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Abstract

Background: An algorithm for the analysis of Affymetrix Genechips is presented. This algorithm,
referred to as the Inverse Langmuir Method (ILM), estimates the binding of transcripts to
complementary probes using DNA/RNA hybridization free energies, and the hybridization
between partially complementary transcripts in solution using RNA/RNA free energies. The
balance between these two competing reactions allows for the translation of background-
subtracted intensities into transcript concentrations.

Results: To validate the ILM, it is applied to publicly available microarray data from a multi-lab
comparison study. Here, microarray experiments are performed on samples which deviate only in
few genes. The log, fold change between these two samples, as obtained from RT-PCR
experiments, agrees well with the log, fold change as obtained with the ILM, indicating that the ILM
determines changes in the expression level accurately. We also show that the ILM allows for the
identification of outlying probes, as it yields independent concentration estimates per probe.

Conclusion: The ILM is robust and offers an interesting alternative to purely statistical algorithms
for microarray data analysis.

Background of the current algorithms for DNA microarrays data anal-

Thanks to DNA microarrays the gene expression profiling
can nowadays be extended to a genome-wide analysis.
Since the first prototypes of the mid nineties [1], microar-
ray technology has advanced considerably in terms of
reproducibility and cross-platforms agreement [2]. Quite
some effort was also devoted to the development of data
analysis tools, which process the raw experimental fluo-
rescence intensities through background subtraction, nor-
malization and eventually summarization. Different
microarray platforms, for instance two-color versus single-
color arrays, require also different data processing. Most

ysis [3] rely on complex statistical transformations for the
above mentioned preprocessing steps. Microscopically
based methods [4-6] offer an interesting alternative to
purely statistical approaches. These methods use estimates
of physical quantities involved in the underlying micro-
scopic processes, as for instance the hybridization free
energy, which measures the transcript-probe affinity. The
fluorescent intensities are then linked to gene expression
levels by means of thermodynamic functions. Input from
physics and chemistry is expected to offer a simpler, but
still accurate handling of the experimental data.
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Here we describe a thermodynamic approach for the cal-
culation of gene expression levels from microarray data,
which will be referred to as the Inverse Langmuir Method
(ILM). As will be shown below, the ILM determines
changes in the expression level accurately, using a simple
computational scheme involving a minimal number of
adjustable parameters. In Affymetrix Genechips [7] tran-
scripts are interrogated by oligo sequences (25-mers),
which are referred to as the probes. The collection of 10 to
20 probes complementary to the same transcript forms a
probe set. The ILM allows for the identification of "outly-
ing" probes, for instance due to a faulty genomic annota-
tion, or a high sensitivity for cross-hybridization. The ILM
thus also provides feedback for the improvement of the
microarray design.

Results and discussion

To assess the quality of the ILM, we use in this paper the
publicly available data from Gene Expression Omnibus
with number GSE2521. These data originate from a study
[2] of a multi-laboratory comparison of hybridization of
the same mRNA sample on three different platforms:
Affymetrix oligo, two-color cDNA and two-color oligo
arrays. Using mixtures of knockout human cell lines two
samples were created in which the expression of few genes
is expected to be altered. The study [2] focuses on 16 genes
whose expression level was measured by RT-PCR in both
samples, in order to compare the log-fold changes with
those obtained from Microarray data analysis. Here we are
concerned only with Affymetrix data, which were pro-
duced by five different laboratories, with two technical
replicates each.

In a microarray hybridization experiment several different
types of chemical reactions take place simultaneously. A
transcript sequence in solution does not only bind to its
complementary probe, but may be involved in, for
instance, self-folding, it may bind to other partially com-
plementary transcripts in solution, or to non-complemen-
tary probes. A review of the physical chemistry of these
processes can be found in Ref. [8]. The ILM takes into
account a subset of these processes. Nevertheless, a com-
parison with RT-PCR data shows that it is an accurate
method for the estimation of the fold changes of the tran-
script concentrations.

