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Abstract
Background: We introduce Approximate Entropy as a mathematical method of analysis for
microarray data. Approximate entropy is applied here as a method to classify the complex gene
expression patterns resultant of a clinical sample set. Since Entropy is a measure of disorder in a
system, we believe that by choosing genes which display minimum entropy in normal controls and
maximum entropy in the cancerous sample set we will be able to distinguish those genes which
display the greatest variability in the cancerous set. Here we describe a method of utilizing
Approximate Sample Entropy (ApSE) analysis to identify genes of interest with the highest
probability of producing an accurate, predictive, classification model from our data set.

Results: In the development of a diagnostic gene-expression profile for cervical intraepithelial
neoplasia (CIN) and squamous cell carcinoma of the cervix, we identified 208 genes which are
unchanging in all normal tissue samples, yet exhibit a random pattern indicative of the genetic
instability and heterogeneity of malignant cells. This may be measured in terms of the ApSE when
compared to normal tissue. We have validated 10 of these genes on 10 Normal and 20 cancer and
CIN3 samples. We report that the predictive value of the sample entropy calculation for these 10
genes of interest is promising (75% sensitivity, 80% specificity for prediction of cervical cancer over
CIN3).

Conclusion: The success of the Approximate Sample Entropy approach in discerning alterations
in complexity from biological system with such relatively small sample set, and extracting
biologically relevant genes of interest hold great promise.

Background
Genomic heterogeneity is a characteristic feature of nearly
all solid tumors, appearing early in tumor progression.
Over time, early genomic instability evolutionarily leads

to a molecularly heterogeneous population of cells natu-
rally selected for their abilities to proliferate and invade,
while simultaneously evading host defenses. The selection
process, influenced by the unique to the tumor host envi-
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ronment, results in a further diverse intrapatient tumor
population which is responsible for the clinical heteroge-
neity of the disease.

Concepts of tumorigenesis include the stochastic model,
disputing the existence of genomic destabilization in
tumor cells, instead arguing that mutations occurring dur-
ing differentiation, development, and proliferation com-
bine to create a cell with the perquisites for malignancy;
according to this model, the cell then simply proliferates
to create the cancer.[1] On the other end of the spectrum,
the nature of tumor progression is viewed as a well-
defined linear process paralleling normal cellular differ-
entiation but accelerated in its steps due to acquired
genomic instability producing multiple cell popula-
tions.[2] While each model has a degree of validity, solid
tumors represent a far more chaotic process with diverse
routes to genomic destabilization.

The evidence for genomic heterogeneity has been found
in the extensive, progressive, and diverse genomic damage
observed within the tumor, pre-neoplastic lesion, [3-5]
and tumor-derived tissue culture cell lines.[6,7] If exten-
sive genetic damage occurs or an essential gene target is
effected, cell death will follow. However, the damage is
often more subtle, without adverse consequences on cel-
lular survival and no discernible significance. But those
which promote proliferation, particularly by activating
processes in the pathways of signal responsive cell prolif-
eration or affecting removal of inappropriate proliferative
cell populations, will give rise to expanding colonies har-
boring the mutant regulatory genes. Initially seen as an
insignificant mass of cells, within this ever-increasing
population of cells there exists a vast diversity of genomic
damage out of which new advantageous mutations will be
selected for processes such as adhesion, proteolysis,
migration, lymphangiogenesis/angiogenesis, and
immune escape mechanisms.

While a fortuitous random process is created by genomic
destabilization and natural selection, most are searching
for a coherent pattern within this extremely diverse event.
It is likely that the observed clinical heterogeneity of cer-
vical cancer is a reflection of the dissimilar genomic events
between the patients. Since the advent of microarray tech-
nology, data generated from these experiments have most
often been analyzed with the aim to identify specific pat-
terns in the expression levels, such as periodicity or
monotonous increases or decreases. [8-11] These meth-
ods of analysis, by their nature, exclude all genes which
reflect an ill-defined pattern of expression within defined
groups.

