1 N—m 1 2
=Var(X)=—| —— — 7=
o (%) m( N—IJ NZJ

j=1

2
N

1

N2
j=1

The score can then be standardized with these two quan-

tities, resulting in the test statistic

X-p
H

7 =

Under the null hypothesis of no enrichment, Z is approx-
imately normally distributed with mean zero and unit var-
iance.
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A false discovery rate-based method

Another approach to enrichment analysis is presented by
[21]. This procedure is based on estimating the false dis-
covery rate (FDR) of a gene conditional on belonging to a
given gene set. In this analysis two subgroups of genes are
considered - the genes in the gene set and the rest of the
genes — and a mixture model for computing false discov-
ery rates is fitted separately to these two subgroups. In
addition, the false discovery rate is also computed without
consideration of subgroups.

Efron [21] showed that the conditional local FDR and the
unconditional local FDR are linked by the simple relation

fdry(2) = fdr(z) - FSOZ)
mg(z)

where 7g(z) is the probability for a null case of being in S
given that its z-value is equal to z. 7y (z) is defined analo-
gously.

In this framework the null hypothesis of no enrichment
corresponds to the statement that fdrg (z) is equal to the

overall fdr(z), implying that the genes in S do not behave
differently compared to all the N genes together. If the set
is enriched, then fdrg (z) will be smaller than fdr(z) for

very large (or small) z-values indicating differential
expression in the set. Note that this assumes that the den-
sities for the non-expressed genes are the same for the

genes in S and those in S (i.e. fi(z) = f50 (3)). [21]

describes a corresponding test based on logistic regres-
sion.

Global and multivariate procedures

Globaltest

Goeman et al. [22] approach the problem of enrichment
analysis from the perspective of class prediction. They
point out that if the gene set is associated with the pheno-
type, then its constituents will have different expression
patterns in the two types of the response and thus will
serve as reliable predictors for the clinical outcome. Test-
ing for enrichment can therefore be done in the frame-
work of generalized linear models. Let Y be the vector of
the phenotypes of the n samples. For simplicity it is
assumed that Y only takes the two values 0 and 1 for the
two phenotypes although in this setting Y could also be
continuous, for example the survival time of a patient.
Furthermore, let X = (x;) be the n x m matrix of expression
patterns of the genes, where m is the number of genes in
the gene set under investigation and 7 is the number of
samples. In a generalized linear model, the influence of
the gene expression on the phenotype can be modeled as
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B(Y; | B)=h "o+ Y x;B)),

=1

where £ is the regression coefficient of gene g, « is the
intercept and h is the link function. This can for example
be the identity or the logit function, resulting in a simple
linear model or a logistic regression model respectively. If
the set is not enriched, then the genes do not have a pre-
dictive potential. Hence, a null hypothesis for the enrich-
ment problem is

Hy: py=py= .= Bn=0.

However, the size of the gene set may be quite large, so
that m is greater than n. In this situation, the hypothesis
above cannot be tested in the usual way. The solution pro-
posed by [22] is to assume that the regression coefficients
all follow the same distribution with mean zero and a
common but unknown variance 72. Then the test problem
can equivalently be expressed as

H,: 2=0.

Goeman et al. [22] develop a corresponding score test
called "globaltest". It is particularly powerful for alterna-
tive hypotheses where all the /3 are not equal to zero but
do not deviate too much from the null hypothesis either.
Thus, the globaltest seems very useful with regard to the
underlying biological question about whether the set of
genes as a whole influences the phenotype, i.e. whether or
not a large proportion of the genes in the set have a mod-
erate influence on the response.

We note that the globaltest is implemented assuming a
diagonal covariance matrix. This means that the genes are
considered to be uncorrelated and the test statistic can
therefore be expressed as the average of the gene-wise test
statistics for the individual genes. Thus, the method is
comparable to the averaging procedures that first calculate
a score for each gene and then summarize these scores for
each set.