With the ILM, we determined the global transcript con-
centrations in each sample, and from the ratio of concen-
trations in the two different conditions we obtained the
fold-change in concentration. Fig. 1 shows two plots of
the log,-fold change in the concentration for the 16
selected genes from the ILM, plotted versus the log,-fold
change concentration as measured from RT-PCR (data
from Ref. [2]). Each plot refers to a single laboratory, as
each laboratory performed two replicate experiments; the
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figure shows the log, fold change for each replicate. If the
ILM agreed perfectly with the RT-PCR experiments, all
data points shown in Fig. 1 would lie on the diagonal. To
assess the accuracy of the ILM, we use the method used by
Irizarry et al [2]: we apply a linear regression line through
the data, constrained to cross the origin, and then use as a
quality measure the agreement with the ideal value for
this slope, which is unity. For a complete comparison of
all experimental data, Table 1 reports the accuracy of the
ILM for the five different laboratories. A comparison with
the accuracies obtained from robust multiarray analysis
(RMA) is also shown. Table 2 presents a list of log, fold
changes as obtained from ILM, RMA and the RT-PCR data.
The performance of the ILM in this test is good.

To assess the effects of different labs and genes in the anal-
ysis, we used a general linear model of the type A = Gene
+ Lab + Gene : Lab where A is the difference between log,
fold changes for RT-PCR and ILM data. A similar analysis
was done also for RMA data. In both cases the lab and
gene-lab interaction effects are not significant. The p-val-
ues are for [ILM p;,, = 0.14 and peeperap = 0-55, while for
RMA ;. = 0.87 and peenerap = 0-26. The majority of the
variation in both methods is explained by the gene effect.

We also performed a more detailed investigation of the
performance of individual probes. Fig. 2 shows the back-
ground-subtracted intensities for some of the 16 genes for
which RT-PCR measurements of expression levels exist.
Data are plotted as function of RT log(K/K,,) = AG + RT log
a, which is calculated from Eq. (3). A perfect agreement of
the data with Eq. (2) would imply their alignment along
a single line, associated to a single value of the concentra-
tion c. In reality some spreading is always observed. The
amount of spreading is linked to the accuracy of the deter-
mination of the transcript concentration in solution. The
central line in the plots corresponds to the median value
of the concentration, while the dashed lines are calculated
from the median absolute deviation of the logarithm of
the individual concentrations. Further details on the tran-
script concentration for each individual probe are given in
Table 3 which presents few examples. The median of all
concentrations per probe set and the median absolute
deviation (m.a.d.) calculated from the logarithm of the
concentrations are also given. Typically, only few probes
deviate strongly from the median concentration, as for
instance is the case for probe 9 in probe set 202859_x_at,
probe 11 in probe set 205828_at, and probe 1, 10, 11 in
probe set 205479_s_at. A narrow spreading (low m.a.d.)
is a signature of an accurate and consistent determination
of the concentrations. Besides giving an estimate of the
concentration, the ILM provides also quality control of
the performance of each individual probe in the probe set.
For instance, probe 11 in the probe set 205828 _at gives a
systematically higher intensity than what is expected from
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ILM vs. RT-PCR log-fold changes. Plot of log, fold changes obtained from the ILM as a function of RT-PCR log, fold
changes. The genes are those considered in Ref. [2] and appear with their symbols in the graph. The solid line shown is the
diagonal implying perfect agreement between the two estimates. The dashed line is the regression line through the data. The
slope of the regression line through the data defines the accuracy of the method, which is 1.05 for the lab2 and 0.84 for the
lab4. The two points for each genes shown correspond to the two technical replicates of the same experiment. Table | summa-

rizes the accuracy for the experiments in the 5 different labs.

the Langmuir model; this is probably due to cross-hybrid-
ization.