We introduce Approximate Sample Entropy as a mathe-
matical method of analysis for microarray data. Approxi-

mate entropy is traditional utilized in analysis of temporal
patterns; such as heart rate variability.[12,13] The utilitar-
ian nature of entropy is beginning to be recognized in
Microarray data analysis. Lezon et. al. recently applied
entropy as a means identify metabolic oscillation within a
cultured system presumably associated to the interaction
of key genetic networks.[14] It is applied here as a method
to classify the complex gene expression patterns resultant
of a clinical sample set. Since Entropy is a measure of dis-
order in a system, we believe that by choosing genes
which display minimum entropy in normal controls and
maximum entropy in the cancerous sample set we will be
able to distinguish those genes which display the greatest
variability in the cancerous set. These genes can then be
used to classify an unknown biopsy into one of these
groups based on the calculated entropy of the sample.

Cervical cancer is an excellent model for evaluation of this
analysis for multiple reasons. Aside from being the second
leading cancer among women worldwide; with 470,000
new cases occurring annually; cervical cancer uniquely has
an easily accessible, well defined, distinct pre-neoplastic
lesion.[15]. The progression of disease to cancer is a linear
process beginning with High-risk human papillomavirus
(HPV) infection to intraepithelial neoplasia to invasive
cancer. Squamous cell carcinoma of the cervix originates
from a single carcinogenic trigger (HPV), yet as the lesion
grows it develops to a heterogeneous population of cells
characteristic of all solid tumors.

Methods
Sample handling and RNA isolation
Cervical biopsy samples were obtained from radical hys-
terectomy specimens of patients with Stage 1B1 squa-
mous cell carcinoma of the cervix. Lesional and
perilesional samples were obtained from 4 individual
patients. Control biopsy samples were obtained from hys-
terectomy specimens of patients with documented nor-
mal cervix. All biopsies were histologically confirmed.
Perilesional biopsies were normal cervical epithelium
adjacent to the tumors.

Cervical biopsy samples from an additional 20 patients
were utilized for real-time pcr validation. These biopsies
were obtained from patients with either the preneoplasitc
lesion (CIN 3), or with Stage 1A-1B squamous cell carci-
noma of the cervix. As for the training set, normal cervical
samples obtained from hysterectomy specimens of
patients were utilized as controls. State of disease was his-
tologically confirmed on an adjacent biopsy.

Total RNA was extracted from each sample using the
RNAqueous RNA Isolation Kit (Ambion, Austin, Tx) fol-
lowing manufacturer's instructions. The extracted RNA is
DNase treated prior to quantification. The RNA quality
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was assessed by detecting the 28S/18S peaks with an Agi-
lent Bioanalyzer 2100 (Agilent Technologies, Walbronn,
Germany). Only RNA with the highest fidelity (A260/
A280 ratio between 1.9 and 2.1, and a high quality elec-
tropherogram) is used for microarray analysis

Microarray analysis
Twenty μg of DNA-free RNA from each biopsy was
applied to the GeneChip Human HG_U133 A & B Gene-
Chip (Affymetrix). Microarray gene chip analysis was per-
formed on all samples using the Affymetrix HU 133 A & B
human 33,000-GeneChip (Affymetrix,) for identification
of disease specific expression patterns. Labeling of cRNA,
hybridization, and scanning of the microarrays were done
according to the manufactures protocols (Affymetrix,
Santa Clara, Calif.).

Quantitative reverse transcription-PCR
Quantitative reverse transcription-PCR (qRT-PCR) was
performed to validate differential expression of genes in
an independent set of 20 cervical tissue biopsies. QRT-
PCR was done with a 7500 Fast Real-time PCR system
(Applied Biosystems) using gene-specific primer/probe
mix (Assays-by-Design: Applied Biosystems, Foster City,
Ca. The comparative threshold cycle (Ct) method was
used in comparing the level of mRNA expression of the
genes of interest to that of the internal control gene,
GAPDH. Each reaction was set up in triplicate, with final
expression levels in cancer samples compared to non-dis-
eased, normal controls.