GlobalAncova

The linear model can also be used for enrichment analysis
when the roles of gene expression and phenotype are
exchanged. This was shown by Mansmann and Meister
[23]. The authors call their method GlobalAncova, refer-
ring to methods for the analysis of covariance. As the glo-
baltest, the procedure of [23] does not explicitly model
the correlation structure in the gene set when constructing
the test statistic as a combination of gene-wise models.
However, the correlation structure is still implicitly main-

Page 18 of 20

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:47

tained because of the use of the sample permutation pro-
cedure. Furthermore, a refined follow-up model allows
for the explicit inclusion of an estimated correlation
matrix [24].

Hotelling's T2-test and related methods

Other procedures for gene set enrichment analysis which
are also directly based on the gene set information can be
derived from the well-known multivariate extension of
the t-test, the Hotelling's T2-test. The corresponding test
statistic is

-1
_ n _ _
T? = (x, _xZ)T(Snl-nz J (% —x,)

=tR7Y,

where x; and X, are the mean vectors of the gene expres-
sions in the set for the two phenotypes, and n, and n, are
the sample sizes in both groups. S is the pooled empirical
covariance matrix of the genes in the set, and R is the cor-
responding correlation matrix. With t we denote the vec-
tor containing all local two-sample equal variance t-
statistics. Note that as a weighted sum of the gene-wise t-
statistics Hotelling's T2 explicitly incorporates the depend-
ence structure among the genes — unlike most other test
statistics for gene set enrichment.

Under the null hypothesis that the mean vectors in both

n=m-1 12 f5]lows an F distribution
(n=2)m

groups are equal,
with m and n - m - 1 degrees of freedom, where m is the
gene set size. However, in the analysis of gene expression
data it is rarely the case that the number of samples is
greater than the number of genes in the set, so the above

procedure needs to be modified appropriately.

Kong et al. [25] propose to use dimension reduction by
means of singular value decomposition. In effect, their
approach amounts to using the Moore-Penrose pseudoin-
verse for inverting the singular empirical covariance
matrix in the definition of Hotelling's T2.

Another Hotelling-like statistic can be found in [19].
These authors substitute the usual ¢-statistic with the SAM
statistic [47]
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where s, is a regularizing constant, and assume a diagonal
correlation matrix. This leads to the SAM Gene Set (SAM-
GS) statistic

SAM-GS = )" d7.
gj€s

for a gene set S. Significance is assessed by permuting sam-
ple labels.

A further possibility is to substitute the empirical covari-
ance matrix in the Hotelling T2 statistic with a more effi-
cient estimator. This is important if the sample size is
small [48].

Further procedures

Rahnenfiihrer et al. [26] present procedures to investigate
enrichment whilst taking into account known pathway
structures and co-regulations of gene sets. Adewale et al.
[30] extend the approach of [19] to account for diverse
phenotypes including survival and count data. Lewin and
Grieve [28] developed special methods considering the
connections between gene sets derived from the graph
structure of the Gene Ontology [49]. Procedures to infer
the enrichment of gene-gene and gene-protein networks
have been presented by Nacu et al. [29].

Lauter et al. [31] describe a procedure for detecting gene
set enrichment and the simultaneous selection of suitable
gene sets. This utilizes an exact high-dimensional multi-
variate spherical test [50]. Note that in this procedure the
gene sets are not fixed a priori, but are chosen according
to the correlation among genes. As gene set statistic a
weighted average of univariate beta statistics is employed.

Edelman et al. [27] present an approach similar to the
GSEA of [8]. A key feature of their method is that it is con-
structed to measure the enrichment of gene sets in indi-
vidual samples. This aims at investigating the variation of
the activity of functional groups of genes in the popula-
tion so that the expression profile of relevant gene sets can
be used for predicting the phenotype of an individual. As
local test statistic the log-likelihood ratio is used.
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