The absolute concentrations in Fig. 2 and Table 3 are given
in picomolar (pM). The estimated values of the concentra-
tion depend in the ILM on some parameters, see Ref. [9]
and Methods. In the present work we have taken these
parameters from Ref. [9], where they were fitted against
Affymetrix spike-in data. Hence, no adjustment of the
parameters is done in the present analysis. However the
absolute picomolar values should be interpreted with

Table I: Comparison accuracies ILM and RMA

some care. As hybridization conditions may vary from
experiment to experiment, the parameters from Ref. [9]
may not be fully adequate for the present experiment. A
retuning of the parameters should mainly affect the abso-
lute concentration estimates, but not the fold-changes.
The agreement between fold-changes of ILM and RT-PCR
data indicates that this is plausible.

To evaluate to what extent slight variations in the experi-
mental handling of the microarrays causes fluctuations in

Lab. Accuracy ILM Accuracy RMA
| 1.07 0.62
2 1.05 0.64
3 0.89 0.66
4 0.84 0.59
5 0.95 0.58

rmse ILM Offset ILM (p-value)
0.42 -0.07 (0.59)
0.60 -0.08 (0.49)
0.62 -0.23 (0.14)
0.62 -0.10 (0.28)
0.46 -0.07 (0.48)

Comparison of accuracies of the Inverse Langmuir Method and Robust Multi Array algorithm for the experimental data of Ref. [2]. The accuracy is
the slope of the regression line as shown in Fig. |, which has zero intercept. The accuracy for the RMA is taken from Ref. [2]. The fourth column
reports the RMSE in the log, fold changes between the ILM and RT-PCR data. As a check for possible biases in the ILM, we repeated the linear
regression, this time allowing for intercepts. The resulting values for these intercepts are reported in column 5. The same column also reports the
p-values on the intercept, which show these intercepts are not statistically significant.
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Table 2: Log-fold changes of RT-PCR, ILM and RMA for lab 2 and 4

http://www.biomedcentral.com/1471-2105/10/64

Lab. 2 Lab. 4
Gene RT-PCR ILM, ILM, RMA, RMA, ILM, ILM, RMA, RMA,
PEXI 027 0.05 0.13 0.1 0.08 -0.48 039 0.0l 0.12
PEX6 0.98 0.67 0.16 0.44 0.15 0.46 0.36 0.52 0.58
PEX7 0.08 -0.31 -0.19 -0.1 -0.07 -0.19 -0.44 -0.18 -0.11
PEXI2 -0.12 -0.43 -0.55 -0.21 -0.14 -0.25 -0.18 -0.17 -0.14
BMP7 0 0.08 0.15 -0.05 0.07 -0.03 -0.18 -0.02 -0.06
cuL3 -0.11 0.19 03I 0.08 0.44 0.18 0.14 0.08 022
FAFI 0.03 0.04 0.08 -0.17 0.04 0.02 -0.19 0.03 -0.08
MFNG -0.12 0.32 0.06 0.15 -0.04 -0.39 -0.17 -0.29 0.05
MMP3 4.16 52 5.44 329 3.76 421 4.3 3.51 3.47
PLAU 2.46 3.1 3.43 1.94 2.09 2.8 2.55 211 1.88
EFEMPI -1.88 -1.7 -1.82 -1.58 -1.6 -113 -0.99 -1.06 -1.01
COL5A2 -1.95 -1.77 -1.63 -1.06 -1.21 -1.33 -1.64 -1LI5 -1.07
IL8 1.67 0.86 1.07 0.95 1.05 0.55 1.5 0.98 113
SEMA3F 1.34 -0.26 -0.42 0.12 0.16 -0.19 -0.1 0 0.08
ALOX5 - -0.25 0.1 -0.16 02 -0.12 -0.59 -0.09 0
RNF167 035 05 -0.02 0.13 -0.06 03I 0.02 0.13 -0.01