Results
Cluster Identification
Initially a normal baseline was established, 966 genes
were found to be unchanging between patients with nor-
mal cervical biopsies when limited to a variance of less
then 0.5% of the log2 expression values, a variance below
the technical noise level of the Affymetrix array.[16] (Fig-
ure 1)

Half of the normal patient's biopsies were used in the ref-
erence sample set while the other half was treated as
experimental samples similar to the cancer and perile-
sional biopsy samples. Changes in gene expression were
calculated for each of the 966 genes as

ΔE = log2 (reference) - log2 (experimental) (1) (1)

where experimental denotes expression in either the non-
reference normal, perilesional or cancer samples. For use
during the clustering phase, the ΔE values were averaged
over subjects within each classification group (normal,
perilesional, cancer) so that for any gene k, the mean ΔE is
a 3-element vector

with superscripts 1, 2, and 3 representing normal, perile-
sional and cancer sample groups, respectively.

The 3 by 966 array of mean ΔE values were input into a
Bayesian classification algorithm (Ahlea Systems Corp.,
Nepean, ON) in MATLAB (MathWorks, Natick, MA) and
the 966 genes were partitioned into subsets (classes)
based on expression change patterns. The clustering parti-
tioned the data in 3-space, where each dimension corre-
sponded to one of the sample groups types. Genes were
assigned to the cluster with the smallest Bayesian distance

ΔEk ∈ ωi if di(Δ Ek) <dj(ΔEk) ∀ j ≠ i (3)

where the distances d were calculated as

 and Ci are the estimated mean and covariance matrix

for cluster ωi and p(ωi) is the probability of membership

in cluster ωi and |Ci | is the determinant of the covariance

matrix.
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Establishment of normal baseline for sample entropy calcula-tionsFigure 1
Establishment of normal baseline for sample entropy 
calculations. Initially a normal baseline was established, 966 
genes were found to be unchanging between the normal 
samples when limited to a variance of less then 0.5% of the 
log2 expression values, a variance below the technical noise 
level of the Affymetrix array.
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On the first pass through the clustering algorithm, all
points were considered to be members of a single cluster
located at a center given by the mean of each group over
all 966 genes with an a-priori (or prior) probability p(ωi)
of 1. On subsequent iterations, this quantity was based on
the fraction of genes in each potential cluster.

The number of subsets was determined using a process of
blind clustering which estimated the χ2 statistic of hypo-
thetical clusters to determine if the data set represents a
single or multiple Gaussian distributions. If the computed
chi2 value for any cluster exceeded a set threshold (1.0 for
1 to 10 clusters; 2.0 for > 10 clusters) and if the product of
the number of members of a class and the amount by
which the chi-squared test exceeded the threshold was
greater than a second criterion, the data were considered
for further subsets. Subdivision of existing clusters contin-
ued until these conditions were no longer met. By varying
the second criterion, it is possible to stabilize at a greater
or lesser total number of clusters.

If an existing cluster was considered for further subdivi-
sion, two new cluster centers were located symmetrically
along the principal axis (eigenvector) by a distance deter-
mined by the magnitude of the principal component
(eigenvalue) computed from that cluster's covariance
matrix. Bayesian distances were then estimated relative to
the new clusters and the process was repeated. (Figure 2)

Apparent Entropy Calculation
After dividing the 966 genes into 10 groups based on clus-
ter membership, ApSE values were computed for the genes
within each cluster. (Figure 3) The entropy of a sample
may be approximated (ApSE) as the negative logarithm of
the conditional probability P(x) that a dataset of sample
x, falling within a tolerance range (R) for point k, will also
repeat itself for each point in the set. Suppose | (ΔE)n | rep-
resents the absolute value of ΔE for subject n belonging to
one of the three biopsy groups. Let SR denote the set of
genes whose ΔE value for that subject falls within a neigh-
borhood R of zero:

SR = {k: (ΔEk)n <R} (5)

where R is a real number ranging from 0.1 to 5.5 in steps
of 0.1.

We can then define A(R) as the number of genes in set SR.
If N is the total number of genes in the cluster being con-
sidered, then the approximate sample entropy can be writ-
ten as:[17]

Classification Trees
Classification consisted of two stages: 1) determination of
decision rules based on the ApSE scores and known
biopsy classes of the subjects in the training set and 2)
application of the decision rules to the ApSE values of sub-
jects in the validation set to predict biopsy class. The
agreement between the actual and predicted biopsy class
was tabulated and scored.