Table of log, fold changes of the 16 genes in the lab 2 and lab 4 experiments, as obtained from RT-PCR measurements, and from Affymetrix
experiments analyzed with the ILM and RMA. The sub-indices for ILM and RMA distinguish the technical replicates of the same oligonucleotide
microarray experiment. The gene ALOXS5 was not detected in the RT-PCR analysis, hence its ratio is undetermined (see Supplementary Material of

Ref. [2]). This gene was not considered in the accuracy calculation.

the ILM estimates of the transcript concentration, we
present in Fig. 3 a plot of concentration vs. concentration
of two replicate experiments performed in the same labo-
ratory; in the left and right panels, laboratory 2 and 3,
respectively. Concentrations are calculated from the
median of each probe set of Eq. (4). The diagonal line is
also traced. In both cases a good degree of correlation is
found (in both cases the correlation coefficient is 0.97).
The degree of correlation between replicate experiments is
an indicator of good quality of the experiments. We note
that in Fig. 3 (right) a slight unbalance is observed at very
low concentrations (~ 1 pM), which are typically below
the biologically relevant range of concentrations.

Conclusion

Most of the current algorithms for oligonucleotide micro-
array data analysis rely on purely statistical methods and
use complex transformations for normalization, back-
ground subtraction and summarization [3]. Due to its
importance in many biotechnological applications, DNA
hybridization when both strands are free in solution has
been widely investigated during the past decades (see e.g.
[10-12]). It is therefore natural to seek for an application
of the insights obtained during those studies to the case of
hybridization in DNA microarrays. The advantages of
microarray data analysis algorithms based on physico-
chemical properties of the underlying hybridization proc-
ess were indeed emphasized in few studies [4-6].

Here we presented the Inverse Langmuir Method, a new
algorithm for Affymetrix Genechips data analysis which is

based upon DNA and RNA hybridization thermodynam-
ics. The ILM consists of two steps: the background subtrac-
tion and the transcript concentration estimation for the
background-subtracted intensities. These two steps, which
were accurately fine-tuned and tested separately on
Affymetrix spike-in data in previous publications [9,13],
are here combined into a single algorithm.

To validate the ILM, we applied it to publicly available
microarray data from a multi-lab comparison study [2] in
which microarray experiments were performed on mRNA
samples where different expression levels of few genes are
induced. The log, fold change between these two samples,
as obtained from RT-PCR experiments, agrees well with
the log, fold change as obtained with the ILM, indicating
that the ILM determines changes in the expression level
accurately. A comparison of replicated experiments shows
that the ILM is not very sensitive to slight variations in the
experimental handling of the microarrays, and hence
gives a very good degree of reproducibility. Since the ILM
yields independent concentration estimates per probe, it
allows for the identification of outlier probes. Differently
from other physico-chemical inspired algorithms [5,6]
the ILM uses a much smaller number of adjustable param-
eters. This is because the hybridization free energies AG
and AG' entering in Eq. (3) are obtained from RNA/DNA
and RNA/RNA tabulated stacking parameters obtained
from melting experiments in solution [10,11].
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Background-subtracted intensities vs. Langmuir model. Background-subtracted intensities (numbers, probe numbering
follows Affymetrix convention) plotted as functions of RT log(K/K,) = AG + RT log « for six different probe sets in the experi-
ments of Ref. [2]. As additional information we also plot the raw fluorescent intensities (crosses), so that the effect of back-
ground subtraction can be viewed by comparing the numbers with their corresponding crosses on the same x value. The
background level is probe dependent, and was calculated using the algorithm of Ref. [13]. Typically, background subtraction has
little effect on the higher intensity data, while its effect is more important for lower intensities. The lines shown are plots of Eq.
(2) for three different values of the concentrations. A perfect agreement with the ILM would imply the alignment of all back-
ground-subtracted intensities (numbers) along one single line which would identify a single concentration for the whole probe
set. Apart from few outliers the background-subtracted intensities (numbers) follow well the prediction of the Langmuir model
(the raw fluorescent intensities (crosses) are not expected to follow the model). The solid line corresponds to the median
value of the concentration, whose value, in picomolar (see text), is reported in the upper left corner of each graph. The two
dashed lines are obtained from the median absolute deviation of the logarithm of the concentrations and measure the disper-
sion in the values of the concentrations within each probe set.