ApSE R
A R

N
( ) = −

+ ( )
+

log 2
1

1
(6)

Bayesian classification algorithm partitioned the genes into 10 subsets based on expression change patternsFigure 2
Bayesian classification algorithm partitioned the 
genes into 10 subsets based on expression change 
patterns. Scatter plot of the change in log2 expression of 
Cancer from Normal, versus Perilesional from Normal, 
depicts the 10 possible subsets of genes differentiating the 
two groups. Subsets 1 and 2 displayed the best predictive 
value during validation.(A) Line plot of log2 expression of the 
10 subsets, for the average change of Log2 expression of 
from Normal; for Normal, Perilesional and Cancer for each 
subset.(B).
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Decision rules were determined separately for each subset
of genes. ApSE values from the training set were input as
independent/explanatory variables into a regression tree
(Insightful Miner V3.01, Insightful Corp., Seattle WA).
(Although Insightful Miner uses the term 'regression tree',
the same process can be used to predict categorical or con-
tinuous dependent/response variables. The result is typi-
cally termed a regression tree when the response variable
is continuous and a classification tree when the response
variable is categorical).

The tree-fitting algorithm used in Insightful Miner is
based on the recursive partitioning code called
RPART.[18] Similar tree-fitting routines are available for R
http://CRAN.R-project.org in the downloadable "tree"
library. As with the "tree" routine in S-Plus, this method-
ology builds upon the CART model developed by Breit-
man et al.. [19] A summary of the algorithms used in tree-
based methods may be found in Venables and Ripley.[20]
A comprehensive survey with proofs and theoretical
results is given by Ripley.[21]

Unlike traditional regression techniques which use a
weighted sum of independent values to estimate the
dependent variable, regression trees output a hierarchical
series of rules or logical if-then conditions that can be
used to classify the cases based on the values of the predic-
tor variables.(Figure 4) Tree-based methods are well-
suited for these kinds of classifications as they make no
implicit assumptions regarding the distribution of or rela-
tionships between the predictor and dependent variables.

Example Classification Tree based on ApSE analysis for a training setFigure 4
Example Classification Tree based on ApSE analysis 
for a training set. For this particular gene cluster, key deci-
sions were based on the values of ApSE at R = 0.1 (E1) and at 
R = 1.4 (E14). All subjects whose ApSE value at R = 1.4 was 
greater than 0.02 were classed as belonging to the cancer 
group. For subjects with an ApSE value at R = 1.4 less than 
0.02 were further split into two groups. If the ApSE at R = 1.4 
was above 0.01, they were assigned to the perilesional group. 
In the subset of subjects whose ApSE at R = 1.4 was less than 
0.01, the ApSE at R = 0.1 was used to make the final decision: 
subjects whose ApSE at R = 0.1 fell below 0.33 were classed 
as belonging to the normal group, with the remainder (ApSE 
at R = 0.1 > 0.33) falling into the perilesional group. These 
decision rules were then applied to a corresponding valida-
tion set of subjects (for the same cluster of genes) to predict 
the biopsy class.

ApSE as a function of RFigure 3
ApSE as a function of R. ApSE is calculated at 55 values of 
R ranging from 0.1 to 5.5 (only the first 20 points are plotted 
here). This figure depicts the ApSE values in a training set, 
where red, blue and green curves correspond to data from 
cancer, perilesional and normal biopsy samples. For simplic-
ity, only the mean curve for each group is shown here. For 
prediction purposes, a separate ApSE curve is computed for 
each subject. Because of the between subjects variation in 
the ApSE curves, selecting optimal decision criteria by eye 
based on data for all subjects is not possible. Selection of 
classification rules in training sets and application of the rules 
in validation sets were therefore carried out using classifica-
tion trees.
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In the final (cross-validation) stage of this analysis, the
decision rules obtained using the training data were
applied to the validation data set, and the agreement
between the actual and predicted biopsy class was tabu-
lated for each subset of genes.