In the near future, we plan to make a freely available ver- = Methods

sion of the ILM available through http://www.bioconduc  In general, in a microarray experiment, the intensity meas-

tor.org. ured from a given probe with sequence s can be decom-
posed into two contributions

I(c) = Ii,(c) + L.
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Table 3: ILM concentrations (expression levels) for each
individual probe in a probe set

Probe n. PEX12 MMP3 PLAU PLAU
205094_at 205828 at  205479_s_at  205479_s_at
lab2 Al labl Al labl A2 lab4 BI
| 19 29 9 21
2 14 35 131 374
3 0 9 13 46
4 76 106 229 958
5 30 38 154 383
6 36 0 215 441
7 | 50 143 245
8 51 18 325 734
9 15 8l 202 537
10 27 86 I 12
I 17 1084 28 135
median 23 38 143 374
m.a.d. 0.67 I.14 0.61 |

Examples of individual concentrations (in picomolar, see text) for
each of the || probes of three given probe sets used in the study of
Ref. [2]. The gene symbol, probe set number and laboratory number,
following Ref. [2] are given. Each laboratory performed two replicate
experiments (labeled as A and B) for two different mRNA samples
(labeled as | and 2). The median value and the median absolute
deviation (m.a.d.) of the logarithm of the concentrations are also
given.

The first term, I, is the specific part of the signal, which
depends on the transcript concentration in solution ¢,
which is the gene expression level one needs to estimate.
The second term, I, is due to cross-hybridization or other
spurious effects. This is the amount of fluorescent signal
one measures even in absence of the specific transcript (c
= 0); it is sequence-dependent, since some probes (for
instance CG-rich ones) are more prone to cross-hybridize
than others. Equation (1) neglects competitive effects
between specific and non-specific hybridization (see e.g.
[6]), which arise if the intensity approaches saturation.
Since typically the background intensity I, is only a few
percent of the saturation intensity, this effect only plays a
significant role if the total intensity is dominated by the
contribution of specific hybridization. In that case, how-
ever, the resulting overestimation of I, does not affect the
main purpose of the ILM, which is to estimate transcript
concentrations.

In the ILM, the estimate of I, is obtained as described in
Ref. [13]. This background estimation scheme combines
information from the intensities of nearby probes with a
purely sequence-based estimation of the affinity for non-
specific binding. The latter correlates with the stacking
parameters obtained from melting experiments in solu-
tion [10]. The performance of this background estimation
scheme has been extensively tested [13], with excellent

http://www.biomedcentral.com/1471-2105/10/64

results, on pure background data from Affymetrix spike-in
experiments.

Once the background is subtracted, the transcript concen-
tration is estimated through the Langmuir adsorption
model. This model links the fluorescent intensity to the
transcript concentration:

Here A is the saturation value, i.e. the limiting value of
intensity reached at large concentrations. At saturation all
probes are hybridized and the microarray is no longer sen-
sitive to a further increase in transcript concentration. An
analysis of Genechips intensity histograms [14] of several
organisms reveals that there is a sharp drop at intensities
in the range 10,000 < I < 15,000, and very few probes
have a higher intensity. This suggests that A varies within
this range. Recent literature [15-17] reported significant
variations in A from probe to probe, attributed to the
post-hybridization washing step. Lacking a detailed quan-
titative understanding of the washing process, we take a
fixed value of A = 10,000, as done in Ref. [9].

Extensive tests on Affymetrix spike-in experiments [9]
showed that most likely two competing types of chemical
reactions contribute to the Iy 1) The hybridization of the
transcript sequence to the complementary probe
sequence. This reaction is characterized by a hybridization
free energy AG, which is sequence dependent (for
instance, CG-rich transcript fragments bind more strongly
to their complementary probes). 2) Hybridization in solu-
tion of the transcript with partially complementary frag-
ments from other transcripts, characterized by a second
hybridization free energy AG'. This reaction leads to an
effective reduction of the target concentration by a factor
a < 1. Combining the effects of 1) and 2) one gets

’

K/K, = 06(2?,,5 )exp(AG/RT) __ exp(AG/RT)

1+¢K g exp(AG’/ RT)

with R the gas constant (= 1.99 cal/(mol-K)) and K, is a
unit constant with a dimension of inverse concentration.
The hybridization free energies AG for transcript-probe
hybridization are calculated from the nearest neighbor
model, with tabulated experimental data for DNA/RNA
[10] duplex formation in solution. Recent test experi-
ments [18] on spotted arrays showed a strong correlation
between microarray fluorescent intensities and hybridiza-
tion free energies from stacking parameters in solution,
corroborating our underlying assumption that hybridiza-
tion in solution is very similar to hybridization on a
microarray. The hybridization free energies AG' enter in
the factor « and are associated to transcript-transcript
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Concentrations vs. Concentration plots of two experiments. Examples of correlation plots of concentration vs. con-
centration as estimated from the ILM in two replicate experiments of laboratory 2 and laboratory 3. The red line is the diago-
nal. The data show very good correlation, except for the very low concentration regime in the second example. However,
concentrations of about | pM are just above the background level somewhat below the safe detection limit, which should be

placed at about 10 pM.

hybridization in solution as well as self-folding; these are
also calculated from the nearest neighbor model, with
tabulated experimental data for RNA/RNA [11] duplex
formation in solution. Both types of these hybridization
free energies do not contain fitting parameters. The ILM
uses therefore only four global adjustable parameters
which are A, T, T' and ¢, with values as obtained by
regression analysis of Affymetrix spike-in data [9]. In gen-
eral, one may wonder whether different experimental cir-
cumstances require a refitting of these parameters. For
instance, the parameter « describes hybridization
between partially complementary transcripts in solution.
Two different experiments with, say, human mRNAs
extracted from two different tissues contain different
sequences in solution and hence « could in principle be
different. Also, a significant decrease in total concentra-
tion, for instance, will impact the balance between the two
competing types of processes [19], and would result in a
reduced ¢. In a previous publication [20] it has been
shown that the model of Egs. (2,3) describes well spike-in
HGU133 data, with the same parameters A, T, T and ¢ as
fitted on HGU95 [9]. We expect thus that a refitting does
not significantly improve the results. Indeed, the good
agreement with the RT-PCR data presented in this paper is
an indication that the values of parameters as fitted Ref.
[9] are appropriate for the study presented here. Note the
competing effect of the two coupled chemical reactions:

an increase of the affinity of the transcript-probe hybridi-
zation (increase of AG) leads to an overall increase of the
fluorescence signal. The effect is opposite for an increase
in the affinity of transcript binding in solution (higher
AG"), as this leads to a decrease of the signal. We also note
that Eq. (3) defines an extended Langmuir model in which
K can be viewed as a measurements of the effective affinity
for binding of the transcript to the probe sequence, in
which the effect of reaction 2) is incorporated.

A given probe sequence uniquely determines K, hence the
transcript concentration can be found by inverting Eq. (2)
as

_1 Isp
K A-Igp

This equation forms the basis of the Inverse Langmuir
Method (ILM). For a probe set containing n probe
sequences, Eq. (3) yields n values of K and from Eq. (4)
one gets n independent estimates of the transcript concen-
tration. We take the median estimate as our best estimate
for the value of the transcript concentration.

In summary, the ILM measures the expression level (tran-
script concentration) as follows. The first step in the anal-
ysis is the background estimation [13] and its subtraction
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from the raw intensities to yield Iy, = I - I,. Next, using Egs.
(3) and (4) one obtains a value of the concentration per
probe. The median concentration within the probe set is
then taken as global transcript concentration.
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