Quantitative real-time PCR validation of gene subsets
Ten genes were chosen for initial quantitative real-time
validation of the gene array, for the two gene subsets (sub-
set 1 and 2) which best represent our progressive model of
disease. RNA was extracted from fresh frozen biopsies of
normal, cervical intraepithelial neoplasia grade 3 (CIN 3)
and stage IB-IIB squamous cell carcinoma (SCC) for
Quantitative Real-Time PCR (qRT-PCR) using the
RNAqueous RNA Isolation Kit (Ambion, Austin, Texas).
Using the 7500 FAST Real-Time System (Applied Biosys-
tems), cDNA from the samples was amplified in a single-
plex reaction, for the following genes of interest (Adaptor
related protein complex 2, sigma 1 subunit (AP2S1), Col-
lagen typeVI alpha 3(Col6A3), Fibronectin 1 (FN1),
Growth arrest specific 6 (GAS6), Human leukocyte anti-

gen (HLA-C), High-mobility group nucleosome binding
domain 1 (HMGN1), Heat shock 60 kDa protein 1
(HSPD1), Interferon gamma-inducible protein 16
(IFI16), Matrix metallopeptidase 2 (MMP2), Proteasome
subunit beta-2 PSMB2, Tenascin C (TNC))

Discussion
We believe that the observed clinical heterogeneity of
most cancers is a reflection of the gross genomic heteroge-
neity and subsequently the molecular heterogeneity also
found within the tumors, also that the more heterogene-
ous the cell population, the more likely the development
of a metastatic, aggressive phenotype. Genomic destabili-
zation, evolution, and selection for invasive, proliferating
populations of cells encompass the fundamental nature of
cancer. Cancer cells represent a diversely complex evolu-

Squamous cell carcinoma tumor and perilesional display dis-tinctly different scatter plots from normal tissueFigure 5
Squamous cell carcinoma tumor and perilesional dis-
play distinctly different scatter plots from normal tis-
sue. Representative scatter plots of average normal versus 
perilesional (A) and cancer (B) samples from patient 1, for 
gene subset 1. R is depicted by the dashed line around the 
normal baseline line (slope = 1). The value for R is optimized 
for differentiation between groups for each subset of genes.

Table 1: Assessment of evaluation metrics for subset 1 and 2 
from the logistic regression

Training Data Gene Subset 1

Positive Category Recall Precision F-Measure

Perilesional 100.00% 100.00% 100.00%

Cancer 100.00% 100.00% 100.00%

Validation Data

Positive Category Recall Precision F-Measure

Perilesional 75.00% 75.00% 75.00%

Cancer 80.00% 80.00% 80.00%

Training Data Gene Subset 2

Positive Category Recall Precision F-Measure

Perilesional 100.00% 85.71% 92.31%

Cancer 100.00% 100.00% 100.00%

Validation Data

Positive Category Recall Precision F-Measure

Perilesional 75.00% 75.00% 75.00%

Cancer 100.00% 83.33% 90.91%
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tionary life within the host. The resultant heterogeneous
tumor is linked to its genetic state and represented in its
gene expression profile. We have shown here that encom-
passing this heterogeneity in the data analysis aids in cap-
turing the diversity within the cancer subgroups and in the
identification of subgroup specific gene expression pro-
files.

Since the advent of microarray technology, data generated
from these experiments have most often been analyzed
with the aim to identify specific patterns in the expression
levels, such as periodicity or monotonous increases or
decreases. [8-11] These methods of analysis, by their
nature, exclude all genes which reflect an ill-defined pat-
tern of expression within defined groups. It is within these
complex gene expression patterns that we find evidence
for the extreme heterogeneity created by the genomic
destabilization and natural selection processes that drives
the cancer.

Scientists have struggled with theoretical means to detect
alterations in system complexities. Entropy, a measure of
disorder or randomness has been used to classify complex
systems externally viewed as chaotic. A limited number of
studies have utilized the concept of entropy in gene
expression analysis; all to enhance clustering techniques
by minimizing entropy and thus the amount of disorder
in the groups. [22-24] Conversely, we have established a
classification method based on Approximate Sample
Entropy as a measure of molecular heterogeneity within
our system indicative of clinical behavior of the tumor.

Approximate sample entropy analysis of microarray data
has proven to be a reliable method of differentiating sub-
groups of patient samples. With the ability to classify the
perilesional biopsy sample from normal with 75% accu-
racy, and to classify cancer with 80% accuracy with an 81
gene set (subset 1). (Table 1) The approximate sample

entropy, which is a measurement of randomness in a sys-
tem, was found to increase within a patient from perile-
sional to cancer with a 1.1 to 2.0 ratio. (Figure 5)

Quantitative real-time validation has been performed
with a limited gene set from the sample entropy analysis
of the Affymetrix microarrays. Approximate sample
entropy analysis of normalized quantitative real-time PCR
data was also found to be reliable at differentiating sub-
groups of cervical neoplasia. Unlike the original gene
array experimental set, in the validation study expanded
the abnormal cervical sample groups to include CIN3 (the
premalignant lesion), and stages I and II squamous cell
cancer. We find in Table 2 that our classifications are cor-
rect in 85% of the population with gene subset 1, and for
subset 2 the probability of accurately classifying a SCC
patient with cancer is 94%. The probability distribution of
cancer was found to be statistically different from the
CIN3 distribution with p values less than 0.005 for both
subsets. (Table 2)

Conclusion
The sample entropy analysis has the ability to detect
abnormality with a predictive probability of 88%, with
region R set at the maximum value for difference in ApSE
between cancer and perilesional (dApSE). (Figure 6) The
ability to accurately classify the cancer biopsy sample
from the premalignant lesion with 81% accuracy, and to
classify the malignant lesion with 48% accuracy. Noting
that this gene set was determined by its ability to distin-
guish Stage I cervical cancer from normal cervix, it is
encouraging to find the sample entropy values for CIN 3
distributed between normal and lower cancer values. CIN
3 lesions have varying prognosis, from spontaneous
regression to 14% progression to invasive cancer. Our
miss classification of 9–20% of CIN 3 and invasive cancer
may reflect this subpopulation of CIN 3 with early inva-
sive potential.

Table 2: Probability distribution parameters and classification probabilities for the realtime validation of gene subsets 1 and 2

Subset 1 Subset 2

Cin3 SCC Cin3 SCC

Mean, m 0.424 1.122 0.539 1.87

Standard Deviation, s 0.176 0.455 0.304 0.699

Probability of classifying Normal 0.059757 0.016329 0.100342 0.006934

Probability of classifying Cin3 0.850268 0.138632 0.704364 0.05598

Probability of classifying SCC 0.089975 0.845039 0.195294 0.937085

p value (T-test) 0.0005 0.0001
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Probability distribution of approximate sample entropy approach for gene sets 1 and 2 applied to an independent group of patientsFigure 6
Probability distribution of approximate sample 
entropy approach for gene sets 1 and 2 applied to an 
independent group of patients. Plot of R versus average 
ApSE for SCC (dots, n = 11)(dark), CIN3(dashed, n = 
7)(light), and dApSE (ApSE [SCC]-ApSE [CIN3]) (grey), The 
value of R which results in the maximum change in ApSE is 
chosen to represent the gene subset 1 (A), and subset 2 (B). 
Normal probability distribution of approximate sample 
entropy calculated for Normal (n = 10), CIN 3 (n = 7) and 
SCC (n = 11) qRT-PCR validation study for subset 1 (C), and 
subset 2 (D).
Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11221858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11221858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1347643 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1347643 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1347643 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17330261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17330261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12850380 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12850380 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12850380 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9788624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9788624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9788624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11092820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7937795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7937795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11355567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11355567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11747616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11747616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16542461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16542461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16542461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18175860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18175860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12185014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12185014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17138668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17138668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17138668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17428341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17428341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15081687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16764735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16764735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16448008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16448008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15833120 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15833120 

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Sample handling and RNA isolation
	Microarray analysis
	Quantitative reverse transcription-PCR

	Results
	Cluster Identification
	Apparent Entropy Calculation
	Classification Trees
	Quantitative real-time PCR validation of gene subsets

	Discussion
	Conclusion
	Authors' contributions
	Acknowledgements
	References

